
Yuri KnyazikhinBoston University | BU · Department of Earth & Environment
Yuri Knyazikhin
PhD
About
252
Publications
37,209
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
18,305
Citations
Citations since 2017
Introduction
Publications
Publications (252)
The leaf area index (LAI) is a key structural parameter of vegetation canopies. Accordingly, several moderate-resolution global LAI products have been produced and widely used in the field of remote sensing. However, the accuracy of the current moderate-resolution global LAI products cannot satisfy the requirements recommended by the LAI applicatio...
Fractional Vegetation Cover (FVC) represents the planar fraction of the land-surface covered by green foliage, and its dynamics are important for an enhanced understanding of ecosystems especially how they respond to climate change. The lack of global near-real-time satellite-based products restricts the application of FVC in ecosystem modeling, cl...
It is important to understand temporal and spatial variations in the structure and photosynthetic capacity of tropical rainforests in a world of changing climate, increased disturbances and human appropriation. The equatorial rainforests of Central Africa are the second largest and least disturbed of the biodiversly-rich and highly productive rainf...
As an essential vegetation structural parameter, Leaf Area Index (LAI) is involved in many critical biochemical processes such as photosynthesis, respiration, and precipitation interception. The MODerate resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imager Radiometer Suite (VIIRS) LAI sequence products have long supported variou...
Canopy radiative transfer (RT) modeling is critical for the quantitative retrieval of vegetation biophysical parameters and has been under intensive research over the decades. RT models of discontinuous canopies, such as three-dimensional (3D) RT models, posed challenges for the early one-dimensional (1D) hypothesis. Although 3D RT models have high...
In vegetation canopies cross-shading between finite dimensional leaves leads to a peak in reflectance in the retro-illumination direction. This effect is called the hot spot in optical remote sensing. The hotspot region in reflectance of vegetated surfaces represents the most information-rich directions in the angular distribution of canopy reflect...
The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) provides multispectral images of the sunlit disk of Earth since 2015 from the L1 orbit, approximately 1.5 million km from Earth toward the Sun. The NASA’s Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been adapted for DSCOV...
The Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory (DSCOVR) satellite observes the entire Sun-illuminated Earth from sunrise to sunset from the L1 Sun-Earth Lagrange point. The L1 location, however, confines the observed phase angles to ∼2°–12°, a nearly backscattering direction, precluding any information on the bi...
After March 2020 the range of scattering angle for DSCOVR EPIC and NISTAR has been substantially increased with its upper bound reaching 178°. This provides a unique opportunity to observe bi-directional effects of reflectance near backscattering directions. The dependence of the top-of-atmosphere (TOA) reflectance on scattering angle is shown sepa...
The science teams of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imager Radiometer Suite (VIIRS) have been supporting various global climate, biogeochemistry, and energy flux research efforts by producing valuable long-term Leaf Area Index (LAI) products. Although intensive LAI validation studies have been carried out...
The MODIS LAI/FPAR products have been widely used in various fields since their first public release in 2000. This review intends to summarize the history, development trends, scientific collaborations, disciplines involved, and research hotspots of these products. Its aim is to intrigue researchers and stimulate new research direction. Based on li...
Vegetation foliage clumping significantly alters the radiation environment and affects vegetation growth as well as water, carbon cycles. The clumping index (CI) is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index. Previously generated CI maps using a diverse...
Uncertainty assessment of the moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by vegetation (FPAR) retrieval algorithm can provide a scientific basis for the usage and improvement of this widely-used product. Previous evaluations generally depended on the i...
Tropical secondary forests (SF) play an important role in the global carbon cycle as a major terrestrial carbon sink. Here, we use high‐resolution TerraClass data set for tracking land use activities in the Brazilian Amazon from 2004–2014 to detect spatial patterns and carbon sequestration dynamics of secondary forests (SF). By integrating satellit...
Land cover mixture at moderate- to coarse-resolution is an important cause for the uncertainty of global leaf area index (LAI) products. The accuracy of LAI retrievals over land-water mixed pixels is adversely impacted because water absorbs considerable solar radiation and thus can greatly lower pixel-level reflectance especially in the near-infrar...
Abstract We performed a detailed analysis of Earth Polychromatic Imaging Camera (EPIC) spectral data. We found that the vector composed of blue and near‐infrared (NIR) reflectance follows a counterclockwise closed‐loop trajectory from 0 to 24 UTC as Earth rotates. This nonlinear relationship was not observed by any other satellites due to limited s...
Studying the polarization characteristics of vegetation is important in vegetation monitoring and component quantitative inversion. The reflected radiation from the vegetation canopy possesses a polarization characteristic that is related to the interaction of incident radiation and vegetation canopy and the distribution of leaf inclination angles....
Earth observations collected by remote sensors provide unique information to our ever-growing knowledge of the terrestrial biosphere. Yet, retrieving information from remote sensing data requires sophisticated processing and demands a better understanding of the underlying physics. This paper reviews research efforts that lead to the developments o...
Interpreting remotely-sensed data requires realistic, but simple, models of radiative transfer that occurs within a vegetation canopy. In this paper, an improved version of the stochastic radiative transfer model (SRTM) is proposed by assuming that all photons that have not been specularly reflected enter the leaf interior. The contribution of leaf...
Earth’s reflectivity is among the key parameters of climate research. National Aeronautics and Space Administration (NASA)’s Earth Polychromatic Imaging Camera (EPIC) onboard National Oceanic and Atmospheric Administration (NOAA)’s Deep Space Climate Observatory (DSCOVR) spacecraft provides spectral reflectance of the entire sunlit Earth in the nea...
Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazo...
Numerous canopy radiative transfer models have been proposed based on the assumption of “ideal bi-Lambertian leaves” with the aim of simplifying the interactions between photons and vegetation canopies. This assumption may cause discrepancy between the simulated and measured canopy bidirectional reflectance factor (BRF). Few studies have been devot...
The NOAA Deep Space Climate Observatory (DSCOVR) spacecraft was launched on February 11, 2015, and in June 2015 achieved its orbit at the first Lagrange point or L1, 1.5 million km from Earth towards the Sun. There are two NASA Earth observing instruments onboard: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards...
Long-term ground LAI measurements from the global networks of sites (e.g. FLUXNET) have emerged as a promising data source to validate remotely sensed global LAI product time-series. However, the spatial scale-mismatch issue between site and satellite observations hampers the use of such invaluable ground measurements in validation practice. Here,...
NASA’s Earth Polychromatic Imaging Camera (EPIC) onboard NOAA’s Deep Space Climate Observatory (DSCOVR) satellite observes the entire sunlit Earth every 65 to 110 min from the Sun–Earth Lagrangian L1 point. This paper presents initial EPIC shortwave spectral observations of the sunlit Earth reflectance and analyses of its diurnal and seasonal varia...
The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) algorithm has been successfully implemented for Visible Infrared Imager Radiometer Suite (VIIRS) observations by optimizing a small set of configurable parameters in Look-Up-Ta...
This paper presents the theoretical basis of the algorithm designed for the generation of leaf area index and diurnal course of its sunlit portion from NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR). The Look-up-Table (LUT) approach implemented in the MODIS operational LAI/FPAR algorithm is a...
Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation are key variables in many global models of climate, hydrology, biogeochemistry, and ecology. These parameters are being operationally produced from Terra and Aqua MODIS bidirectional reflectance factor (BRF) data. The MODIS science team has devel...
EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the ‘red’ (680 nm) channels, EPIC also has the O2 A-band (764±0.2 nm) and B-band (687.75±0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined...
In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as W...
We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAG...
Forest height, an important biophysical property, underlies the distribution of carbon stocks across scales. Because in situ observations are labour intensive and thus impractical for large-scale mapping and monitoring of forest heights, most previous studies adopted statistical approaches to help alleviate measured data discontinuity in space and...
Leaf scattering spectrum is the key optical variable that conveys information about leaf absorbing constituents from remote sensing. It cannot be directly measured from space because the radiation scattered from leaves is affected by the 3D canopy structure. In addition, some radiation is specularly reflected at the surface of leaves. This portion...
Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systemati...
The aim of this paper is to assess the latest version of the MODIS LAI/FPAR product (MOD15A2H), namely Collection 6 (C6). We comprehensively evaluate this product through three approaches: validation with field measurements, intercomparison with other LAI/FPAR products and comparison with climate variables. Comparisons between ground measurements a...
As the latest version of Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) products, Collection 6 (C6) has been distributed since August 2015. This collection is evaluated in this two-part series with the goal of assessing product accuracy, uncertainty and consiste...
Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth’s climate system. It is only possible to assess Amazon forests’ response to the droughts in large areal extent through satellite remote sensing...
The Photochemical Reflectance Index (PRI) of green leaves is an indicator of photosynthetic downregulation: when the photosynthetic apparatus is close to the saturation limit, PRI becomes dependent on light conditions. Therefore, by measuring the PRI of leaves under different local irradiance conditions, it should be possible to determine the satur...
Resolving the debate surrounding the nature and controls of seasonal variation in the structure and metabolism of Amazonian rainforests is critical to understanding their response to climate change. In situ studies have observed higher photosynthetic and evapotranspiration rates, increased litterfall and leaf flushing during the Sunlight-rich dry s...
The Amazon rainforest is a critical hotspot for bio-diversity, and plays an essential role in global carbon, water and energy fluxes and the earth's climate. Our ability to project the role of vegetation carbon feedbacks on future climate critically depends upon our understanding of this tropical ecosystem, its tolerance to climate extremes and tip...
Forest canopy height is an important biophysical variable for quantifying carbon storage in terrestrial ecosystems. Active light detection and ranging (lidar) sensors with discrete-return or waveform lidar have produced reliable measures of forest canopy height. However, rigorous procedures are required for an accurate estimation, especially when u...
Scattering from a leaf responds differently at different wavelengths to changes in leaf properties such as pigment concentrations, chemical constituents, internal structure, and leaf-surface properties. Radiation scattered by leaves and exiting the vegetation canopy toward the sensor is affected by canopy structure. The concept of canopy spectral i...
The fraction of photosynthetically active radiation (FPAR) absorbed by vegetation – a
key parameter in crop biomass and yields as well as net primary productivity models –
is critical to guiding crop management activities. However, accurate and reliable
estimation of FPAR is often hindered by a paucity of good field-based spectral data,
especially...
The fraction of photosynthetically active radiation absorbed (FPAR) by vegetation - a
key parameter in crop biomass and yields, as well as, net primary productivity models
is critical to guiding crop management activities. However, accurate and reliable
estimation of FPAR is often hindered by paucity of good field-based spectral data,
especiall...
Various physical, chemical, and physiological processes, including canopy structure, impact surface reflectance. Remote sensing aims to derive ecosystem properties and their functional relationships, given these impacts. Ollinger et al. (1) do not distinguish between the forward and inverse problems in radiative transfer and, hence, misrepresent ou...
Various physical, chemical, and physiological processes, including canopy structure, impact surface reflectance. Remote sensing aims to derive ecosystem properties and their func-tional relationships, given these impacts. Ollinger et al. (1) do not distinguish between the forward and inverse problems in radiative transfer and, hence, misrepresent o...
Townsend et al. (1) agree that we explained that the apparent relationship (2) between foliar nitrogen (%N) and near-infrared (NIR) canopy reflectance was largely attributable to structure (which is in turn caused by variation in fraction of broadleaf canopy). Our conclusion that the observed correlation with %N was spurious (i.e., lacking a causal...
A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its i...
The ground-based Atmospheric Radiation Measurement Program (ARM) and
NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using
zenith radiances at visible and near-infrared wavelengths. Using the
transmittance calculated from such measurements, we have developed a new
retrieval method for cloud effective droplet size and conducted
exten...
The ground-based Atmospheric Radiation Measurement Program (ARM) and
NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using
zenith radiances at visible and near-infrared wavelengths. Using the
transmittance calculated from such measurements, we have developed a new
retrieval method for cloud effective droplet size and conducted
exten...
A large increase in near-infrared (NIR) reflectance of Amazon forests
during the light-rich dry season and a corresponding decrease during the
light-poor wet season has been observed in satellite measurements. This
has been variously interpreted as seasonal changes in leaf area
resulting from net leaf flushing in the dry season and net leaf
absciss...
The Earth sensors on the Deep Space Climate Observatory (DSCOVR)
platform will view the full sunlit disk of the Earth and provide surface
reflectance in near retro-solar direction. In the RED spectral band due
to strong absorption by leaves the single scattering dominates. The
backscatters therefore are directly related to the sunlit fraction of
th...
The three-dimensional structure of a forest - its composition, density,
height, crown geometry, within-crown foliage distribution and properties
of individual leaves - has a direct impact on the lidar waveform. The
pair-correlation function defined as the probability of finding
simultaneously phytoelements at two points is the most natural and
phys...