Anti-periodic solutions for fully nonlinear first-order differential equations

Yuqing Chena, Juan J. Nietob,\textdagger, Donal O’Reganc

a Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
b Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
c Department of Mathematics, National University of Ireland, Galway, Ireland

Received 7 December 2006; accepted 14 December 2006

Abstract

In this paper, we study the anti-periodic boundary value problems for nonlinear first-order differential equations both in finite and in infinite dimensional spaces. Several new existence results are obtained.

Keywords: Anti-periodic solution; Gradient mapping; Subdifferential

1. Introduction

The study of anti-periodic solutions for nonlinear evolution equations is closely related to the study of periodic solutions, and it was initiated by Okochi [1]. During the past fifteen years, anti-periodic problems have been extensively studied by many authors; see [2–20] and references therein. For example anti-periodic trigonometric polynomials are important in the study of interpolation problems [21,22], and anti-periodic wavelets are discussed in [23]. Recently, anti-periodic boundary conditions have been considered for the Schrödinger and Hill differential operator [24,25]. Also anti-periodic boundary conditions appear in the study of difference equations [26,27]. Moreover, anti-periodic boundary conditions appear in physics in a variety of situations; see [28–31]. In this paper, we first consider anti-periodic solutions of the following fully nonlinear equation:

\[
\begin{align*}
F(t, u(t), u'(t)) &= 0, \quad t \in \mathbb{R}, \\
u(t) &= -u(t + T), \quad t \in \mathbb{R}
\end{align*}
\] \quad (E 1.1)

where \(F : \mathbb{R}^3 \rightarrow \mathbb{R} \) is a continuous function. We introduce the concept of an anti-periodic viscosity solution, and then we prove a Massera-type theorem for the existence of an anti-periodic solutions of (E 1.1). (For periodic viscosity

\textdagger Corresponding author. Tel.: +34 981 563 100; fax: +34 981 597 054.
E-mail addresses: yqchen@foshan.net (Y. Chen), amnieto@usc.es (J.J. Nieto), donal.oregan@nuigalway.ie (D. O’Regan).

0895-7177/S - see front matter © 2007 Elsevier Ltd. All rights reserved.
solutions, we refer the reader to [32]). Then we consider the following anti-periodic boundary value problem:

\[
\begin{align*}
 u'(t) + \partial G(u(t) + f(t, u(t)) &= 0, \quad \text{a.e. } t \in [0, T], \\
 u(0) &= -u(T),
\end{align*}
\]

(E 1.2)

where \(G : R^n \to R^n \) is an even continuously differentiable function, and \(f : [0, T] \times R^n \to R^n \) is a Caratheodory function, i.e. \(f \) satisfies

1. for every \(x \in R^n \), \(f(\cdot, x) \) is Lebesgue measurable on \(t \);
2. for a.e. \(t \in [0, T] \), \(f(t, \cdot) \) is continuous on \(R^n \).

By imposing a suitable growth condition on \(f \), we prove an existence result for (E 1.2). Finally with \(H \) a real Hilbert space we consider the problem

\[
\begin{align*}
 u'(t) &\in -\partial \phi(u(t)) + \partial G(u(t)) + f(t), \quad \text{a.e. } t \in [0, T], \\
 u(0) &= -u(T)
\end{align*}
\]

(E 1.3)

where \(\phi : D(\phi) \subseteq H \to R \cup \{+\infty\} \) is a proper lower semi-continuous convex function, \(G : H \to H \) is a continuously differentiable mapping such that \(\partial G \) is a bounded mapping, i.e. \(\partial G \) maps bounded subsets to bounded subsets and \(f(\cdot) \in L^2([0, T]; H) \). Under a compact condition on the level set \(\{x : \phi(x) \leq \alpha\} \), where \(\alpha > 0 \), we prove an existence result for (E 1.3).

2. Anti-periodic viscosity solutions for first-order fully nonlinear equations

In this section, we study the existence problem (E 1.1). We will use the following concept introduced by Crandall and Lions [33]. Let \(\Omega \subset R^n \) be an open subset and let \(F : \Omega \times R \times R^n \to R \) be a continuous function. Consider the following equation:

\[F(x, u(x), Du(x)) = 0, \quad x \in \Omega, \]

where \(x = (x_1, x_2, \ldots, x_n) \), and \(Du(x) = (\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \ldots, \frac{\partial u}{\partial x_n}) \).

Definition 2.1 ([33,34]). A continuous function \(u(\cdot) \in C(\Omega) \) is said to be a viscosity solution of equation \(F(x, u(x), Du(x)) = 0 \) if it satisfies the following conditions:

1. \(u(\cdot) \) is a viscosity subsolution of equation \(F(x, u(x), Du(x)) = 0 \), i.e.
 \[
 F(x, u(x), p) \leq 0, \quad \text{for all } x \in \Omega, \ p \in D^+ u(x); \text{ here}
 \]
 \[
 D^+ u(x) = \left\{ p \in R^n : \limsup_{y \to x, y \in \Omega} \frac{u(y) - u(x) - p(y - x)}{|y - x|} \leq 0 \right\}
 \]

2. \(u(\cdot) \) is a viscosity supersolution of \(F(x, u(x), Du(x)) = 0 \), i.e.
 \[
 F(x, u(x), p) \geq 0, \quad \text{for all } x \in \Omega, \ p \in D^- u(x); \text{ here}
 \]
 \[
 D^- u(x) = \left\{ p \in R^n : \liminf_{y \to x, y \in \Omega} \frac{u(y) - u(x) - p(y - x)}{|y - x|} \geq 0 \right\}
 \]

Remark. Let \(u(\cdot) \in C^1(\Omega) \) be a continuous function. Then:

1. \(p \in D^+ u(x) \) if and only if there exists a function \(\phi \in C^1(\Omega) \) such that \(u - \phi \) achieves a maximum at \(x \) and \(p = D\phi(x) \).
2. \(p \in D^- u(x) \) if and only if there exists a function \(\phi \in C^1(\Omega) \) such that \(u - \phi \) achieves a minimum at \(x \) and \(p = D\phi(x) \).

Remark. For viscosity solutions of fully nonlinear equations, one may see [33–35] for more references.

We use the concept of a viscosity solution and introduce the concept of anti-periodic viscosity solutions.
Definition 2.2. Let \(u(\cdot) \in C(R) \) satisfy \(u(t) = -u(t + T) \) for all \(t \in R \). If \(u \) is a viscosity subsolution of \(F(t, u(t), u'(t)) = 0, t \in R \), then \(u(\cdot) \) is said to be an anti-periodic viscosity subsolution, and similarly, if \(u(\cdot) \) is a viscosity supersolution of \(F(t, u(t), u'(t)) = 0, t \in R \), we call \(u(\cdot) \) an anti-periodic viscosity supersolution. If \(u(\cdot) \) is both an anti-periodic subsolution and an anti-periodic supersolution, then \(u(\cdot) \) is said to be an anti-periodic viscosity solution of (E 1.1).

Definition 2.3. We say \(u(\cdot) \in C(R) \) is a viscosity solution of

\[
\begin{align*}
F(t, u(t), u'(t)) &= 0, \quad \forall t \in R, \\
u(t_0) &= u_0, \quad u_0 \in R.
\end{align*}
\]

(E 2.1)

if \(u(t_0) = u_0 \), and \(u(\cdot) \) is a viscosity solution of \(F(t, u(t), u'(t)) = 0, t \in R \).

The following result extends the classical Massera theorem on the existence of a periodic solution to viscosity problems with anti-periodicity (see [6]).

Theorem 2.4. Let \(F(t, x, y) : R \times R^2 \to R \) be a continuous function satisfying \(F(t + T, -x, -y) = -F(t, x, y) \) for all \((t, x, y) \in R \times R^2\). Suppose that Eq. (E 2.1) has a unique viscosity solution which depends continuously on the initial value \(u_0 \). If also there exists a bounded and uniformly continuous viscosity solution to (E 2.1), then

\[
\begin{align*}
F(t, u(t), u'(t)) &= 0, \quad t \in R, \\
u(t) &= -u(t + T), \quad t \in R.
\end{align*}
\]

(E 2.2)

has an anti-periodic viscosity solution.

Proof. Let \(y(\cdot) \) be a bounded and uniformly continuous viscosity solution of (E 2.1). We may also assume that \(y(0) \neq -y(T) \).

Set \(u_{2k}(t) = y(t + 2kT) \), and \(u_{2k+1}(t) = -y(t + (2k + 1)T) \), \(k = 1, 2, \ldots \). We claim that \(u_{2k}(t) \) is a viscosity solution of (E 2.1) with initial value \(u_{2k}(0) = y(2kT) \), and \(u_{2k+1}(t) \) is a viscosity solution of (E 2.1) with initial value \(u_{2k+1}(0) = -y((2k + 1)T) \) for \(k = 1, 2, \ldots \).

Let \(\phi \in C^1(R) \) be such that \(u_{2k}(t) - \phi(t) \) achieves a local maximum at \(t_0 \), i.e. \(y(t) - \phi(t - 2kT) \) achieves a local maximum at \(t_0 + 2kT \). Since \(y(\cdot) \) is a viscosity solution of (E 2.1), we have

\[
F(t_0 + 2kT, y(t_0 + 2kT), \phi'(t_0)) \leq 0.
\]

This and \(F(t + 2kT, x, y) = F(t, x, y) \) for all \((t, x, y) \in R \times R^2\) imply that

\[
F(t_0, u_{2k}(t_0), \phi'(t_0)) \leq 0.
\]

Hence \(u_{2k}(t) \) is a viscosity subsolution of \(F(t, u(t), u'(t)) = 0, t \in R \). Similarly, we can show that \(u_{2k}(t) \) is a viscosity supersolution of \(F(t, u(t), u'(t)) = 0, t \in R \). Therefore, \(u_{2k}(t) \) is a viscosity solution of \(F(t, u(t), u'(t)) = 0, t \in R \).

Let \(\phi \in C^1(R) \) be such that \(u_{2k+1}(t) - \phi(t) \) achieves a local maximum at \(t_0 \), i.e. \(-y(t) - \phi(t - (2k + 1)T) \) achieves a local minimum at \(t_0 + (2k + 1)T \). Thus \(y(t) + \phi(t - (2k + 1)T) \) achieves a local maximum at \(t_0 + (2k + 1)T \). Since \(y(\cdot) \) is a viscosity solution of (E 2.1), we have

\[
F(t_0 + (2k + 1)T, y(t_0 + (2k + 1)T), -\phi'(t_0)) \geq 0.
\]

Now using the assumption \(F(t + T, -y, -z) = -F(t, y, z) \) we get

\[
F(t_0, u_{2k+1}(t_0), \phi'(t_0)) \leq 0.
\]

Hence \(u_{2k+1}(t) \) is a viscosity subsolution of \(F(t, u(t), u'(t)) = 0, t \in R \). Similarly, we can show that \(u_{2k+1}(t) \) is a viscosity supersolution of \(F(t, u(t), u'(t)) = 0, t \in R \).

We may assume \(y(T) \leq y(3T) \). (The proof is similar if \(y(T) > y(3T) \).) Then it follows from the uniqueness that

\[
u_1(t) \geq u_3(t) \geq u_5(t) \geq \cdots \geq u_{2k+1}(t) \geq \cdots.
\]

Thus \(x_1(t) = \lim_{k \to \infty} u_{2k+1}(t) \) exists. Similarly \(x_2(t) = \lim_{k \to \infty} u_{2k}(t) \) exists.

Next, we show that \(x_1(t), x_2(t) \) are viscosity solutions of \(F(t, u(t), u'(t)) = 0, t \in R \). Let \(\psi \in C^1(R) \) be such that \(x_1(t) - \psi(t) \) attains a strict local maximum at \(t_0 \). (One may replace \(\psi(t) \) by \(\psi(t) + (t - t_0)^2 \) if it is not strict, as
noted in [33].) Let \(t_k \) be the point where \(u_{2k+1}(t) - \psi(t) \) attains its maximum in a neighbourhood around \(t_0 \). We may assume \(t_k \to t_1 \) as \(k \to \infty \). From the definition of \(u_{2k+1}(t) \), we have

\[
|u_{2k+1}(t_k) - x_1(t_1)| \leq | - y((2k + 1)T + t_k) + y((2k + 1)T + t_1)| + | - y((2k + 1)T + t_1) - x_1(t_1)|.
\]

Thus we have \(x_1(t_1) = \lim_{k \to \infty} u_{2k+1}(t_k) \) by the uniform continuity of \(y(\cdot) \). Hence \(t_1 = t_0 \). Now since \(u_{2k+1}(t) \) is a viscosity subsolution, we have

\[
F(t_k, u_{2k+1}(t_k), \psi'(t_k)) \leq 0, \quad n = 1, 2, \ldots
\]

By letting \(k \to \infty \), we get

\[
F(t_0, x_1(t_0), \psi'(t_0)) \leq 0.
\]

Therefore \(x_1(t) \) is a viscosity subsolution. Similarly, we can show that \(x_1(t) \) is also a viscosity supersolution. Therefore \(x_1(t) \) is a viscosity solution of \(F(t, u(t), u'(t)) = 0, t \in R \). Similarly one can prove that \(x_2(t) \) is a viscosity solution of \(F(t, u(t), u'(t)) = 0, t \in R \). Moreover \(x_1(t), x_2(t) \) are \(2T \) periodic. If \(x_1(0) = -x_1(T) \), then \(x_1(t) \) is an anti-periodic viscosity solution of (E.2.2). As a result we may assume \(x_1(0) \neq -x_1(T) \). Now we define a mapping \(K : R \to R \) by

\[
Kz = z + y(T, z), \quad \forall z \in R,
\]

where \(y(t, z) \) is the unique viscosity solution of (E.2.1) with initial value \(z \). From the assumptions in the statement of Theorem 2.4, we know that \(K : R \to R \) is a continuous mapping. Clearly \(Kx(0) = x(0) + y(T, x(0)) = x(0) + x_1(T) \). Since \(x_1(0) \neq x_1(T) \), we may assume \(x_1(0) + x_1(T) > 0 \). From the definition of \(x_1(t) \) and \(x_2(t) \), it follows that \(x_1(t + T) = -x_2(t) \). Thus we have \(K(-x_1(T)) = -x_1(T) - x_1(2T) = -x_1(T) - x_1(0) < 0 \). Hence there exists \(z_0 \) between \(x_1(0) \) and \(-x_1(T) \) such that

\[
Kz_0 = 0.
\]

That is, \(z_0 = -y(T, z_0) \). Thus \(y(t, z_0) \) is an anti-periodic viscosity solution of (E.2.2).

The proof is complete. \(\square \)

3. Anti-periodic boundary value problems in \(R^n \)

In this section, let \((\cdot, \cdot) \) be the inner product in \(R^n \), and \(|\cdot| \) the norm in \(R^n \). We prove an existence result for (E.1.2).

Theorem 3.1. Let \(G : R^n \to R^n \) be an even continuously differentiable function, and let \(f : [0, T] \times R^n \to R^n \) be a Caratheodory function. Suppose the following conditions are satisfied:

1. \(|f(t, x)| \leq M|x| + g(t) \) for a.e. \((t, x) \in [0, T] \times R^n \), where \(M > 0 \) is a constant, \(g(\cdot) \in L^2(0, T) \);
2. \(MT < 2 \).

Then

\[
\begin{cases}
u'(t) + \partial G(u(t) + f(t, u(t))) = 0, & \text{a.e. } t \in [0, T], \\
u(0) = -u(T),
\end{cases}
\]

has a solution \(u(\cdot) \in C([0, T]; R^n) \) with \(u'(\cdot) \in L^2([0, T]; R^n) \).

Proof. Put \(C_a = \{v(\cdot) \in C([0, T]; R^n) : v(0) = -v(T)\} \). Then \(C_a \) is a Banach space under the norm \(|v(\cdot)|_\infty = \max_{t \in [0, T]} |u(t)| \). For each \(v(\cdot) \in C_a \), consider the following equation:

\[
\begin{cases}u'(t) + \partial G(u(t) + f(t, v(t))) = 0, & \text{a.e. } t \in [0, T], \\
u(0) = -u(T).
\end{cases}
\]

It is easy to see that \(u(t) = -\int_0^T [G(v(s) + f(s, v(s))) \, ds + \frac{1}{2} \int_0^T |G(v(s) + f(s, v(s))) \, ds \] is the unique solution of (E.3.2).

We define a mapping \(K : C_a \to C_a \) as follows:

\[
Kv(\cdot) = u(\cdot), \quad v(\cdot) \in C_a, u(\cdot) \text{ is the solution of (E.2.2)}.
\]
First we prove that K is a continuous compact mapping. Now assume $v_n(\cdot) \in C_d$, $n = 1, 2, \ldots$, and $v_n(\cdot) \to v(\cdot) \in C_d$; then $|\partial G v_n(\cdot) - \partial G v(\cdot)| \to 0$ as $n \to \infty$ since ∂G is continuous. Now assumption (1) and Lebesgue's dominated convergence theorem guarantee that $f(\cdot, v_n(\cdot)) \to f(\cdot, v(\cdot))$ in $L^2([0, T]; R^n)$ as $n \to \infty$.

Since $(K v_n(t))' - (K v(t))' \to \partial G v(t)$ + $\partial G v(t) + f(t, v_n(t)) - f(t, v(t)) = 0$, a.e. $t \in [0, T]$, if we multiply both sides by $(K v_n(t))' - (K v(t))'$ and integrate over $[0, T]$, we get

$$\int_0^T |(K v_n(t))' - (K v(t))'|^2 dt + \int_0^T (\partial G v_n(t) - \partial G v(t), (K v_n(t))' - (K v(t))') dt + \int_0^T (f(t, v_n(t)) - f(t, v(t)), (K v_n(t))' - (K v(t))') dt = 0.$$

Thus

$$\left(\int_0^T |(K v_n(t))' - (K v(t))'|^2 dt \right)^{1/2} \leq \sqrt{T} |\partial G v_n(\cdot) - \partial G v(\cdot)| + \left(\int_0^T |f(\cdot, v_n(\cdot)) - f(\cdot, v(\cdot))|^2 dt \right)^{1/2},$$

and therefore $\int_0^T |(K v_n(t))' - (K v(t))'|^2 dt \to 0$ as $n \to \infty$.

We have $K v_n(t) - K v(t) = \frac{1}{2} [\int_0^T (K v_n(s))' - (K v(s))' ds - \int_0^T (K v_n(s))' - (K v(s))' ds]$, and so $K v_n(\cdot) \to K v(\cdot)$ in C_d. Now since $(K v(t))' + \partial G v(t) + f(t, v(t)) = 0$, a.e. $t \in [0, T]$, it is easy to see that

$$\left(\int_0^T |(K v(t))'|^2 dt \right)^{1/2} \leq \sqrt{T} |\partial G v(\cdot)| + M \sqrt{T} |v(\cdot)| + \left(\int_0^T |g(t)|^2 dt \right)^{1/2}.$$

Thus K maps a bounded subset of C_d to a bounded equicontinuous subset in C_d, so therefore K is compact.

Next take $r_0 > (1 - MT)^{-1} \frac{\sqrt{T}}{2} \left(\int_0^T |g(t)|^2 dt \right)^{1/2}$. We show that $K v(\cdot) \neq \lambda v(\cdot)$ for all $\lambda \geq 1$, and $|v(\cdot)|_\infty = r_0$. If this is not true, there exist $\lambda_0 \geq 1$, $v_0(\cdot) \in C_d$ with $|v_0(\cdot)|_\infty = r_0$ such that $K v_0(\cdot) = \lambda v_0(\cdot)$, i.e. $v_0(0) = v_0(-T)$ and

$$\lambda v_0'(t) + \partial G v_0(t) + f(t, v_0(t)) = 0, \quad \text{a.e. } t \in [0, T]. \quad (3.1)$$

Multiply (3.1) by $v_0'(t)$ and integrate over $[0, T]$, and note that $\int_0^T (\partial G v_0(t), v_0'(t)) dt = 0$ to get

$$\lambda_0 \left(\int_0^T |v_0'(t)|^2 dt \right)^{1/2} \leq M \sqrt{T} |v_0(\cdot)| + \left(\int_0^T |g(t)|^2 dt \right)^{1/2}. \quad (3.2)$$

Notice that $v_0(t) = \frac{1}{2} [\int_0^T v_0'(s) ds - \int_0^T v_0'(s)] ds$, so we have

$$\left| v_0(\cdot) \right|_\infty \leq \frac{\sqrt{T}}{2} \left(\int_0^T |v_0'(t)|^2 dt \right)^{1/2}. \quad (3.3)$$

From (3.2) and (3.3), we have

$$\lambda_0 \left| v_0(\cdot) \right|_\infty \leq \frac{MT}{2} \left| v_0(\cdot) \right|_\infty + \frac{\sqrt{T}}{2} \left(\int_0^T |g(t)|^2 dt \right)^{1/2}. \quad (3.4)$$

From assumption (2), we get

$$\left| v_0(\cdot) \right|_\infty \leq \left(1 - \frac{MT}{2} \right)^{-1} \frac{\sqrt{T}}{2} \left(\int_0^T |g(t)|^2 dt \right)^{1/2},$$

which contradicts $|v_0(\cdot)|_\infty = r_0$.

Thus the Leray–Schauder degree $\text{deg}(I - K, B(0, r_0), 0) = 0$, where $B(0, r_0)$ is the open ball centered at 0 with radius r_0 in C_d. Consequently, K has a fixed point in $B(0, r_0)$, i.e. (E 3.1) has a solution. □
4. Anti-periodic boundary value problem in Hilbert spaces

In this section, H is a real Hilbert space, (\cdot, \cdot) is the inner product of H, and the norm of H is denoted by $\| \cdot \|$. Let $C([0, T]; H)$ be all the continuous functions from $[0, T]$ to H with the max norm. Also $L^2([0, T]; H) = \{ f(t) : [0, T] \rightarrow H; f(t) = 0 \text{ } \int_0^T \| f(s) \|^2 \, ds < +\infty \}$, and the norm in $L^2([0, T]; H)$ is denoted by $\| f(\cdot) \|_{L^2} = (\int_0^T \| f(s) \|^2 \, ds)^{\frac{1}{2}}$.

We let $C_a = \{ v(\cdot) \in C([0, T]; H) : v(0) = -v(T) \}$, and $W_a = \{ u(\cdot) \in C_a : u(\cdot) \in L^2([0, T]; H) \}$. C_a is a Banach space under the norm $|v(\cdot)|_\infty = \max_{t \in [0, T]} \| u(t) \|$.

Lemma 4.1 ([5]). Let $\phi : D(\phi) \subseteq H \rightarrow R \cup \{+\infty\}$ be an even proper lower semi-continuous convex function. Then $A : D(A) \subseteq L^2([0, T]; H) \rightarrow L^2([0, T]; H)$ defined by

$$ Au(t) = u'(t) + \partial \phi(u(t)), \quad u(\cdot) \in D(A) $$

is a surjective maximal monotone mapping, where $D(A) = W_a$.

Theorem 4.2. Let $\phi : D(\phi) \subseteq H \rightarrow R \cup \{+\infty\}$ be an even proper lower semi-continuous convex function; $G : H \rightarrow R$ is a continuously differentiable function such that ∂G is a bounded mapping, i.e. ∂G maps bounded subsets to bounded subsets in H, and $f(\cdot) \in L^2([0, T]; H)$. Suppose for each $\alpha > 0$, $\{ x : \phi(x) \leq \alpha \}$ is compact in H. Then the following anti-periodic boundary value problem:

$$ \begin{align*}
 u'(t) &\in -\partial \phi(u(t)) + \partial G(u(t)) + f(t), \quad \text{a.e. } t \in [0, T], \\
 u(0) &= -u(T).
\end{align*} $$

(E 4.1)

has a solution $u(\cdot) \in W_a$.

Proof. First, if $u(\cdot) \in C([0, T]; H)$ with $u'(\cdot) \in L^2([0, T]; H)$ is a solution to (E 4.1), then

$$ \| u'(\cdot) \|_{L^2} \leq \| f(\cdot) \|_{L^2}, \quad \text{and} \quad |u(\cdot)|_\infty \leq \frac{\sqrt{T}}{2} \| f(\cdot) \|_{L^2}. $$

Let $M = \frac{\sqrt{T}}{2} \| f(\cdot) \|_{L^2}$. Since the norm of H is differentiable, we take an even continuously differentiable function $\psi : H \rightarrow \tilde{R}$ such that $\psi(x) = 1$ for $\| x \| \leq M$, and $\partial \psi(x) = 0$ for $x \geq 2M$ with $\psi, \partial \psi$ uniformly bounded on H. For each $v(\cdot) \in C_a$, we consider the following anti-periodic boundary value problem:

$$ \begin{align*}
 u'(t) + 2u(t) &\in -\partial \phi(u(t)) + \partial \psi(u(t))[G(u(t)) + \| v(t) \|^2] + f(t), \quad \text{a.e. } t \in [0, T], \\
 u(0) &= -u(T).
\end{align*} $$

(E 4.2)

By Lemma 4.1, (E 4.2) has a unique solution in W_a, and we denote it by $Kv(\cdot)$. From the uniform boundedness of $\psi, \partial \psi$ and the boundedness of ∂G, we may assume that $\| \partial \psi(v)(G(v) + \| v \|^2) \| \leq L$ for all $v \in H$, where $L > 0$ is a constant.

Multiply both sides of the first equality of (E 4.2) by $(Kv)'(t)$ and integrate over $[0, T]$ to get

$$ \| (Kv)'(\cdot) \|_{L^2} \leq L\sqrt{T} + \| f(\cdot) \|_{L^2}. $$

(4.1)

Thus there exists $N > 0$ such that for all $v(\cdot) \in C_a$,

$$ |Kv(\cdot)|_\infty \leq N. $$

(4.2)

Now (E 4.2), (4.1) and (4.2) yield

$$ \| \partial \phi(Kv(\cdot)) \|_{L^2} \leq r $$

(4.3)

for some $r > 0$.

Notice that $\phi(Kv(t)) \leq (\partial \phi(Kv(t)), Kv(t))$, a.e. $t \in [0, T]$, and ϕ is an even function, so we get from (4.2) and (4.3) that

$$ \int_0^T |\phi(Kv(t))| \, dt \leq N\sqrt{T}r. $$

(4.4)
Since \(\frac{d}{dt} \phi(Kv(t)) = \langle (Kv)'(t), \partial \phi(Kv(t)) \rangle \), a.e. \(t \in [0, T] \), we conclude from (4.1) and (4.3) that
\[
\int_0^T \left| \frac{d}{dt} \phi(Kv(t)) \right| \leq r [L \sqrt{T} + \| f(\cdot) \|_{L^2}].
\] (4.5)

From (4.4) and (4.5), we know that there exists a constant \(\alpha_0 > 0 \) such that
\[
|\phi(Kv(t))| \leq \alpha_0, \quad t \in [0, T].
\] (4.6)

Now from our assumption that for each \(\alpha > 0 \), \(\{ x : \phi(x) \leq \alpha \} \) is compact in \(H \), and (4.6), we know that there exists a compact subset \(D \in H \) such that \(Kv(t) \in D \) for all \(t \in [0, T] \), \(v(\cdot) \in C_a \). Also from (4.1), we know that \(\{ Kv(\cdot) : v(\cdot) \in C_a \} \) is equicontinuous. Thus \(\{ Kv(\cdot) : v(\cdot) \in C_a \} \) is relatively compact in \(C_a \).

Finally, we prove that \(K : C_a \to C_a \) is continuous. Let \(v_n(\cdot) \to v(\cdot) \in C_a \) as \(n \to \infty \). (Consequently, \(v_n(\cdot) \to v(\cdot) \in L^2([0, T]; H) \).) By the above argument, \(Kv_n(t) \in D \) for \(t \in [0, T] \). Thus \(\{ Kv_n(\cdot) \}_{n=1}^\infty \) has a subsequence \(Kv_{n_k}(\cdot) \to u(\cdot) \) in \(C_a \). Thus \(Kv_{n_k}(\cdot) \to u(\cdot) \in L^2([0, T]; H) \). From Lemma 4.1, we know that \(u(\cdot) = Kv(\cdot) \). Therefore \(K \) is continuous. Schauder’s fixed point theorem guarantees that \(K \) has a fixed point in \(C_a \), which is easily seen to be a solution of (E 4.1). \(\square \)

Remark. Theorem 4.2 was proved in [5] with the assumption that \(\| \partial G(u) \| \leq k(\| u \| + 1) \), \(u \in H \) for some \(k > 0 \). (See Lemma 3.7 in [5].) The example \(G(x) = e^{x^2} \) in \(R \) shows that \(\partial G \) is continuous but does not satisfy this condition.

Corollary 4.3. Let \(\beta(x) = |x| \) for \(x \in R \), and \(f(\cdot) \in L^2([0, T], R) \). Then the following boundary value problem:
\[
\begin{align*}
 u'(t) & \in -\beta(u(t)) + 2u(t)e^{u^2(t)} + f(t), & \text{a.e. } t \in [0, T], \\
 u(0) & = -u(T),
\end{align*}
\] (E 4.3)

has a solution.

Acknowledgments

The research of J.J. Nieto was partially supported by Ministerio de Educación y Ciencia and FEDER, project MTM2004-06652-C03-01, and by Xunta de Galicia and FEDER, project PGIDIT02PXIC20703PN.

References