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INTRODUCTION
During pathogenesis, the genomes of cancer cells are constantly 
reshaped by a series of alterations such as nucleotide substitu-
tions, small insertions and deletions, genomic rearrangements, 
and copy-number alterations. These genomic changes follow a 
Darwinian evolution process1–5 and can be identified by high-
throughput sequencing technologies6. The identification of 
subclonal populations (i.e., evolved populations of cancer cells 
that share common mutations) from genome sequence data, 
however, requires a detailed and accurate reconstruction of the 
cancer genome structure. This is essential given that observed 
variant allelic fractions (i.e., the fraction of mutated bases to the 
total coverage at the position of the mutation) of point mutations 
depend on local copy-number states and tumor purity. In addi-
tion, copy-number changes can be subclonal as well. By correcting 
for copy numbers, observed variant allelic fractions are typically 
transformed into cancer-cell fractions (i.e., the fraction of tumor 
cells carrying the mutation). To finally identify subclonal popu-
lations, the distribution of cancer-cell fractions is searched for 
distinct clusters that represent individual subpopulations.

Several computational methods have been developed that allow 
accurate determination of copy-number states from sequencing 
data of impure tumors7–12; however, only a few of these approaches 
can also call subclonal copy numbers8,10,11. The inference of sub-
clonal copy-number changes is necessary to correctly assign cancer- 
cell fractions to mutations in these regions. Clonal mutations, 
which occur before the subclonal copy-number change, could 
mistakenly be classified as subclonal if subclonal copy-number 
states are not taken into account. The inferred allele-specific copy-
number states and the estimated tumor purity can then be used to 
infer the cancer-cell fraction of each point mutation. To identify 
subclonal populations, the spectrum of computed cancer-cell frac-
tions is searched for distinct clusters. Here, nonparametric Bayesian 
methods such as the Dirichlet process are widely being used13–16. 
Owing to resampling schemes, these methods are computationally 

intense, especially if the mutational load is high. Alternative clus-
tering approaches have also been recently proposed8,17–21.

This protocol describes how to use Sclust to estimate purity-
corrected, allele-specific clonal and subclonal copy numbers. 
To estimate these values, our approach conditionally optimizes 
the likelihoods of genomic imbalances and read-depth ratios. 
Furthermore, we propose a fully nonparametric mutational 
clustering method by transforming the task into an inverse prob-
lem that can be solved with low computational burden by using 
smoothing splines. In addition, Sclust combines copy-number 
inference with mutational clustering in a single package. This has 
the advantage that the tumor purity can be directly calculated 
from mutation clusters if there are no or few copy-number changes 
present. Our method automatically switches to mutation-based 
purity determination if the copy-number information is insuf-
ficient. The entire method is based on our previous implementa-
tions that have been used in a series of large-scale cancer genome 
sequencing studies22–25. Detailed descriptions of all technical and 
mathematical aspects are given in the Supplementary Note.

Development of the protocol
The determination of copy-number states is a central compo-
nent of the analysis of large-scale cancer genome sequencing data. 
We improved our method from early implementations to infer 
allele-specific copy numbers in whole-exome sequencing data of 
small-cell lung-cancer samples23. After these improvements, Sclust 
was applied to various cancer genome sequencing studies22,24,25. 
Reconstructing tumor evolution from bulk tumor-sequencing 
data has received some attention lately. To this end, we developed 
a new mutational clustering method that is less computation-
ally intensive than other approaches and applied the method to 
determine the intra-tumor heterogeneity of small-cell lung can-
cer22. Sclust is used in the pan-cancer analysis of whole genomes 
(PCAWG) of the International Cancer Genome Consortium26.
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Comparison with alternative methods
Numerous methods have been implemented to perform copy-
number analysis and mutational clustering from cancer genome 
sequencing data7–21. Of these methods, only cloneHD8 and Sclust 
unify copy-number analysis and mutational clustering in a single 
package (Table 1). Table 1 describes a comparison of the central 
properties of 12 alternative copy-number and mutational cluster-
ing algorithms. Further comparisons of Sclust with alternative  
state-of-the-art methods (by PCAWG) on ~2,800 cancer genomes 
are currently being carried out within the International Cancer 
Genome Consortium and will be published elsewhere. Moreover, 
Sclust is among the six methods used to construct a consensus 
copy-number estimate within this initiative. Our performance 
tests described below (Tables 2 and 3) showed a remarkably high 
computational efficiency.

Copy-number analysis. To validate our copy-number method, 
we compared our results from 38 whole-genome-sequenced 
small-cell lung-cancer samples22 with the corresponding single-
nucleotide polymorphism (SNP) array analysis based on the 
Absolute algorithm27. In general, we obtained a good concord-
ance between Sclust and Absolute (Fig. 1a,b). For tumor puri-
ties close to one, Absolute estimates of tumor-cell content are 
systematically higher than those of Sclust (Fig. 1a). This might 
be because no matched normal was used in the SNP array analy-
sis. In this setting, the algorithm must infer whether a SNP is 
likely to be heterozygous in the patient’s normal genome. This, 
in particular, is difficult in loss of heterozygosity (LOH) regions 
if the tumor purity is close to one, such that wrongly assigned 
homozygous SNPs can bias purity estimates to higher values. 
Tumor ploidies agreed very well between the two methods 
(Fig. 1b). Only one sample showed a noticeable difference, for 
which Absolute assessed a diploid and Sclust a triploid tumor. 
Distinguishing higher-ploidy tumors from diploid tumors can 
in some cases be quite challenging7.

To further assess the validity of our purity estimates, we 
mixed sequencing reads in silico from a normal genome into its 
matched tumor genome (small-cell lung-cancer cell line H2171; 
ref. 23). We mixed reads to roughly preserve the total number of 
reads of the tumor-cell line. As cell lines are composed of 100% 
tumor cells, the mixing fraction is identical to the purity and 
can thus be directly estimated by Sclust. By scanning a range of 
mixing fractions from 0.3 to 1, we obtained an almost perfect 
agreement between the mixing fractions and estimated purities 
from Sclust (Fig. 1c). Altogether, these results demonstrate that 
Sclust is able to accurately determine copy-number profiles and  
tumor purities.

Subclonal inference. Whole-genome sequencing of breast can-
cer genome PD4120a to ×188 coverage has recently been per-
formed, followed by a considerably detailed reconstruction of its 
evolutionary history15. Two published methods have used these 
sequencing data to demonstrate the validity of their subclonal 
reconstructions: cloneHD8 and Theta11. Therefore, PD4120a 
serves as an ideal benchmark case for Sclust.

We estimated a tumor purity of 70%, which is exactly the same 
as the original Battenberg estimate15 and very close to the results 
of Theta11. The purity estimate of cloneHD8 is 78.4%, which is 
slightly higher than that of the other methods. The copy-number 

profile computed by Sclust shows all central features as previ-
ously reported by the Battenberg method (Fig. 2a)15. We can 
recapitulate the deletion of chromosome 4, as well as the sub-
clonal deletions of chromosomes 7, 13, and 22q11. By contrast, 
Battenberg detects a series of subclones that are almost clonal 
(chromosomes 6, 8, 9, 11, 12, 14, and 15), whereas Sclust assigns 
these regions as being clonal. In addition, Sclust shows a slightly 
different segmentation of chromosome 1, leading to differences in 
the subclonal structure as compared with that of the Battenberg 
method. Overall, the differences between Sclust and Battenberg 
are still relatively small. However, from this analysis, we cannot 
conclude whether Sclust is too conservative or Battenberg over-
calls subclonal copy numbers.

Mutational clustering using Sclust yielded four populations 
(Fig. 2b). Together, the numbers of the clusters and their can-
cer-cell fractions are in agreement with the results from the 
Bayesian Dirichlet model15. Furthermore, we performed muta-
tional clustering with PyClone16 and PhyloWGS13 based on copy-
number calls from Sclust. To keep the computational burden in 
an affordable range, we sampled the 66,441 single-nucleotide 
somatic mutations down to a representative set of 5,000 muta-
tions. Still, the required run time was 9 h 8 min for PyClone 
and 39 h 12 min for PhyloWGS. Clusters identified by PyClone 
agreed well with Sclust, but only the location of cluster B was 
shifted to a slightly lower cancer-cell fraction (as seen by peaks 
in the posterior distribution; Fig. 2b). As discussed in the follow-
ing, a similar shift of cluster B was not present in the PhyloWGS 
analysis. As PhyloWGS determines phylogenetic trees that fit the 
input cancer-cell fractions, a comparison with Sclust is com-
plicated because not all populations of the phylogenetic trees 
must be represented by a visual cluster. On the other side, all 
visual clusters should be represented in the phylogenetic trees 
inferred by PhyloWGS. For the different tree topologies (five, six, 
and seven populations/nodes), all cluster locations identified by 
Sclust are in perfect agreement with population sizes estimated 
with PhyloWGS (Fig. 2b). Similar to the copy-number analysis, 
the deviations are slightly larger for cloneHD8, which might be 
due to differences in the assumptions used to reconstruct the 
subclonal structure. The distribution of the number of muta-
tions assigned to the four clusters (Fig. 2c) is almost the same as 
that from the Bayesian Dirichlet model15. In total, copy-number 
analysis and mutational clustering achieved high agreement with 
the discussed alternative methods.

Computational performance. To assess the computational 
performance of Sclust, we analyzed 14 lung adenocarcinoma 
samples, which were sequenced on a whole-genome and exome 
platform28. Sclust (modules: cn and cluster) is carried out on a 
single core of an Intel Xeon X5650, 2.67-GHz processor. The 
results regarding run time and memory consumption of Sclust are 
summarized in Tables 2 and 3. Across all samples, the average run 
time of the cn module was 5.16 ± 0.91 s for the exomes (Table 2)  
and 94.4 ± 1.89 s for the genomes (Table 3). The run time of 
the cluster module was only 1.03 ± 0.24 s in the case of exome 
sequencing (Table 2) and 1.62 ± 0.27 s for the whole genomes 
(Table 3). Unlike Sclust, mutation-clustering methods based on 
the Bayesian Dirichlet model are slower and depend strongly on 
the number of mutations, owing to the massive computational 
burden of the Monte-Carlo Markov chain sampling. Assessing 
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the computational burden of PyClone and PhyloWGS on the 14 
whole exomes clearly shows that these resampling-based methods 
are orders of magnitude slower than those of Sclust (Table 2). 
Furthermore, the run times of PyClone and PhyloWGS strongly 
correlated with the number of mutations (PyClone: R2 = 0.88, 
P = 2 × 10−7; PhyloWGS: R2 = 0.97, P = 3·× 10−11). By con-
trast, we did not find a significant correlation of the run time 
with the total number of mutations in either the exome- or 
genome-sequencing runs (exome: R2 = 0.061, P = 0.39; genome: 
R2 = 0.053, P = 0.43), and the average run time only marginally 
increased between whole exomes and genomes (Table 2). The 
peak memory consumption of both modules was in an acceptable 
range (~0.14 GB for exomes and ~8.5 GB for genomes).

Simulations. To assess the validity of our proposed mutational 
clustering algorithm, we simulated a series of datasets composed 
of a clonal and a subclonal population. To provide a realistic 
simulation, including copy-number changes, local coverage  
fluctuations, and normal contamination, we chose a real small-
cell lung-cancer whole genome as background22. The tumor that 
we selected (patient number: S01563) had an estimated purity of 
78.4%, a ploidy of 2, and a total mutational load of 42,494 sin-
gle-nucleotide variants. Of these point mutations, we took their 
expected variant allele fractions and simulated new observed vari-
ant allele fractions using a binomial distribution. Furthermore, 
we scaled the local read depth to simulate a predefined average 
genome-wide coverage. Especially for small cancer-cell fractions, 

Table 1 | Comparison of copy-number and subclonal architecture inference methods.

Property

ABSOLUTE, 
ASCAT,  

CNAnorm
TITAN, 
THetA cloneHD

PhyloWGS, 
Canopy PyClone CITUP Bayclone Sclust

Performs own 
copy-number  
segmentation

N Y Y N N N N Y

Uses rearrange-
ment breakpoints 
in segmentation

N N N N N N N Y

Calls absolute 
clonal copy  
numbers

Y Y Y N N N N Y

Calls subclonal 
copy numbers

N Y Y N N N N Y

Performs muta-
tional clustering 
on single samples

N N Y Y Y Y Y Y

Clusters copy-
number  
alterations

N N Y Y N N N Y

Deals with multi-
ple samples

N N Y Y Y Y Y N

Reconstructs  
phylogenetic 
trees

N N N Y N Y N N

Allows subclonal 
copy numbers for 
clustering

N N Y Y Y N N Y

N, no; Y, yes.
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a small number of mutated reads can occur. To mimic the sensi-
tivity of a mutation caller, we did not accept any mutations with 
2 mutated reads; we accepted only 50% with three, 80% with four, 
and 95% with five mutated reads. All mutations with 6 mutated 
reads were included in the simulations.

The results of the simulation study are shown in Figure 3. Here, 
either 70 or 30% of clonal mutations are simulated (upper or 
lower panels, respectively). The coverage was chosen to increase 
from left to right in the range of ×30, ×60, and ×90. We scaled the 
size of the data points proportionally to the number of mutations, 
which were assigned to the corresponding population. Overall, 
the reconstructed cancer-cell fractions agree well with their 
expected values, with accuracy increasing for higher-coverage 
data. The latter result is expected and suggests the consistency of 
the method, as the sampling noise decreases with increasing the 
coverage. The largest disagreement is found in the region where 
the clonal and subclonal populations merge. In this region, it is in 
general difficult to disentangle the two populations. Furthermore, 
low-coverage tumors showed systematically higher cancer-cell 
fractions for small subclones. This is due to the simulated sensi-
tivity of the mutation caller, accepting predominantly read counts 

from the upper tail of the binomial distribution. The selection 
procedure thus leads to a shift toward higher cancer-cell frac-
tions as those picked up by our method. In total, we conclude 
that Sclust yields valid results with limitations in discriminating 
highly overlapping populations and limitations in the sensitivity 
of the mutation caller.

Advantages and limitations of Sclust
Sclust performs copy-number analysis and mutational cluster-
ing with a particularly low computational burden. This enables 
users to apply the method to larger sample sets without the 
necessity of having access to large, high-performance computing 
infrastructures. By integrating copy-number analysis with muta-
tional clustering in a single package, the determination of tumor 
purity directly from the mutation clusters is supported by Sclust. 
Furthermore, copy-number analysis with Sclust is not prone to 
over-segmentation.

Currently, Sclust does not support copy-number analysis 
without the co-sequenced matched normal. For a minority of 
samples, Sclust does not yield biologically correct results using 
default settings. This is a common problem for all in-depth  

Table 2 | Performance test of Sclust on whole-exome sequencing data for 14 lung adenocarcinoma samples28.

Sample SNVs cn: time (s) cn: mem (GB)
cluster: time 

(s)
cluster: mem 

(GB)
Time (s): 
PyClone

Time (s): 
PhyloWGS

S00488 426 5.60 0.138 0.99 0.037 403.8 1,294.6

S01302 621 5.83 0.138 0.74 0.037 1,068.5 2,112.3

S01331 237 4.08 0.137 1.08 0.037 212.0 512.6

S01341 74 5.55 0.138 0.87 0.037 189.5 226.1

S01345 381 3.88 0.137 1.46 0.037 248.0 746.4

S01346 391 5.66 0.138 0.74 0.037 270.7 1,057.7

S01356 401 4.33 0.138 0.76 0.037 376.0 1,178.5

S01381 197 6.03 0.137 0.89 0.037 140.5 378.7

S01404 172 5.84 0.138 1.04 0.037 143.1 388.2

S01405 318 3.80 0.138 1.03 0.037 227.7 703.2

S01407 188 5.71 0.137 1.47 0.037 150.4 395.0

S01467 272 6.01 0.138 1.28 0.037 295.2 585.7

S01468 482 3.93 0.138 1.09 0.037 415.2 1,180.3

S01478 462 5.98 0.137 1.05 0.037 440.3 1,209.1

Average 330.14 5.16 0.14 1.03 0.04 327.2 854.9

All samples showed a large variety in the total amount of called single-nucleotide variants (SNVs). For both central Sclust modules, cn and cluster, the total run time (time) is shown in seconds and the peak 
memory consumption (mem) is given in GB. Run times for PyClone and PhyloWGS are given in the last two columns.
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copy-number callers and is mainly caused by the presence of 
whole-genome duplications. However, Sclust has a series of 
parameter settings to calibrate such cases. Suggestions on how 
to identify and calibrate these ‘difficult’ cases are given in the 
PROCEDURE section (Step 5). The current version of Sclust 
cannot perform multi-sample analyses or the reconstruction of 
phylogenetic trees (Table 1).

Required expertise
Non-experts in computational biology or bioinformatics should 
be able to carry out analyses with Sclust. However, a basic knowl-
edge of Linux/Unix command-line syntax is required to install 
and run the protocol. The knowledge of scripting languages is not 
required but can be helpful, e.g., in converting the mutation calls 
into the Sclust-specific .vcf format.

Table 3 | Performance test of Sclust on whole-genome sequencing data for 14 lung adenocarcinoma samples derived from the same 
patients as in Table 2.

Sample SNVs cn time (s) cn mem (GB) cluster time (s) cluster mem (GB)

S00488 74,595 93.01 8.565 2.01 0.037

S01302 118,339 95.70 8.567 1.54 0.037

S01331 47,012 94.04 8.579 1.66 0.037

S01341 12,394 95.67 8.482 1.11 0.037

S01345 37,079 91.87 8.509 1.96 0.037

S01346 102,639 99.11 8.535 1.40 0.037

S01356 70,706 91.53 8.558 1.39 0.037

S01381 29,635 94.14 8.492 1.42 0.037

S01404 39,048 95.63 8.492 1.77 0.037

S01405 49,803 94.51 8.536 1.70 0.037

S01407 40,900 93.01 8.494 1.49 0.037

S01467 48,861 93.75 8.539 1.65 0.037

S01468 104,178 94.54 8.574 2.08 0.037

S01478 83,469 95.00 8.501 1.43 0.037

Average 61,332.71 94.39 8.530 1.62 0.037

Absolute: SNP array
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Figure 1 | Validation of the copy-number analysis of Sclust against Absolute and a mixing series of the small-cell lung-cancer cell line H2171 with its matched 
normal cell line. (a,b) Purity (a) and ploidy (b) estimates were compared between Absolute (SNP arrays) and Sclust (whole-genome sequencing). (c) In silico 
mixing experiment with the cell line H2171 with its matched normal cell line. The mixing fraction is equivalent to the tumor purity and is therefore directly 
estimated by Sclust.
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Overview of the procedure
An overview of the various Sclust modules. Our method con-
sists of three modules that are subsequently executed to generate 
the full copy-number and clonality analysis (Fig. 4). In the first 
module (bamprocess), all necessary input data are generated to 
perform copy-number analysis (Steps 1 and 2). Here, read counts 
over a partitioned genome are computed, for which a predefined 
partitioning for whole-exome and whole-genome sequencing 
data from human (hg19 build) and mouse (mm10 build) is pro-
vided by the program package. In addition, base counts of com-
mon SNPs are extracted from alignments to compute biallelic 
frequencies across the genome. Biallelic frequencies are tumor-
specific allele frequencies of SNPs that are heterozygous in the 
matched normal. From those two datasets, clonal and subclonal 
allele-specific copy numbers, purity, and ploidy estimates are then 
computed in the cn module (Steps 3, 4, and 5). In the case that 
the amount of copy-number changes is not sufficient to reliably 
determine the tumor purity, the purity is directly computed from 
mutational clustering by iteratively shifting the cancer-cell frac-
tion of the clonal population to one. From copy-number and 
purity estimates, the expected allelic fraction of each mutation is 
determined under the assumption of clonality. The ratio between 
the observed and expected allelic fractions then yields the cancer-
cell fraction of each mutation. To infer the subclonal architecture 
of a tumor, clusters of cancer-cell fractions are determined in the 
cluster module (Step 6). These clusters then represent evolution-
ary subpopulations and are determined by a smoothing spline 
based on deconvolution of the intrinsic sampling noise from the 
unknown distribution of subclonal populations. Peaks in the 
reconstructed distribution of the subclonal populations represent 
the distinct mutational clusters. Each mutation is finally assigned 
to the most likely cluster. All technical and mathematical details 
are extensively discussed in the Supplementary Note.

Experimental design
Sclust commands. Sclust is a command-line tool that consists 
of three modules: bamprocess, cn, and cluster. These modules are 
controlled by parameters that are described in Box 1.

Input data. Our protocol requires tumor and matched normal  
alignment files (in .bam format), as well as a file containing all somatic 
point mutations (single-nucleotide changes and small insertions/
deletions) in .vcf format. Note that Sclust requires special fields in 
the .vcf file, which can be easily generated from other .vcf files. A  
complete description of these extra fields is given in Box 2. 
Furthermore, Sclust allows the inclusion of rearrangement break-
points in the segmentation of copy numbers as optional input data.
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Figure 2 | Reconstruction of the subclonal structure of the breast 
cancer case PD4120a. (a, Top) The estimated copy-number states of all 
autosomes using Sclust and the Battenberg method are shown, where  
the brown and dark-green lines show the total clonal copy number and 
clonal minor allele copy number, respectively, for Sclust. Battenberg 
copy-number calls were kindly made available by the authors of the 
original study15. (Bottom) Orange and light-green lines depict the 
estimated subclonal copy-number states in a similar manner for the 
Battenberg method. (b) Histogram of cancer-cell fractions based on 
66,441 point mutations together with results from mutational clustering 
by Sclust, PyClone, and PhyloWGS. (c) The distribution of the number of 
mutations assigned to the four clusters.

Conventions. Throughout the PROCEDURE, we refer to <sample>  
as the sample identifier, and chromosome names are denoted 
by chr1–chr22, chrX, and chrY. For the sake of simplicity, we 
assume that the Sclust binary is included in the PATH variable of  
the shell.

MATERIALS
EQUIPMENT

Data files: tumor and matched normal data aligned to the human  
reference hg19 or the mouse reference mm10, and mutation  
calls in a .vcf format adapted to Sclust (Step 3). A list of genomic  
breakpoints, e.g., from rearrangement calls is optional normal.
A standard computer system with a Linux or Mac OS X operating  
system. For hardware requirements, see the Equipment Setup section. 
The availability of a large-scale computing cluster is not essential, but it 
speeds up the performance of the bamprocess module substantially.

•

•

The program source code, Sclust, is freely available and can be downloaded 
from http://www.uni-koeln.de/med-fak/sclust/Sclust.tgz

EQUIPMENT SETUP
Hardware requirements  As already shown in Tables 2 and 3, memory 
requirements depend on whether a whole-exome or -genome workflow is 
used. Whole exome: 2 GB of memory, <50 MB of storage available for files 
generated by Sclust. Whole genome: 16 GB of memory, ~1.2 GB of storage 
available for files generated by Sclust. The Sclust program package requires 
4.5 GB of storage after installation.

•

http://www.uni-koeln.de/med-fak/sclust/Sclust.tgz
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Software requirements  A standard C++ compiler is required to install 
Sclust. For Mac OS X users, Apple’s xcode package (https://developer.apple.
com/xcode/) contains all the relevant tools needed to build Sclust. In the case 
of Linux users, the installation of a standard development package is sufficient. 
Please make sure that a working version of libz (https://zlib.net) is installed. 
Sclust generates plots that are helpful to calibrate the copy-number profile if 
necessary. For this purpose, R (https://cran.r-project.org) is used as the plotting 
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Figure 3 | Simulations of a clonal and subclonal population with different proportions of clonal mutations. (a–f) All panels show the simulated (x axis) versus 
the estimated (y axis) cancer-cell fractions (CCFs) of the subclones. The simulations are based on the structure of a small-cell lung-cancer sample with 42,494 
point mutations. The fraction of clonal mutations (clonal fraction) is kept constant for the upper (a,b,c) and lower (d,e,f) panels but with increasing genome-
wide mean coverage (×30, ×60, and ×90). Mutations that are assigned by Sclust as being clonal are shown in blue and subclonal mutations are depicted in red. 
The size of the data points reflects the proportion of clonal or subclonal mutations, respectively. The lower panel of each subfigure shows the deviation of the 
Sclust estimates from the real values used in the simulation.

engine; therefore, we recommend installing a current version of R before the 
installation of Sclust.
Installation  Download Sclust by clicking on this link: http://www.uni-koeln.
de/med-fak/sclust/Sclust.tgz and expand the archive by executing tar 
xvzf Sclust.tgz. Change into the src directory with the command cd 
Sclust/src and start building the program by typingmake. The build can 
be tested by executing ‘make test’.

PROCEDURE
Preprocessing of alignment files ● TIMING 15 min–15 h
 CRITICAL Assume that the whole-genome sequencing alignment .bam file of the tumor is denoted by <sample>_T.bam and 
that of the normal is <sample>_N.bam. Please make sure that both .bam files are position-sorted and indexed.
1|	 Extract the read ratio and SNP information of the chromosome (<chr>) from the .bam-files by following this command:

Sclust bamprocess -t <sample>_T.bam -n <sample>_N.bam -o <sample> -part 2 -build 
hg19 -r <chr>

After completion of all chromosomes, generate temporary data files using this command:

<sample>_chr1_bamprocess_data.txt,...,<sample>_chrY_bamprocess_data.txt 

Please see Box 1 for a description of the parameters in the command.
? TROUBLESHOOTING

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://zlib.net
https://cran.r-project.org
http://www.uni-koeln.de/med-fak/sclust/Sclust.tgz
http://www.uni-koeln.de/med-fak/sclust/Sclust.tgz
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2|	 Merge temporary data files following this command:

Sclust bamprocess -i <sample> -o  
<sample>

Generate a read-count file: <sample>_rcount.txt  
and a file containing base counts of common  
SNPs: <sample>_snps.txt. The formats of the output  
files are shown below.

<sample>_rcount.txt:

chromosome  start     end     rcount_t  rcount_n  GC

chr1            69069      70029   27      39        0.422477

chr1            861297  861417   30        32         0.628099

The first column is the chromosome of the partition and is  
followed by its start and end positions. The next two  
columns are the read counts of the tumor and matched  
normal having the start position within the partition.  
The last column is the GC content of the partition.

<sample>_snps.txt:

part_no chromosome position T_A  T_C  T_G  T_T  N_A  N_C  N_G  N_T  allele_A  allele_B

2      chr1        865628  0    0      22    0    0    0    23    0    0          2

2      chr1        865682  0    0      27    0    0    0    9    0    0        2

The first column is the partition number, and is followed by the genomic position of the SNP, and then by its base counts 
in the tumor (in the order A, C, G, and T) and in the matched normal (in the same order). The last two columns are the two 
possible bases of the SNP, which are numerically encoded by A = 0, C = 1, G = 2, and T = 3.

Copy-number analysis ● TIMING <5 min
3|	 Convert the .vcf files to the Sclust-specific format. The header of our .vcf format is like a standard .vcf file but must  
contain a few extra fields. Accurate information for some of those extra fields is required, whereas a generic placeholder, 
e.g., ‘.’ can be provided for other fields; please see a description of the extra fields in Box 2. The header lines should contain 
the following:

##INFO=<ID=DP,Number=1,Type=Integer,Description="Read Depth Tumor">

##INFO=<ID=DP_N,Number=1,Type=Integer,Description="Read Depth Normal">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allelic Frequency Tumor">

##INFO=<ID=AF_N,Number=A,Type=Float,Description="Allelic Frequency Normal">

##INFO=<ID=FR,Number=1,Type=Float,Description="Forward-Reverse Score">

##INFO=<ID=TG,Number=1,Type=String,Description="Target Name (Genome Partition)">

##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP Membership">

#CHROM      POS      ID      REF      ALT      QUAL      FILTER      INFO

 CRITICAL STEP Note that only mutations for which PASS is set as the filter option will be considered for mutational  
clustering. An example .vcf file can be found under example/data/H2171_mutations.vcf in the Sclust program package.

Tumor/normal alignments
bam-file 

Somatic mutations
vcf-file (Step 3) 

Genomic rearrangements
breakpoint list (optional) 

Sclust module: 

bamprocess (Steps 1 and 2)

Generate input tables for 
copy-number analysis 

Sclust module: cn (Steps 4 and 5) 

Performs copy-number analysis and 
estimation of tumor purity 

Read ratios: *_rcount.txt

SNP counts: *_snps.txt

Sclust module: cluster (Step 6) 

Subclonal inference using mutational 
clustering 

Copy-number output 

- Purity, ploidy: *_cn_summary.txt
- Allelic composition: *_allelic_states.txt
- Subclonal copy numbers: *_subclonal_cn.txt
- Uncorrected segments: *_uncorr_cn.seg
- Corrected segments: *_iCN.seg
- Profile graphs: *_cn_profile.pdf

Clustering output 

- Inferred clusters: *_mclusters.txt
- Mutation assignments to clusters:
  *_cluster_assignments.txt
- Cluster graph: *_mcluster.pdf

CCF: *_
muts_expAF.txt

Purity
 estim

ate fro
m clustering

for copy-number silent samples

Figure 4 | Overview of the Sclust workflow. Input data are passed to the 
different modules of Sclust, which must be executed in a fixed order (first 
bamprocess, then cn, and finally cluster). Names of the output files generated 
by Sclust are shown at the bottom of the figure, and a complete description 
of their contents is given in the PROCEDURE section.
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4|	 Perform the copy-number analysis using the converted mutation call .vcf file <sample>_mutations.vcf, the read-count 
file <sample>_rcount.txt, and the SNP base-count file <sample>_snps.txt and using the following command. See Box 1 for a 
description of the parameters in the command.

Sclust cn -rc <sample>_rcount.txt -snp <sample>_snps.txt -vcf <sample>_mutations.vcf 
-o <sample>

Box 1 | Description of parameters in Sclust 
Parameters of the bamprocess module.
-t              Alignment file of the tumor sample
-n              Alignment file of the matched normal
-o       �       Name of output files (prefix): here, the same sample identifier is used for the sake of simplicty; however, a differ-

ent name is also prossible
-part           Number of the genomic partitioning scheme: 1 for whole exome; 2 for whole genome
-build          Genome build: hg19 for human and mm10 for mouse
-r              Chromosome to extract: repeat the command above for all chromosomes: 
                 <chr>=chr1,..., <chr>=chr22, <chr>=chrX, <chr>=chrY

Parameters of the cn module
-rc              Read count data file, generated in Step 1
-snp            File containing base counts of common SNPs, generated in Step 1
-vcf            Mutation calls
-o              Output file name (prefix)
-sv       �       List of breakpoints, e.g., from rearrangement callers or external segmentation algorithm callers. Each line of the list 

should contain the chromosome name and position of the breakpoint, separated by a tab. Lines that start with ‘#’ are 
ignored

-w              Minimal window size in kbp. Adjacent genomic windows smaller than this size are joined to reach this lower bound
-min_r     �     Minimal number of reads per partition (in the matched normal only). Similar to the previous parameter, adjacent 

windows are joined, if necessary, to achieve this threshold
-min_seg        Minimal number of genomic partitions that can form a copy-number segment
-st       �       Threshold to determine the sex of the patient by the ratio of the coverage of the Y chromosome to that of the X 

chromosome. If this ratio is below this threshold (specified by -st), the patient sex is estimated to be female
-alpha     �     This parameter determines the sensitivity of the segmentation, for which smaller values lead to a stricter  

segmentation. The value -1 leads to a suppression of segmentation, e.g., if an external segmentation is provided 
(see -sv option)

-ms       �       Bandwidth of the median smoother applied to raw copy-number data to eliminate outliers. You can switch off the 
median smoother by setting -ms = 0

-ns       �       Minimal number of SNPs per segment to compute tumor purity by fitting biallelic frequencies. For whole-genome 
sequencing: -ns = 1000 and for whole-exome sequencing: -ns = 100 has proven to work reliably for almost all 
samples

-minp           Lower bound of tumor ploidy
-maxp           �Upper bound of tumor ploidy. These two parameters (-minp and -maxp) are central quantities to calibrate 

the copy-number profile; for details see Step 5
-minpu     �     The smallest tumor purity that can be estimated using biallele frequencies. If the optimal purity hits this lower 

bound, the algorithm automatically switches to mutation-based purity determination
-f2              If this flag is set, mutation-based purity estimation is enforced

Parameters of the cluster module
-i              Name of input files (prefix)
-o              Name of output files (prefix); if this option is not set, the input name is also used as the output name
-nbins     �     This option sets the number of bins used to construct the cancer-cell fraction histogram; the default value is 

100, a change is typically not necessary
-indel     �     A flag option; if this option is set, insertions and deletions (indels) are also included in the mutational cluster-

ing. Make sure that the allelic fractions are correctly computed before using this option
-lambda    �    This parameter controls the degree of smoothing to cluster the mutations. Very high values can lead to an under-

calling of mutation clusters; the default value is 1 × 10–7; a change is usually not required
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Generate the following files using the following command:

<sample>_cn_summary.txt, <sample>_allelic_states.txt, <sample>_subclonal_cn.txt,  
<sample>_uncorr_cn.seg, <sample>_iCN.seg, <sample>_muts_expAF.txt, and <sample>_cn_ 
profile.pdf.

This will output the following files.

•  <sample>_cn_summary.txt:

sample_name    purity    ploidy    fraction_subclonal_cn    sex_estimated    status    fraction_inconsistent_segs

H2171    0.99    1.92056    0.0871417    m    optimum    0.00323938

The sample name is followed by estimates of purity, ploidy, the fraction of subclonal copy number throughout the genome, 
and the sex of the patient. The status of the copy-number analysis can take the following values: optimum (if an optimal 
solution was achieved), invariant (if no sufficient copy-number changes were present and the purity was calculated from the 
mutations), forced (if the -f2 flag was set), and failed (if the method failed). The last value is the fraction of inconsistent 
subclonal segments, in the case that no unique copy-number solution was found.

•  <sample>_allelic_states.txt

Sample Chromosome    Start    End    Copy_Nr_Raw    CopyNr    A    B    LOH    Theta Theta_Exp     
n_SNPs    Is_Subclonal_CN Subclonal_P_value    Is_Inconsistent_State

H2171    chr1    865532    24022908    2.11065    2    1    1    0    0.121093    0.082753    278     
0    0.010588    0

H2171    chr1    24077327    93303221    2.13394    2    1    1    0    0.0862069    0.082753     
375    0    0.817891    0

The first column is the sample name followed by the chromosome, and the start and end positions of the copy-number seg-
ment. Copy-number estimates of each segment are given in the next columns: (i) uncorrected copy numbers, (ii) corrected 
integer-valued copy numbers, (iii) major allele copy numbers, and (iv) minor allele copy numbers. If the segment has a LOH, 
the next column is 1 or otherwise 0. The next two columns provide the observed and model-predicted allelic imbalances, fol-
lowed by the total number of SNPs, and the subclonality of the segment (0 = no;1 = yes) together with its P value. The last 
column is 1 if no unique solution for the segment was found.

•  <sample>_subclonal_cn.txt:

Sample    Chromosome    Start    End    Subclonal_CN    Clone1_A    Clone1_B    Clone1_Fraction    Clone2_A 
    Clone2_B    Clone2_Fraction

H2171    chr2    41557    29404778    3.16433    2    2    0.164326    2    1    0.835674

H2171    chr3    115571276    195493637    2.44044    2    0    0.559561    2    1    0.440439

Box 2 | Description of extra fields 
DP        Coverage at the position of the mutation in the tumor (required)
DP_N       Coverage at the position of the mutation in the matched normal (required)
AF        Allelic fraction of the mutation in the tumor (required)
AF_N       Allelic fraction of the mutation in the matched normal (typically close to zero; not required; placeholder)
FR    �    The forward–reverse score; 0 if all reads of the mutation are facing in one direction; 1 if all forward and reverse scores are 

equally present (not required; placeholder)
TG        Name of the genome partition (not required; placeholder)
DB         If this flag is set, the mutation is a common SNP (mutations at SNP positions are filtered out before mutation clustering)
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This file contains the list of all identified subclonal copy numbers, in which the first few columns are again the sample name, 
chromosome, and the start and end positions of the subclonal copy-number segment. The total subclonal copy number is 
given in the next column, followed by major and minor copy numbers, and the clonal fraction of clone 1. The last three  
columns provide the same information for clone 2.

•  <sample>_uncorr_cn.seg, <sample>_iCN.seg:

These files contain corrected and uncorrected copy numbers in a standard format that can, e.g., be read by the Integrated Genome 
Viewer (http://software.broadinstitute.org/software/igv/). The format of these files is described on the webpage given above.

•  <sample>_ muts_expAF.txt

Mut_ID    Chr    Position    Wt    Mut    AF_obs    Coverage    AF_exp    Mut_Copies    Mut_Copies_
Raw    Is_Subclonal_CN    iCN    P_Is_Clonal

H2171_chr1:3670813_SNM    chr1    3670813    C    A    0.5625    16    0.495    1    1.13636     
0    2    0.706872

H2171_chr1:6186793_SNM    chr1    6186793    C    A    0.528571    70    0.495    1    1.06782     
0    2    0.71317

This file is provided as input for the cluster module (Step 5). The first column is a mutation ID, which is composed of the 
sample name, genomic position, and type of mutation. The following columns are the genomic position, wild type, and mu-
tated base, as well as the observed allelic fraction of the variant. The coverage at the mutation is given in the next column, 
followed by the expected allelic fraction under the assumption that the mutation is clonal. The estimated and raw multiplicity 
(number of mutated copies) is given in the next two columns, followed by some copy-number information (copy number of 
the corresponding segment and its clonality). The last column is the P value, which indicates whether or not the mutation is 
clonal (i.e., testing that cancer-cell fraction = 1).

•  <sample>_cn_profile.pdf

This .pdf file is a graphical representation of the results from the copy-number analysis and provides important information 
for calibrating the copy-number profile (Step 2). It consists of three pages, in which the first page shows the optimization 
process (Fig. 5a). For each expected ploidy (x axis) between 1 and 5, the actual purity and ploidy estimates are shown in 
the top panels. The lower panels show the objective functions based on the read ratios (L-cn) and based on biallelic frequen-
cies (L-bi). The red bar shows the location of the optimal result, which is obtained by the global minimum of L-cn within the 
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Figure 5 | Example of the first two pages of the <sample>_cn_profile.pdf file. (a) Purity and ploidy estimates (y axis) as a function of the expected ploidy  
(x axis; free parameter) are shown in the upper panel. The lower panel shows the objective functions of the read ratios (L-cn) and biallelic frequencies (L-bi) 
on the y axis. The exact structure of these objective functions is given in the Supplementary Note. The red bar depicts the location of the optimal result.  
(b) Observed allelic imbalances (y axis; theta) as a function of the estimated total copy number (x axis). Allelic states are depicted by different colors.  
Model predictions of allelic imbalances are shown as crosses. The distribution of observed allelic imbalances in the tumor (red curve) and matched normal 
(blue curve) are shown in the right panel.

http://software.broadinstitute.org/software/igv/
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scanning range defined by the parameters: -minp and -maxp. The second page of <sample>_cn_profile.pdf shows the  
observed allelic imbalances (denoted by theta) in dependence on the estimated total copy number (Fig. 5b). Allelic states 
are depicted by different colors. The model predictions are shown as crosses, and divergent model predictions are interpreted 
as subclonal copy-number changes by the algorithm. The distribution of observed allelic imbalances in the tumor and 
matched normal is shown in the right panel. Finally, the entire copy-number profile across the genome (total and minor  
allele copy numbers) is depicted on the last page of <sample>_cn_profile.pdf (see, e.g., Fig. 2a).

5|	 Calibrate the copy-number profile. To calibrate the copy-number profiles, adjust the parameters -minp and -maxp to 
select another local minimum of L-cn. As an example (Fig. 5), setting -minp = 3 and -maxp = 5 would select the right 
peak corresponding to a ploidy of 3.7. An experimental assessment of the overall ploidy (e.g., using a fluorescence in situ 
hybridization (FISH) analysis) can further be consulted to reliably calibrate copy-number profiles in doubtful cases.
 CRITICAL STEP Reliable results are obtained for most of the samples by using default values. However, mainly due to the 
presence of whole-genome duplications, the mathematically optimal solution might not be the biologically realized situation. 
This typically occurs in ~20–30% of cases. Unfortunately, there is no universal recipe to detect the samples that need to be 
calibrated. Common hints are large segments of homozygous deletions, the minimum of L-cn does not coincide with a local 
minimum in L-bi, the presence of superclonal mutations (cluster with a cancer-cell fraction substantially >1), and a large  
accumulation of mutations/subclonal copy numbers at a cancer-cell fraction of 0.5.

Mutational clustering ● TIMING <10 s
 CRITICAL Mutational clustering requires the file <sample>_muts_expAF.txt, which was generated in Step 2.
6|	 Perform mutational clustering using the following command:

Sclust cluster -i <sample>

This step generates the following output files:

•  <sample>_mclusters.txt

Cluster_ID    CCF_Cluster     Cluster_Peak_Height     Mutations_In_Cluster

0             1.00798       14.9095                214

1             0.78729       1.11972                49

The number of each identified mutation cluster, together with its cancer-cell fraction, is given in the first two columns. 
Clonal mutations are typically in cluster 0. The next column is the peak height of the cluster, which correlates to the number 
of mutations assigned to the respective cluster (last column).

•  <sample>_cluster_assignments.txt

Mut_ID    Chr    Position    Wt    Mut    CCF    Coverage    Cluster_Id Cluster_CCF    Proba-
bility    P0    P1    P2    P3    P4

H2171_chr1:3670813_SNM    chr1    3670813    C    A    1.13636    16    0    1.00798    0.800866    0.80
0866    0.188233    0.00998492    0.000890016    2.61627e-05

H2171_chr1:6186793_SNM    chr1    6186793    C    A    1.06782    70    0    1.00798    0.971915    0.97
1915    0.0280831    1.44228e-06    1.9175e-10    1.87605e-15

The first four columns contain the same information as in <sample>_muts_expAF.txt. The next column is the raw cancer-cell 
fraction of the mutation, followed by its coverage. The cluster number or ID, its cancer-cell fraction, and its assignment 
probability are given in the next few columns. Assignment probabilities to all identified clusters are provided in the remain-
ing columns (these values sum up to 1 and can, e.g., be used to generate the co-clustering matrix).

•  <sample>_mcluster.pdf

This is a graphical representation of the cancer-cell fraction histogram, together with the identified mutation clusters, that 
is similar to Figure 2b.
? TROUBLESHOOTING
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? TROUBLESHOOTING
Troubleshooting advice can be found in Table 4.

● TIMING
Steps 1 and 2, preprocessing of alignment files: depending on your hardware, the extraction of each chromosome can be done 
sequentially or in parallel, e.g., on large computing clusters. In the case of whole-exome sequencing data, the sequential  
run can take up to 3 h but only ~15 min if run in parallel. Similarly, the sequential whole genome run takes 15 h, whereas a 
parallel run requires ~1.5 h
Steps 3–5, copy-number analysis: <5 min
Step 6, mutational clustering: <10 s

ANTICIPATED RESULTS
A successful completion of the protocol results in the following output files: <sample>_rcount.txt and <sample>_snps.txt 
(Steps 1 and 2); <sample>_cn_summary.txt, <sample>_allelic_states.txt, <sample>_subclonal_cn.txt, <sample>_uncorr_
cn.seg, <sample>_iCN.seg, and <sample>_cn_profile.pdf (Steps 4 and 5); and <sample>_mclusters.txt, <sample>_cluster_as-
signments.txt, and <sample>_mcluster.pdf (Step 6). A detailed description of the structure of these files is given in the PRO-
CEDURE section. To decide whether the fitted copy-number profile is correctly calibrated and of good quality, an inspection 
of <sample>_cn_profile.pdf is required. Information on how to interpret this file is given in Step 4, and suggestions on how 
to calibrate the profile are outlined in Step 5. Mutational clustering is typically robust if the copy-number profile is correctly 
adjusted. Exceptions are discussed in the Troubleshooting section.

Data availability
Data used in this protocol are deposited at the European Genome-phenome Archive (EGA) under accession nos. 
EGAS00001000925 for the small-cell lung-cancer data and EGAD00001000138 for the breast cancer case PD4120a. The lung 
adenocarcinoma data are deposited at dbGAP under accession code phs000488.v2.p1. Please note that due to the  
sensitive nature of these patient datasets, adequate approval from the data provider must be acquired to download them. 
The procedure for applying for data access is described in the corresponding EGA data access committee (DAC; https://www.
ebi.ac.uk/ega/dacs/EGAC00001000064 for EGAS00001000925 and https://www.ebi.ac.uk/ega/dacs/EGAC00001000010 for 
EGAD00001000138) or dbGA (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) web pages.

Table 4 | Troubleshooting table.

Step Problem Possible reason Solution

1 Error message: ‘please index 
bam-files’

.bam files are not indexed Make sure that the .bam files are sorted according to 
their genomic coordinates. If not, this can be done using 
SAMtools: ‘samtools sort’. After sorting the .bam files, they 
can be indexed using ‘samtools index’

6 Error message: ‘QP has reached 
maximal number of iterations’

The quadratic programming 
solver did not converge

A larger smoothing parameter (-lambda option) may resolve 
this problem

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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