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Abstract
Image enhancement plays an important role in improving image quality in the field of image processing, which is achieved 
by highlighting useful information and suppressing redundant information in the image. In this paper, the development 
of image enhancement algorithms is surveyed. The purpose of our review is to provide relevant researchers with a com-
prehensive and systematic analysis on image enhancement techniques and give them a valuable reference. Various image 
enhancement algorithms were mentioned and underlying difficulties, limitations, merits and disadvantages were discussed 
in applying these techniques in the past two decades with three aspects: supervised algorithm, unsupervised algorithm and 
quality evaluation, respectively. Further, we summarize some existing problems and analyze the future development trend 
of existing enhanced algorithms.

1 Introduction

Image enhancement is one of the most important technolo-
gies in the field of image processing, and its purpose is to 
improve the quality of images for specific applications. In 
general, the basic principle of image enhancement is to 
modify the information contribution of an image so that it 
is more suitable for a specific application [1].

Traditional image enhancement methods are mainly 
based on spatial domain and frequency domain processing. 
The spatial image enhancement [2] is to directly process 
the pixels in the image, such as the classic modified his-
togram methods [3–5], the improved unsharp mask meth-
ods [6–8]. The frequency domain image enhancement is 
to convert the image to the frequency domain in a certain 
mathematical function such as Fourier transform (FT), dis-
crete cosine transform (DCT) and discrete wavelet transform 
(DWT), then perform image processing based on the unique 
properties of the frequency domain, and finally convert it 
to the original image space. With the rapid development 

of image enhancement technology, various novel methods 
have emerged, such as retinex model [9–11], fuzzy theory 
[12, 13], neural network [14, 15], etc. For example, as 
shown in Fig. 1, we investigated 162 literatures on image 
enhancement. The methods involved mainly include histo-
gram equalization, Retinex model, visual cortex neural net-
work and deep learning methods. Each image enhancement 
method has its own advantages and disadvantages.

The main advantages of spatial domain image enhance-
ment are simple understanding, low complexity and real-
time implementation. However, there are also some disad-
vantages in the spatial domain image enhancement method, 
such as the lack of sufficient robustness and imperceptibility 
requirements [16]. It is difficult to propose a method that has 
a good enhancement for all images. This is mainly caused by 
the following factors: the non-university of image enhance-
ment algorithm, the choice of evaluation index, the influence 
of noise and the choice of optimal parameters, etc.

In this paper, we comprehensively provide the progress 
of image enhancement technology in the past two dec-
ades. Based on the latest trends in image processing, we 
mainly introduce the image enhancement methods sepa-
rately in three aspects: supervised methods, unsupervised 
methods and quality evaluation. The block diagram of the 
whole framework is shown in Fig. 2 in this paper. The rest 
of paper is organized as follows. Section 2 introduces the 
image enhancement techniques based on unsupervised algo-
rithms. Section 3 elaborates the supervised algorithms for 
image enhancement. Section 4 describe in detail the quality 
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evaluation content of image enhancement. Section 5 makes 
a conclusion for this paper.

2  Unsupervised Methods

The unsupervised algorithms do not require training sam-
ples or training labels, but directly model the data such as 
K-means [17], hierarchical clustering [18] and EM algorithm 
[19] etc. In the field of image enhancement, we survey sev-
eral classic unsupervised algorithms: histogram specifica-
tion, retinex model and visual cortex neural network. We 
will introduce in detail as follows:

2.1  Modifying the Histogram of Image

Histogram specification [20] is a method in the field of 
image processing that uses image histograms to adjust 
contrast. In this way, the brightness can be better distrib-
uted on the histogram. This can be used to enhance the 
local contrast without affecting the overall contrast. His-
togram equalization achieves this function by effectively 
expanding the commonly used brightness. The histogram 
of a digital image with a gray level range of [0, L − 1] is a 
discrete function [21]:

where rk is the k-th grayscale value, and nk is the number 
of pixels with rk in the image. The histogram of an image 
represents the grayscale distribution of the image.

Generally, we first normalize the histogram and then 
perform subsequent processing. Assuming that the dimen-
sion of the grayscale image is M × N , and M, N represents 
the total number of pixels in the image, the normalized 
histogram can be expressed as:

where p(rk) represents the estimation of the probability of 
gray level rk appearing in the image, and the sum of all com-
ponents of the normalized histogram is equal to 1.

In this section, we mainly elaborate three typical image 
enhancement methods based on histogram modification: 
traditional histogram equalization, partial histogram equal-
ization and histogram frequency weighting, respectively.

(1)h(rk) = nk

(2)p(rk) =
nk

MN
, k = 0, 1,… , L − 1

16.70%

18.50%

29.00%
18.00%

34.50%

Histogram equalization Deep learning

Retinex model Visual cortex neural network

Others

Fig. 1  The statistics of the number of papers with different image 
enhancement methods

Fig. 2  The whole framework of image enhancement methods
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2.1.1  Histogram Equalization

Earlier studies used to render the histograms of all gray lev-
els averagely, but these methods usually overstretch gray 
levels with larger histogram boxes than others. Histogram 
equalization(HE) is a common method in image enhance-
ment, which does not require parameter settings of exter-
nal factors and can effectively enhance image contrast [22]. 
However, histogram equalization is a method to adjust the 
image globally, which cannot effectively improve the local 
contrast, and the effect is very poor in some situations.

Therefore, Karel [23] proposed an Adaptive Histogram 
Equalization (AHE) method, which calculates the local his-
togram of image and redistributes the brightness to change 
the image contrast. That is to say, AHE is more suitable 
for improving the local contrast of the image and obtain-
ing more image details. An example of image enhancement 

based on histogram equalization is shown in Fig. 3. Obvi-
ously, AHE is better than HE in enhancing the contrast of 
local details of the image, as shown by the red box in Fig. 3.

2.1.2  Local Histogram Equalization

Traditional histogram equalization(HE) techniques usually 
cause gray level overlap, local area detail reduction, obvious 
block effect, blurred background and target contours, etc. In 
order to preserve the brightness characteristics of the image 
and better enhance the local details of the image, many 
scholars have begun to devote themselves to the research of 
local histogram equalization(LHE) algorithms [4, 24–26]. 
A typical algorithm flow of local histogram equalization is 
shown in Fig. 4. Our detailed overview of local histogram 
equalization methods is as follows:

Fig. 3  Image enhancement based on histogram specification. a is original image, b and c are the enhancement results of histogram equalization 
(HE) and adaptive histogram equalization (AHE), respectively. d–f are the histograms of (a–c), respectively

Fig. 4  The algorithm flow of 
local histogram equalization
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In 2001, Kim et al. [27] proposed a partially overlapped 
sub-block histogram equalization (POSHE), which is the 
most classic local histogram equalization algorithm. POSHE 
reduces the blocking effect caused by partial equalization 
and simplifies the number of equalizations. Lamberti et al. 
[25] proposed a cascaded multistep binomial filtering his-
togram equalization (CMBFHE) method based on the 
POSHE algorithm. They eliminate the blocking effect by 
constructing a cascaded filter. Specifically, the efficiency 
of the algorithm is much higher than POSHE algorithm, 
and the computational complexity is significantly reduced. 
In addition, a non-overlapped sub-blocks and local histo-
gram projection (NOSHP) is presented by Liu et al. [26]. 
In their researches, the original image first is divided into 
lots of non-overlapping sub-blocks, and then histogram pro-
jection (HP) is performed respectively. Subsequently, each 
sub-block is related to its adjacent three sub-blocks with a 
certain weight, so that the overall image and local details can 
be enhanced. In recent years, Wang et al. [24] proposed adja-
cent-blocks-based modification for local histogram equali-
zation (ABMHE), which divides the image into active area, 
inactive area and general area in advance according to the 
ratio of the value of the image gradient value, so that local 
areas in the image can be selected in a targeted manner. The 
detail enhancement effect of ABMHE algorithm is better 
than that of POSHE algorithm, but it needs to increase the 
prior calculation process of image area.

In summary, the local histogram method performs local 
equalization processing for different spatial location regions, 
and fully takes into account the local information of the 
image. Although the local details of the image enhance-
ment method based on local histogram equalization will 
become richer, the average brightness will usually be greatly 
affected.

2.1.3  Histogram Frequency Weighting

The histogram frequency weighting technique considers the 
relationship between histogram equalization and image gray-
scale frequency. Specifically, the desired enhancement effect 
is achieved by adjusting the original frequency of image. 
In recent years, classic image enhancement methods based 
on histogram frequency weighting [28–30] have emerged. 
Specifically, the details are as follows:

WTHE [29] is the most classic histogram frequency 
weighting method. It modifies the histogram by weighting 
and thresholding to achieve contrast enhancement. Specifi-
cally, WTHE sets two high and low thresholds. For high-
frequency gray scales and low-frequency gray scales, the 
frequency is reduced, and for the gray scales in between, the 
frequency value is increased by gamma correction, and the 
total frequency is still 1. The enhanced result obtained by 
equalizing in this way is much better than the traditional HE 

algorithm. However, it causes artifacts on some images with 
slope histogram peaks [31]. In 2011, Yun et al. [32] pro-
posed a contrast enhancement method using a weighted his-
togram equalization (WHE), which weights the gray value of 
the HE result and the current gray value setting ratio to get 
the final result, so that the HE result only occupies a certain 
proportion. Similar to WHE, Wong et al. [30] performed 
histogram equalization with maximum intensity coverage. 
In recent years, researchers have employed the gamma func-
tion to modify the existing cumulative distribution function 
and implement the histogram frequency weighting technique 
[33, 34].

Finally, in order to show the image enhancement effects 
of different histogram modification methods, some examples 
of image enhancement are shown in Fig. 5.

2.1.4  Other Histogram Modification Based Methods

In this paper, considering the limitation of space, we only 
summarize a few main parts of the method of histogram 
modification. There are many other image enhancement 
methods based on histogram modification that have not been 
listed, such as double histogram equalization, dynamic sub-
histogram equalization, transform domain equalization and 
histogram clipping. Here we briefly summarize.

Double histogram equalization is to decompose the 
original histogram into two histograms, and then equalize 
the two histograms separately. Typical methods are bright-
ness preserving bi-histogram equalization [35] (BBHE), 
dualistic sub-image histogram equalization [4](DSIHE), 
minimum mean brightness error bi-histogram equalization 
[36] (MMBEBHE). In recently years, the double histo-
gram equalization technology combines the ideas of image 
analysis, such as the local equalization of the background 
area, target area, texture area, and smooth area [37, 38]. The 
dynamic histogram equalization takes into account the curve 
distribution of the histogram, and then selects the appropri-
ate area for equalization. Typical methods are DHE [39] and 
BPDHE [40]. In addition, there are also transform domain 
histogram equalization [41–43] and histogram clipping 
[44–46], etc.

2.2  Retinex‑Based Enhancement

The Retinex theory was proposed by Land et al. [47] in 
1968, which is based on the principle of retinal imaging 
to simulate the human visual system (HVS). In this theory, 
it is assumed that image lightness depends on illumination 
and reflectance. The Retinex algorithm [48] was proposed 
based on the fact that when the human visual system judges 
the true color of an image, it is hardly disturbed by light. In 
this section, we elaborate the contents of the Retinex model 
as follows:
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2.2.1  Basic Retinex Algorithm

According to Land et al. [47–49], color vision is not deter-
mined by the intensity of visible light irradiated to the human 
eye, but the inherent reflectivity of the surface of the object. 
The human eye can filter out the influence of light in some way 
and directly obtain the reflectivity of the surface of the object 
to determine colour. Therefore, the formation of a low-light 
image can be described as follows:

where L(x, y) is the original image, R(x, y) is the reflection 
image, B(x, y) is the illuminance image and (x, y) is the pixel 
coordinates.

Generally, Retinex performs image processing based on two 
methods: one is to divide the color image into three RGB chan-
nels and the Retinex algorithm is applied to each channel to 
solve the color shift problem. The other is to convert the image 
to a brightness channel in the color model (such as HSV color 
model, CIELuv color model) and its brightness channel is pro-
cessed separately to solve the problem of uneven illumination.

2.2.2  Path‑Based Retinex Algorithm

The path-based Retinex algorithm [50] is the most basic 
Retinex model. Its basic idea is to use the local brightest point 

(3)L(x, y) = R(x, y) ⋅ B(x, y)

in the path-White Patch [51] (WP) to calculate the relative 
brightness of adjacent pixels in the path to obtain the reflec-
tion component. Given a normalized input image L(x), a path 
can be selected from a certain point y to the target point x in 
the image. Assume that the brightness values of two adjacent 
pixels on the path are S(xk) and S(xk+1) respectively. Then the 
relative brightness value at x can be obtained along this path:

where n is the number of pixels on the path and �� is thresh-
old function. In order to enhance the robustness of the algo-
rithm, the relative pixel brightness of x at multiple paths can 
be expressed as:

where N is the number of paths. In 2005, Provenzi et al. [52] 
proved that the threshold mechanism has very little contri-
bution to the model algorithm, so (5) can be simplified as:

(4)R∧(x) =

n−1∏
m=1

��

(
Sm+1

Sm

)

(5)R(x) =
1

N

N∑
k=1

R∧
k
(x) =

1

N

N∑
k=1

nk−1∏
mk=1

��

(
Smk+1

Smk

)

(6)R(x) =
1

N

N∑
k=1

nk−1∏
mk=1

(
Smk+1

Smk

)

Fig. 5  Image enhance-
ment based on histogram 
modification.a is the original 
image. b, c and d are the 
enhanced results of POSHE 
[27], WTHE [29] and AGCWD 
[33], respectively
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For the path-based Retinex algorithm, the researchers have 
focused on the selection of the pixel path, and lots of related 
work has gradually emerged. Marini et al. [53] used a ran-
dom midpoint displacement method so that the path cho-
sen is close to Brownian motion. Cooper et al. [54] used a 
double helix method to select the path. Their method has 
achieved good results in reducing noise. However, since 
the sampling method of the path is one-dimensional and 
depends on the direction information, rather than the neigh-
borhood information, the processed image is prone to appear 
halo, artifacts, etc [55–57]. In order to solver this problems, 
therefore, Provenzi et al. [58] proposed a two-dimensional 
Random Spay Retinex (RSR). In the work of Provenzi et al. 
[58], the path method is designed to scatter points in a two-
dimensional circle, and the density of the circular scatter 
points at the center x distance r is controlled by the density 
function. The algorithm is described as follows:

where Pk(x) indicates the area of the k-th spot, L(x) is the 
input image. Based on the work of Provenzi et  al., the 
researchers have begun to improve the algorithm, such as 
the LRSR [59] (Light random sprays Retinex) model and 
SLRMSR [60] (Smart light random memory sprays Retinex) 
model proposed by Banic and Loncaric. In addition, Ber-
talmio et al. [61] proposed a kernel-based Retinex model, 
which replace the two-dimensional spay process with a more 
efficient kernel.

Path-based Retinex algorithm can effectively improve 
the image contrast. However, due to the uncertainty of its 
initial position, end position and path selection, it is easy to 
introduce undesirable noise and affect the accuracy of illu-
mination estimation. Besides, the computational complexity 
is high, so that it is inconvenient to apply in practice, and 
it is difficult to obtain high-quality pictures with high color 
fidelity and good visual effects.

2.2.3  Retinex Algorithm Based on Center/Surround

The Retinex center/surround model was first proposed by 
Land [62], and its core idea is to estimate the illuminance 
component with a Gaussian kernel function. According to 
Land [62], it is considered that the Retinex result of a certain 
point of the image should be the ratio of the luminous inten-
sity of that point to the average luminous intensity of the 
adjacent positions. In addition, the Mach zone phenomenon 
is explained through experiments and the rationality of the 
method is established. Typical Retinex center/surround mod-
els include single-scale Retinex (SSR) [9] algorithm, multi-
scale Retinex (MSR) [63] algorithm and multi-scale Retinex 
with color restoration factor (MSRCR) [11] algorithm.

(7)R(x) =
1

N

N∑
k=1

L(x)

max
{
L(i), i ∈ Pk(x)

}

According to [9], SSR model can be described as:

where Ii is the image distributed in the i-th color band, 
Ri(x, y) is the enhancement result, * means convolution 
operation, F(x, y) represents the convolution kernel func-
tion and the formula is as follows:

where k needs to satisfy ∬ F(x, y)dxdy = 1 . � represents 
kernel parameter, which can determine the enhancement 
effect of image. Specially, the larger (smaller) � is, the richer 
(weaker) the image detail information will be, and the lower 
(higher) the color fidelity will be.

The enhancement effect of the SSR model is closely 
related to the size of the Gaussian kernel. For a grayscale 
image, a small Gaussian kernel can increase the brightness 
of the dark parts of the image, but it may cause excessive 
compensation and make the dynamic range of the image too 
small, ie., ”halo” phenomenon. A large Gaussian kernel can 
increase the dynamic range of the image, but may make the 
model lose its local characteristics, and the shadow of the 
image cannot be compensated. Therefore, Rahman et al. [63] 
proposed the MSR algorithm. The basic idea of the algo-
rithm is to sum multiple Gaussian kernel scale parameters 
by weight and its expression is as follows:

where Fm(x, y) is the filter kernel function, and the scale and 
the total number of scales are �m and N respectively. �m is 
the weighting factor corresponding to the m-th parameter, 
which satisfies 

∑
�m = 1.

In order to reduce the color cast and restore the true color 
of the image, a multi-scale Retinex algorithm with color 
restoration factor(MSRCR) [10, 11, 64] was proposed. The 
model algorithm is expressed as follows:

where ℵ is the enhanced result of image, ci(x, y) is the color 
restoration factor and its expression is as follows:

where � and � are the gain factor and offset that affect the 
color recovery of the image, and both are constant, Ii is the 
image distributed in the i-th color band.

(8)Ri(x, y) = log Ii(x, y) − log
[
F(x, y) ∗ Ii(x, y)

]

(9)F(x, y) = k ⋅ exp

(
−
x2 + y2

2�2

)

(10)
ℜm(x, y) =

N∑
n=1

�m

[
log Im(x, y) − log

(
Fm(x, y) ∗ Im(x, y)

)]

(11)ℵ = ci(x, y) ⋅ℜm(x, y)

(12)ci(x, y) = � ⋅ log

⎛⎜⎜⎝
� ⋅

Ii(x, y)∑
i

Ii(x, y)

⎞⎟⎟⎠
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Wang and Luo [65] improved Jobson’s [9] method and 
proposed a multi-layer image enhancement model. Although 
the Retinex algorithms based on center/surround have a 
good effect in terms of color fidelity, the time complexity is 
high, the halo phenomenon is obvious and image distortion 
is inevitable. Some examples of Retinex algorithm enhance-
ment based on center/surround are shown in Fig. 6. From 
Fig. 6, we can see that the center/surround-based Retinex 
algorithm can effectively enhance the contrast of the image. 
However, the parameter settings in the algorithm have limi-
tations, resulting in uncertainty in the contrast, chroma, and 
clarity of the enhanced image, so the enhancement effect is 
not ideal. Specially, the SSR algorithm can slightly improve 
the color of the sky, but the overall contrast is reduced, 
and the halo phenomenon is more serious. in Fig. 6f, the 
MSRCR algorithm has a color factor, and the color is obvi-
ously better than that of the MSR algorithm in Fig. 6e. With 
the in-depth research of the Retinex algorithm by scholars, 
especially for the two major defects of color distortion and 
halo in the traditional Retinex algorithm, a large number of 
improved algorithms have been proposed.

2.2.4  Partial Differential Equations(PDE) model

As a matter of fact, the basic Retinex algorithm is a calcula-
tion theory of color vision, and its details are not described 
mathematically [66]. In 1974, Horn et al. [67] simplified the 
Retinex model for the first time based on partial differential 
equations (PDE). For (3), they separated the illumination 

component B(x, y) and the reflection component R(x, y) from 
L(x, y) and constructed the partial differential equations. 
Take the logarithm of both sides of (3) to get:

w h e r e  L(x, y) = log L(x, y)  ,  R(x, y) = logR(x, y)  , 
B(x, y) = logB(x, y) . Then, from (13) we can get:

where � is Laplacian. In addition, the following algorithm 
can be defined as:

According to Horn et al. [67], under the premise of uniform 
illumination, the illumination map B(x, y) is smooth every-
where, and its partial derivative is a very small value. Thus, 
we get ��(�L(x, y)) ≈ �R(x, y) . Finally, its Poisson equation 
is as follows:

Horn first proposed to use an iterative strategy to solve it, 
but this is not the optimal method [56]. Blake et al. [68–70] 
improved Horn’s method by using a gradient method. Morel 
et al. [71, 72] derived a similar Poisson equation based on 
the path-based Retinex model. In addition, they proved that 
the Retinex model can be characterized as a discrete Poisson 

(13)L(x, y) = R(x, y) + B(x, y)

(14)�L(x, y) = �R(x, y) + �B(x, y)

(15)𝛿𝜀(𝛥L(x, y)) =

{
𝛥L(x, y), |𝛥L(x, y)| > 𝜀

0, else

(16)�
∧

R(x, y) = ��(�L(x, y))

Fig. 6  Some examples of Retinex algorithm enhancement based on center/surround.a is the original image. b–f are the enhanced results of SSR 
with � = 15 [9], SSR with � = 80 , SSR with � = 250 , MSR(�

1
= 15 , �

2
= 80 , �

3
= 250 ) [63] and MSRCR [11], respectively
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equation with Neumann boundary conditions and expressed 
as follows:

where �d and �d represent the discrete Laplace operator and 
discrete partial differential symbols respectively. It can be 
seen that (17) and (16) are equivalent without considering 
the threshold function �� . Ma et al. [73] analyzed Poisson 
equation (17) in detail and concluded that the solution can 
be regarded as an optimization problem of L2 norm, that is, 
L2-Retinex. Then,

Similarly, they also proposed a L1-Retinex model [74], 
which is expressed as follows:

In summary, the PDE model constructs partial differen-
tial equations based on some basic assumptions of Retinex 
theory, and its description is more accurate than the path-
model. In addition, the PDE model has fewer parameters and 
the results obtained are more stable.

2.2.5  Retinex Models Based on Variational Methods

In image enhancement, in order to effectively eliminate 
the halo, scholars proposed the Retinex algorithm based 
on the variational framework, also known as the Retinex-
like model. Classical variational models usually include 
two types: the HVS-based variational model and the Horn 
physical prior variational model. 

A. The HVS-based Variational Model
  Palmaamestoy et al. [75] first proposed the Retinex-

like variational model based on HVS. In their method, 
the subject model is described as: 

 where E�(I) is defined as the color correction energy 
functionl, D(I) is the dispersion term and C�(I) is the 
contrast term. The global item D(I) is used to control the 
final generated image and satisfies the GW (Gray world) 
assumption [76]. Minimizing C�(I) can enhance the 
local contrast of the image, which has certain character-
istics of the Retinex model. In particular, Palmaamestoy 
choose the dispersion energy as the global term D(I). 

(17)

⎧
⎪⎨⎪⎩

−�dR(x, y) =
∑

x0∈N4(x,y)

��(L(x, y) − L(x0, y0)), x ∈ �

�dR(x,y)

�n
= 0, x ∈ ��

(18)
∧

R = argmin
R

{‖‖�R − ��(�L(x, y)
‖‖22
}

(19)
∧

R = argmin
R

{‖‖�R − ��(�L(x, y)
‖‖1
}

(20)E�(I) = D(I) + C�(I)

The final optimized result is close to the original image 
I0 and satisfies the GW assumption, that is, the final 
result is close to 1/2. The entropic dispersion term D(I) 
is defined as follows: 

where 𝛼, 𝛽 > 0 . In addition, the contrast term is 
described as follows: 

 where �(x, y) is the distance function, and its value 
decreases monotonously with the increase of the dis-
tance between pixels. �(x, y) can be used to achieve 
”local” characteristics and f represents the gamma cor-
rection function. The Retinex-like model has the disad-
vantage of a large calculation. Therefore, Provenzi et al. 
[77] combined with wavelet based on Palmaamestoy 
et  al.’s variational model to reduce the amount of 
calculation.

B. Horn’s Physical Prior based Retinex
  Kimmel et al. [78] believed that the spatial variation 

of the illumination component is smooth. According to 
the priori assumption, based on Horn’s work [67], they 
proposed a variational form of Retinex and the penalty 
functional is as follows: 

 where � is the support of the image, �� is the partial 
differential of the image, etc., the boundary, and →n is 
the normal to the boundary. � , � are non-negative real 
parameters and are used to control the importance of 
the corresponding items. The first penalty term |∇B|2 
ensures that the final illumination component is smooth, 
and the second term (B − L)2 is a fidelity term, which 
ensure that the difference between B and L is not 
too large. The third item |∇(B − L)|2 is equivalent to 
|∇(R)|2 , and its function is to obtain the spatial distri-
bution of the reflected components as smooth as pos-
sible, so as to obtain a better visual effect. Since then, 
some novel models have been constructed based on the 
Kimmel et al.’s model by modifying or adding some 
constraints [79–81], which reflects the flexibility of 
the variational method. Ma and Osher [81] introduced 

(21)

D�
�,�

(I) ∶= �
∑
x∈Υ

(
1

2
log

1

2I(x)
−
(
1

2
− I(x)

))

+�
∑
x∈Υ

(
I0(x) log

I0(x)

I(x)
−
(
I0(x) − I(x)

))

(22)Cf
�
(I) ∶=

1

4

∑
x∈Υ

∑
y∈Υ

�(x, y)f

(
min(I(x), I(y))

max(I(x), I(y))

)

(23)

Minimize ∶ F[B] =�
���∇B�2 + �(B − L)2 + ��∇(B − L)�2�dxdy
Subjectto ∶ B ≥ Land⟨∇B,→n⟩ = 0on��,



A Comprehensive Overview of Image Enhancement Techniques  

1 3

a total variation (TV) noise suppression model [82] to 
estimate the image illumination component. Their model 
is described as follows: 

 where ‖∇B‖
2
 is the TV term, which is used to obtain a 

piecewise smooth reflection map, t is the weight coef-
ficient. Ng and Wang [80] added fidelity items based on 
Ma and Osher’s works and obtain: 

 where ‖B −R − L‖2 is the fidelity term, � and � are 
the weight coefficients. The variational model based on 
physical prior conditions is relatively flexible, and dif-
ferent constraints can be easily added to obtain better 
results.

C. Other Retinex-like Models
  In recent years, a large number of Retinex-like models 

have been also emerging. Fu et al. [83] proposed a proba-
bilistic model for image enhancement (PIE). A Maxi-
mum a Posteriori (MAP) was used in Fu et al.’s method 
to estimate reflectance and illumination in the linear 
domain. Finally, to effectively decompose the illumina-
tion and reflectivity, the MAP problem is transformed 
into an energy minimization problem. The Alternating 
Direction Multiplier Method (ADMM) [84] is used to 
simultaneously estimate the illumination and reflectance 
components. In particular, PIE is a processing algorithm 
based on linear space. Compared with the logarithmic 
domain processing algorithm, PIE has the advantages 
of preserving details well and avoiding over-smooth 
reflection components. In 2016, related work of [85] 
proposed a weighted variational model for simultane-
ous reflectance and illumination estimation (SRIE) with 
more details. In their method, noise can be suppressed to 
a certain extent. However, the unconstrained assumption 
of isotropy may destroy the illumination component.

  Guo et al. [86] proposed a low-light image enhance-
ment (LIME) method via illumination map estimation. 
Specially, a structure prior is imposed to refine the illu-
mination map. On the basis of Max-RGB [47], they con-
sidered the defect that it can only boost global illumina-
tion, and introduced the following initial estimation: 

(24)
Minimize ∶ F[B] =

∬
�

1

2

�‖∇B‖2
2
+ t‖∇R‖2

�
dxdy

(25)

Minimize ∶ F[B] =

∬
�

�
�

2
‖∇B‖2

2
+ ‖∇R‖2 + �

2
‖B −R − L‖2

�
dxdy

(26)
∧

B(x, y) ← max
c∈{R,G,B}

Lc(x, y)

 According to Guo et al.’s researches, 
∧

B(x, y) in (26) 
guarantees that the recovery will not reach satura-
tion. Although LIME has a good effect on low-light 
image enhancement, it can’t solve the problem of over-
enhancement of illumination, because that it adds to the 
noise amplification.  In recent years, related works in 
large numbers have taken noise as an important factor 
of Retinex-like, and proposed some low-light image 
enhancement models. Li et al. [87] proposed a Retinex 
model with a definite injected noise term, and for the 
first time tried to estimate the noise map based on the 
model. Ren et al. [88] proposed a Low-Rank Regular-
ized Retinex Model (LR3M). They injected low-rank 
priors into the Retinex decomposition process for the 
first time and suppressed noise in the reflection map. 
Unlike the method of Li et al. [87], LR3M is full aware 
of noise and performs adaptive processing throughout 
the enhancement process. Recently, Xu et al. [89] pro-
posed a structure and texture aware Retinex (STAR) 
model. In their method, STAR model is solved based 
on an alternating optimization algorithm. In addition, 
each sub-problem is transformed into a vectorized least 
squares regression, with closed-form solutions. Tang 
et al. [90] proposed a new prior constraint, ie., local flat-
ness. Different from the previous works, they selectively 
add local flatness to the illumination by calculating the 
deviation between the estimated illumination map and 
the reference map.

Finally, some examples of Retinex algorithm enhance-
ment based on variational methods for low-light image 
enhancement are shown in Fig. 7. Intuitively, the overall 
contrast enhancement of PIE [83] and SRIE [85] is not sat-
isfactory. LIME [86] does not preserve the details of image 
well.

2.3  Visual Cortex Neural Network Based 
Enhancement

The visual cortex neural networks were proposed to simulate 
the mammalian visual cortex system. In recent years, a large 
number of visual cortex neural network models have been 
developed. Among them, Eckhorn model [91, 92], Parodi 
model [93] and Rybak model [94] are the most representative 
visual cortex models. Further, the pulse coupled neural network 
(PCNN) evolved from the Eckhorn model has been extensively 
and deeply studied by researchers. In this section, we mainly 
focus on two classic visual cortex neural networks: PCNN and 
Rybak model, to review image enhancement methods.
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2.3.1  Basic PCNN Model and Image Enhancement

PCNN, the third generation neural network, was inspired by 
the visual cortex of cats and evolved from the Eckhorn model. 
As a single layer neural network that does not require any 
training [95], PCNN has been widely applied in image pro-
cessing [96], based on its biological background mechanism. 
The basic PCNN is elaborated in Ranganath et al.’s work [96]. 
Furthermore, Lindblad et al [97] gave the discrete expression 
of the basic PCNN model as follows:

Obviously, a basic PCNN neuron N(i, j) embedded in a 2-D 
array is mainly composed of two important parts: feedback 
input Fij and linking input Lij . Neighboring neurons com-
municate with each other through the two synaptic weights 
Milkl and Wilkl respectively. In addition, the previous state 
altered by the attenuation factors e−�f  and e−�l are also con-
tained in the current feedback input Fij and linking input Lij . 
The input Sij is only included in the feedback input Fij . The 
feedback input Fij and linking input Lij are combined with 
a link factor � to obtain an internal activity Uij . Then, the 
output Yij is obtained through the comparison of internal 
activity Uij and dynamic threshold Eij . Finally, the activa-
tion state of the neuron is determined, that is, the output 
Yij is 1 (activated) or 0 (not activated). The threshold Eij is 
dynamic, because when the neuron is activated, the thresh-
old would increase by the amplification item VE . Otherwise, 
the dynamic threshold would decay by the factor e−�e until 
the neuron activates again. The parameters n is the discrete 

(27)Fij[n] =e
−�f Fij[n - 1] + VF

∑
kl

MilklYkl[n − 1] + Sij

(28)Lij[n] =e
−�lLij[n - 1] + VL

∑
kl

WilklYkl[n − 1]

(29)Uij[n] =Fij[n]
(
1 + �Lij[n]

)

(30)Yij[n] =

{
1, if Uij[n] > Eij[n]

0, else

(31)Eij[n] =e
−�eEij[n - 1] + VEYij[n]

iteration time of the neuron, VF and VL are the amplitudes 
of feedback input Fij and linking input Lij respectively, �f  , 
�l and �e are the exponential decay coefficients of feedback 
input, linking input and dynamic threshold, respectively.

In 2003, Zhang and Lu [98] studied the relationship 
between PCNN and human visual characteristics and 
applied it to image enhancement. Early literature [99] 
shows that the brightness perceived by the human visual 
system is different from the brightness of the light source, 
and it has a logarithmic relationship with the illuminance 
obtained by the human eye. In addition, the brightness 
perceived by human is not a simple function of light inten-
sity, such as the Mach band effect [99, 100]. The logarith-
mic transformation characteristic of the image is shown 
in Fig. 8. The horizontal axis x is the pixel intensity of 
the image, where Dark is the darkest gray scale value of 
the image and Bri is the brightest gray scale value. In 
Zhang and Lu’s work, the enhanced image is defined as the 
excited grayscale image perceived by PCNN as follows:

where EnIij is the perceptual excitation value of the (i, 
j )-th pixel in the enhanced image, ln(∗) is logarithmic 
transformation and n is the activated times (n=1, 2, 3, … 
) of PCNN. For the basic PCNN model, the parameters 
are set as follows:

That is, the synapse weight between neurons is defined as 
the inverse of the square of the Euclidean distance [96, 101, 
102]. The threshold exponential decay coefficient �e is a 
small value and is set to 0.001. In addition, (27) is usually 
simplified to Fij[n] = Sij . VL = 1.

Based on this theory, many scholars have proposed image 
enhancement algorithms for specific applications based on 
PCNN [103–106]. In summary, the image enhancement 
algorithm based on PCNN can be described as follows: 

(32)EnIij = In(Bri) − (n − 1)�e

(33)Mijkl = Wijkl =
1

(i − k)2 + (j − l)2
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Based on the capture characteristics and synchronous 
oscillation characteristics of PCNN, Li et al. [107–109] 
combined genetic algorithm and Otsu theory, etc., propos-
ing many image enhancement algorithms with PCNN noise 

reduction characteristics. In addition, Qi et al. [110] pro-
posed a feedback pulse-coupled neural network (FPCNN) 
and applied it to image enhancement. In their work, the input 
image is first denoised by PCNN, and then segmented by 
PCNN, and the continuous output of multiple binary images 
is logically ”OR” and ”exclusive or (EOR)” operations to 
obtain image texture, edge and other information. Finally, 
these information is combined with the original image to 
form an enhanced image. In 2019, Nie et al. [111] proposed 
to employ the classical visual receptive field (CVRF), 
improving pulse coupled neural network (PCNN) and con-
ducted a contrast enhancement of MRI images.

2.3.2  Time Matrix of PCNN

In addition to the human eye’s method of perceiving bright-
ness, namely (32), the time matrix is also one of the most 
important tools for image enhancement. The time matrix is 
defined to record the first firing time of each PCNN neuron 
[112]. In 2009, Zhan et al. [113] found that the sensitivity 
of the time matrix is inversely related to the intensity of the 
image pixels.

A neuron fires when its membrane potential is greater 
than the threshold. Then, the threshold would decay expo-
nentially from the first predetermined Eij(0) by (31). That is, 
the neuron (i, j) is firing at the time Tij when

(34)Uij

(
Tij
)
> Eij

(
Tij
)
= eTijEij(0)

Fig. 7  Some examples of Retinex algorithm enhancement based on variational methods.a is the original image. b–f are the enhanced results of 
PIE [83], SRIE [85], LIME [86], Li et al. [87] and Tang et al. [90] respectively
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Therefore, the first firing time Tij can be obtained from (34),

From (35) we get the analytical solution of the time matrix 
Tij , but Tij still cannot be obtained because (35) is an implicit 
function. In implementation, the time matrix can be obtained 
according to the following formula [114]:

The premise that the time matrix can be obtained is that the 
threshold amplitude factor VE must be large enough to ensure 
that the neuron fires only once. Therefore, the time matrix of 
PCNN can be obtained by the following Algorithm 2. 

2.3.3  Spiking Cortical Model (SCM)

The spiking cortical model (SCM) is a variant model of 
PCNN, which was proposed by Zhan et al. [113] in 2009. It 
consists of a leakage integrator, linking input and feedback 
input as follows

The dynamic threshold item directly inherits the settings of 
the basic PCNN model and is expressed as:

Furthermore, the sigmoid activation function is employed 
as the ignition condition of SCM neurons and is described 
as follows,

(35)Tij = In
Uij

(
Tij
)

Eij(0)

(36)Tij(n) = Tij(n − 1) + nYij(n)

(37)Uij[n] = fUij[n − 1] + Sij

∑
kl

WijklYkl[n − 1] + Sij

(38)Eij[n] = gEij[n − 1] + hYij[n − 1]

As we can see, SCM directly combines the linking term and 
the feedback term into an single equation to form an internal 
activity item Uij.

2.3.4  Feature‑Linking Model (FLM)

Compared with SCM, the feature-linking model (FLM) 
retains feeding wave and linking wave, while reducing 
parameters. In addition, an inhibition-linking item is con-
tained in FLM. According to [115], FLM can be described 
as follows,

where f, g denote the attenuation time constant and d is a 
positive constant for the globally inhibitory.

2.3.5  Improved PCNN Based Enhancement

As mentioned above, based on the mechanism of human 
visual characteristics, the time matrix of PCNN can be 
used as an image enhancement tool. In implementation, 
the enhancement image can be obtained by the negative of 
the time matrix. Generally, image enhancement algorithms 
based on time matrix can be summarized as follows: 

(39)

Yij[n] =

{
1, 1∕(1 + exp(−𝛾(Uij[n] − Eij[n]))) > 0.5

0, else

(40)

Uij[n] =fUij[n − 1] +

(∑
kl

MklYkl[n − 1] + Sij

)

×

(
1 + 𝛽

(∑
kl

MklYkl[n − 1] − d

))

Eij[n] =gEij[n − 1] + VEYij[n − 1]

Yij[n] =

{
1, if Uij[n] > Eij[n]

0, else

Fig. 8  Logarithmic transformation properties of image
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Step 1: Normalize the image intensity I by: 

 where min(I) is the minimum value of I and max(I) is the 
maximum value of I. � is a small positive value, which is 
just to avoid zero value in the image.
Step 2: Obtain the time matrix Tij by Algorithm 2.
Step 3: According to the definition of the time matrix, it 
can be found that the neuron corresponding to the pixels 
with higher intensity fires earlier than the neuron with 
a low stimulation. In other words, the neural network 
receives the higher intensity pixel input in the image and 
returns a smaller value in the time matrix. Thus, the val-
ues in the time matrix need to be reversed. Zhan et al. 
[115] gave the transformation function as follows: 

Step 4: Normalize Tij and round to the nearest integer, 
obtaining the enhanced image J  . 

In addition to the above enhancement algorithm, Zhan 
et al. [116] proposed a linking synaptic computation net-
work (LSCN) and applied it to image enhancement. They 
considered the gamma band oscillations in visual cortical 
neurons as the key role to improve the model.

2.4  Rybak Model

Rybak model was derived from the visual cortex system 
of guinea pigs, and its core structure is the iso-orientation 
domain model. According to [94, 117], basic Rybak model 
is proposed based on the screen-type neuron-like structure 
(SNS) and is described as follows:

where ⊗ is the convolution operator. � denotes the time con-
stants of inertial block and h represents the threshold of sum-
marizing element. Obviously, the neuron (i, j) receives 
stimulus input Sij to form a linking input block XS

ij
 . FS is a 

local connection of ”on-center/off-surround” and FI is a 
local oriented connection, which exist in the visual cortex 

(41)S =
I −min(I)

max(I) −min(I)
+ �

(42)Tij = max(Tij) + 1 − Tij

(43)J =

⌊
255

T −min(T)

max(T) −min(T)
+ 0.5

⌋

(44)XS
ij
=FS ⊗

‖‖‖Sij
‖‖‖

(45)XI
ij
=FI ⊗

‖‖‖Zij
‖‖‖

(46)Zij =f

{∑
XS
ij
− (

1

�
)XI

ij
− h

}

neural networks with a large number of different resolutions. 
In (46), f is a nonlinear threshold function. It can be seen 
from (44) to (46), Rybak model mainly consists of two parts: 
feeding input Xij and output Zij.The algorithmic structure of 
SNS is shown in Fig. 9.

In Rybak’s theory, FS is defined as a local connection. 
The input receptive field FS can enhance the sharp edge 
information of images [118] and connection receptive field 
FI with different forms of orientation connection has a key 
role in the orientation tuning response of image processing.

2.4.1  Rybak Neural Network (RYNN)

Based on Rybak’s theory, Qi et al. [119] proposed a RYNN 
model by introducing the redefined threshold segmentation 
module and a nonlinear generator. RYNN’s discrete expres-
sions as follows:

where Eij is dynamic threshold, which is similar as PCNN. f 
is a nonlinear generator and n is the number of iterations. 
Other parameters have the same meaning as the basic Rybak 
model. In Qi et al.’s work, input receptive field FS

ijkl
 is refined 

as follows:

where a1 and a2 are the distribution sensitivity. c1 and c2 
are the spatial distribution of the excitement intensity and 
inhibitory intensity of the receptive field respectively. The 
receptive field FS(x, y) has been proved to have multi-scale 
adjustable characteristic, which is sensitive to the detailed 
texture information of the image.

2.4.2  Heterogeneous Rybak neural network (HRYNN)

As we know, Rybak neural networks are analogous to the com-
ponents of actual neurons. However, lots of researches [120, 
121] have shown that the visual cortex system of mammals is 
heterogeneous. Motivated by this fact, Qi et al. [119] proposed 
a heterogeneous Rybak neural network (HRYNN) as shown 
in Fig. 10.

In Qi et al.’s work, HRYNN is described as follows:

(47)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Eij[n] = e−�eEij[n − 1] + VEZij[n − 1]

XIij[n] = �
∑
kl

FI
ijkl
Z[n − 1] + Sij

XSij[n] = VS

∑
kl

FS
ijkl
Sij

Pij[n] = XSij[n] −
1

�
XIij[n] + h

Zij(n) = f (P,E)

(48)
FS(x, y) = a1

√
x2 + y2exp(−

x2 + y2

c1
)

− a2

√
x2 + y2 exp(−

x2 + y2

c2
)
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where m denotes m-th RYNN subcell. It can be seen that 
the output of HRYNN represents the multi-region process-
ing of the image. Furthermore, the setting of parameters of 
HRYNN is described as follows [119]:

As shown in Fig. 10, L12 and L23 are weak connections 
among different sub-cells of HRYNN. In the work of Qi 
et al., the linking item L12 of RYNN1 and RYNN2 is set as 
follows:

where �12 is the local linking item between RYNN1 and 
RYNN2: �12 = max(I)∕mean(I) . Similarly, L23 is set to:

Where �23 is the local linking item between RYNN2 and 
RYNN3: �23 = mean(I)∕max(I) . I is the input image. In 
addition, W(1, 2) and W(2, 3) are weak linking synaptic 
weight and set as follows:

(49)XSij[n] = VS

∑
kl

FS
ijkl
Sij

(50)
XI
m
[n] =�

∑
kl

FI
m,kl

Zm[n − 1]

+ Sij (m = 1, 2, 3)

(51)
Em,ij[n] = e−�eEm,ij[n − 1]

+ VEZm,ij[n − 1] (m = 1, 2, 3)

(52)P1[n] = XS
ij
[n] −

1

�
XI
1
[n] + h

(53)P2[n] = XS
ij
[n] −

1

�
XI
2
[n] + h + L12

(54)P3[n] = XS
ij
[n] −

1

�
XI
3
[n] + h + L23

(55)
Zm,ij[n] =

{
km, if Pm,ij[n] > Em,ij[n − 1]

0, else

(m = 1, 2, 3)

(56)Z = Z1 + Z2 + Z3

(57)L12 = �12

∑
Wijkl(1, 2)Z1,kl(n − 1)

(58)L23 = �23

∑
Wijkl(2, 3)Z2,kl(n − 1)

(59)Wijkl(1, 2) = Wijkl(2, 3) =
1

(i − k)2 + (j − l)2

The parameter �e is the exponential decay coefficient of 
dynamic threshold E. FI

m
 (m = 1,2,3) represent the orien-

tation connection of 30◦, 90◦ and 120◦ , respectively, which 
detect input stimuli in different directions. Inaddition, 
k1 ≠ k2 ≠ k3 and k1, k2, k3 ∈ (0, 1) . 

Algorithm 3: Enhancement by HRYNN model.
Input : The gray image Sij

Output: The enhancement result Y for each
image.

1: Initial the parameters of the HRYNN model.
Calculate FS

ijkl according to (47),
calculate L12 and L23 according to (56), (57),
respectively.

2: n = 0.
3: while n < N do
4: n = n+ 1
5: update Eij by (31).
6: reapt.
7: update Pm, Zm according to (50)-(53), (54)
8: calculate Z by (54), calculate EnIij by (32).
9: Y0 = EnIij · Z

10: if any(Z (:)) = = 0
11: break;
12: end
13: end while
14: Normalize linearly to obtain Y.

 Finally, the main steps of HRYNN algorithm for image 
enhancement is shown in Algorithm 3. In addition, some 
examples of image enhancement based on PCNN, SCM, 
FLM, LSCN and HRYNN are presented in Fig. 11. We can 
see that the edge detail enhancement effect of HRYNN is 
obviously better than other methods. This is because its 
receptive field has been specially set. In particular, FLM 
causes a bad effect on image details preservation.

Fig. 9  (i, j)-th Rybak neuron-like element of the SNS
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2.5  Deep Learning Based Image Enhancement

In recent years, with the development of artificial intel-
ligence (AI) technology, deep learning has been widely 
applied in the field of image processing [122–124]. The 
supervised deep learning based image enhancement methods 
have great limitations. For each training set, a model must be 
retrained, which is not universal. Therefore, some research-
ers began to work on weakly supervised or unsupervised 
deep learning methods for low-light image enhancement. In 
this section, for low-light image enhancement, semi-super-
vised or unsupervised deep learning methods are surveyed 
in detail.

2.5.1  GAN‑Like Based Image Enhancement

Generative Adversarial Network (GAN) is a deep learn-
ing model and one of the most promising methods for 
unsupervised learning on complex distributions in recent 
years. Here we conduct a review for GAN-like based image 
enhancement.

In 2018, Ignatov et al. [125] proposed a Weakly Super-
vised Photo Enhancer (WESPE) for low-light image 
enhancement based on Generative Adversarial Network 
(GAN). In their work, the input data and output data are 
low-quality images and high-quality images, respectively. 
However, they do not need to correspond in content. In 
addition, a transitive CNN-GAN structure is used to learn 
the mapping relationship between them. Two components: 
generator G and inverse generator F are the main modules 
of the entire WEPSE model. x is the input low-end image 
and the improved image 

∼
y = G(x) is generated through G. 

A reconstructed low-end image is obtained through the 
inverse-generator F. The content loss Lcontent based on 
vgg-19 is defined between the original and reconstructed 
images x, and 

∼
x = F(

∼
y) = F◦G(x) , respectively. In addition, 

adversarial color loss Lcolor is defined to compare enhanced 

image and high-quality image. Dc and Dt are two adversarial 
discriminators, which involve the comparison of color and 
texture between the enhanced image and the high-quality 
image respectively. According to [125], Lcontent , Lcolor and 
Ltexture are defined as follows:

where �j denotes the feature map from j-th VGG-19 convo-
lutional layer. Cj , Hj and Wj are the number, height and width 
of the feature maps, respectively. A total variation (TV) loss 
is also defined to impose spatial smoothness of the gener-
ated images [126] and its expression is described as follows,

where C, H and W are dimensions of the generated image 
G(x). Finally, WESPE loss is defined as the linear weighting 
of the four component losses.

Chen et al. [127] proposed a unpaired learning method 
based on GAN. In their method, two-way generative adver-
sarial networks (GANs) with improvement are employed 
as the baseline. In addition, U-Net with global feature 
is use as the generator of GAN model and an adaptive 
weighting scheme is proposed to improve Wasserstein 
GAN (WGAN), training converges faster and better. 
Finally, to make generators better adapt to their own 
input distributions, they proposed to use the individual 
batch normalization layers in the two-way GANs model. 
Although Chen et al. [127]’s method has the advantages of 
stable performance, fast speed, and outstanding effects for 
image enhancement, it also has many potential shortcom-
ings. If the input image is very dark and contains a lot of 
noise, the noise may be amplified in the enhanced image. 
For unpaired network training, the choice of domain of 
the training set has great limitations. For the exterior 
scenes in the paper, lots of images of blue sky and sea 
were selected. If we do not choose to use, the enhanced 
images will appear blue for unknown reasons.

Jiang et al. [128] proposed an EnlightenGAN method 
for deep light enhancement. EnlightenGAN uses attention-
guided U-Net as a generator, and uses dual discriminators 
(global and local) to balance global and local low-light 
enhancement. In addition, due to the lack of ground truth, 
the paper proposes an adaptive perceptual loss including 
global and local to constrain the feature difference between 

(60)Lcontent =
1

CjHjWj

‖‖‖�j(x) − �j(
∼
x)
‖‖‖

(61)Lcolor = −
∑
i

logDc(G(x)b)

(62)Ltexture = −
∑
i

logDt(G(x)g)

(63)Ltv =
1

CHW

‖‖‖∇xG(x) + ∇yG(x)
‖‖‖

Fig. 10  The architecture of HRYNN
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the low-light input image and its enhanced image, and 
together with the adversarial loss used to train Enlighten-
GAN to form the final loss. Furthermore, Xiong et al. [129] 
proposed a full unsupervised method for real-world low-light 
image enhancement based on the two-stage GAN frame.

2.5.2  Other Weakly Supervised Methods

In addition to the unsupervised image enhancement methods 
mentioned above, In this section, we will mainly introduce 
several weakly-supervised enhancement methods for low-
light enhancement.

Yang et al. [130] proposed a semi-supervised method 
for low-light image enhancement. In their work, firstly, 
supervised learning is employed to obtain the character-
istics of reconstructed high-quality images. Then these 
characteristics are used as the intermediate variables to 
assist unsupervised training. In 2019, Shin et al. [131] pro-
posed a novel deep learning method for power-constrained 
contrast enhancement (PCCE). They constrain the power 

consumption by reducing the brightness and the perceived 
visual quality is preserved by CNN enhancement.

In summary, most of unsupervised methods usually use 
some indirect training methods, such as supervised meth-
ods to obtain high-quality image features, and then assist 
unsupervised training based on these features. In the future, 
generative adversarial network (GAN) may be widely used 
in unsupervised image enhancement. This can be better opti-
mized by combining some essential attributes of the image 
such as retinex and low rank, etc.

3  Supervised Methods

For image enhancement, supervised methods of image 
enhancement are usually trained based on paired dataset 
and achieve a good effect. In recent years, a large num-
ber of supervised enhancement methods have emerged, 
such as fully convolutional networks (FCN) [132, 133], 
reinforcement learning [134–136] and U-Net [137], etc. 

Fig. 11  Some examples of image enhancement. a is the original image. b–f are the enhancement results by PCNN, SCM, FLM, LSCN and 
HRYNN, respectively
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In this section, we mainly focus on a detailed overview 
of supervised deep learning methods for low-light image 
enhancement.

3.1  Multi‑Level Features Fusion Methods

As we know, low-quality images often exhibit low con-
trast, artifacts, and noise due to some extreme conditions. 
Based on the excellent feature extraction capabilities of 
deep convolutional neural networks, many methods for low-
brightness image enhancement based on multi-level features 
fusion have emerged. Here we will give a brief overview of 
low-brightness image enhancement methods based on multi-
level features fusion.

Gharbi et al. [138] proposed a deep bilateral learning 
based enhancement method with the idea of multi-level 
features fusion. In their work, Three main strategies are 
proposed to fuse features of different levels to effectively 
enhance low-brightness images. Firstly, most of the predic-
tions are performed under a low-resolution bilateral grid; 
Secondly, the entire neural network structure learns an 
affine transformation; Thirdly, most of the operations are 
performed at low resolution, but the loss function is finally 
established on the original resolution, in other words, the 
original resolution image can be optimized based on low 
resolution operations. In 2018, Lv et al. [139] proposed a 
multi-branch low-light enhancement network (MBLLEN). 
They employed the multiple subnets to extract different 
level features and finally conducted a multi-branch fusion, 
achieving an outstanding enhancement effect. In addition, 
Cai et  al. [140] proposed a single image enhancement 
method based on multi-exposure image fusion. However, 
if the input image is severely overexposed and the area is 
large, CNN can use little neighborhood information. Thus, 
it is difficult to synthesize these missing details. Lv et al. 
[141] designed a multi-branch fusion network guided by 
the attention map, which can perform image denoising and 
enhancement simultaneously. Zamir et al. [142] proposed a 
MIRNet model, which executes parallel resolution convolu-
tion streams to extract multi-scale features and exchanges 
information across resolution streams. Finally, attention-
based multi-scale feature aggregation is proposed for image 
enhancement. In addition, similar work was also conducted 
by Zhu et al. [143].

In conclusion, the image enhancement methods based on 
multi-level features fusion fully take into account the impor-
tance of different scale features of the image for image resto-
ration. For example, high-frequency features determine the 
preservation of the details of the image, while low-frequency 
features play a key role in preserving the naturalness of the 
image. Therefore, multi-level features fusion is an effective 
method in the enhancement of low-light images.

3.2  Retinex‑Based Deep Learning Methods

In Sect. 2.2, we have mentioned that Retinex theory plays 
an important role in image enhancement applications. The 
Retinex model is the basic theory of human visual imaging, 
and increasing researchers are beginning to work on its com-
bination with deep learning for image enhancement [144]. 
Shen et al. [145] thought that the traditional multi-scale 
Retinex (MSR) [63] algorithm can be regarded as a feedfor-
ward convolutional neural network with different Gaussian 
convolution kernels. Therefore, they proposed MSR-net to 
directly learn end-to-end enhanced mapping. MSR-net con-
sists of three modules: multi-scale logarithmic transforma-
tion, convolution difference and color restoration. In addi-
tion, the training data uses high-quality images adjusted by 
PS and corresponding synthetic low-light images (randomly 
reduced brightness, contrast, and gamma correction). The 
loss function is the F-norm square of the error matrix with 
regular terms.

In 2018, Li et al. [14] proposed a LightenNet for low light 
image enhancement, which only learns to predict the map-
ping relations between weakly illuminated image and the 
corresponding illumination map of Retinex model. Although 
their method has the advantages of easy training and short 
time-consuming, it shows great limitations in enhancing 
low-quality images with noise, because the training set only 
uses high-quality images. Wei et al. [146] proposed a deep 
Retinex-Net, including a Decom-Net for decomposition and 
an Enhance-Net for illumination adjustment. In their work, a 
low-light dataset (LOL) containing low/normal-light image 
pairs was collected. In addition, Shi et al. [147] combined 
the Retinex model and the Generative Adversarial Net-
work (GAN) to enhance low-light images. Specifically, the 
decomposition part divides the image into a illumination 
image and reflected image, and the enhancement part is used 
to generate a high-quality image.

Noise is an interference factor that must be consid-
ered in low-brightness image enhancement. Inspired by 
this fact, many scholars have proposed noise suppression 
low-brightness image enhancement methods based on the 
Retinex model. Wang et al. [148] considered that contrast 
enhancement and noise removal are coupled problems, 
proposing a novel progressive Retinex framework, which 
makes illumination and noise of low-light image be per-
ceived in a mutually reinforced manner, achieving noise 
reduction low-light enhancement results. However, Wang 
et al.’s method has a limitation. Because it only considers 
the statistical distribution of the pixel space and ignores 
the structural properties. In addition, the receptive field 
of the 1 × 1 convolution kernel is relatively small, result-
ing in no neighborhood information during convolution. 
Liang et al. [149] proposed a deep learning method for 
low-light images enhancement. Their methods particularly 
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focused on measurement noise. Specially, a neural network 
is trained to generated a set of pixel-wise operators, which 
can simultaneously predict the noise and the illumination 
layer in the bilateral space.

3.3  HDR Image Reconstruction

In general, camera sensors can only capture images with 
a limited range of lightness and a high dynamic range 
(HDR) image, in practice, is necessary. Therefore, many 
researches focus on predicting its saturated pixel value 
for the reconstruction of HDR images. In 2017, Gaberiel 
et al. [150] proposed a deep convolutional neural network 
(CNN) to predict the HDR values of images. In Gaberiel 
et al.’s work, a large dataset of HDR images is collected 
to train CNN. In particular, these datas are augmented by 
simulating the sensor saturation of a series of cameras. 
Yang et al. [151] proposed a Deep Reciprocating HDR 
Transformation (DRHT). In their work, the missing details 
in the HDR domain firstly are reconstructed. Then, the 
LDR image with the recovered details is generated by per-
forming tone mapping on the predicted HDR data. There-
fore, their method framework mainly consists of two parts: 
HDR reconstruction and tone mapping.

4  Quality Evaluation

The quality evaluation of image processing algorithms is 
essential, which involve people’s evaluation of the visual 
perception of an image. In image enhancement, an appro-
priate quality evaluation strategy plays a key role in the 
evaluation of algorithm performance. In this section, we 
will give a detailed overview of the qualitative and quan-
titative evaluation for image enhancement.

4.1  Qualitative Assessment

It is difficult to quantify an improved perception of an image. 
Therefore, it is not easy to assess image enhancement [152]. 
But in general, it is desirable to conduct both quantitative 
and qualitative assessments. Qualitative evaluation refers to 
intuitively expressing people’s visual perception of enhanced 
images, and is the most accurate evaluation method. How-
ever, subjective evaluation methods lack stability. It is often 
affected by various factors such as experimental conditions, 
the observer’s knowledge background, mood, motivation, 
and fatigue.

In this section, we will conduct a comprehensive and 
systematic experimental evaluation of image enhance-
ment methods. The methods involved mainly include the 

following representative methods: histogram equalization, 
Retinex-based enhancement and visual cortical neural net-
work. The experimental evaluation of deep learning-based 
methods will be presented in Sect. 4.2 in the form of quan-
titative comparison. In addition, due to the limitation of the 
paper length, here we only perform experimental evalua-
tions of representative methods for each image enhancement 
type. Detailed experimental settings, which can be found 
in the original papers, are missed. We compare various 
image enhancement methods on randomly selected low-
brightness test images. The evaluated approaches include 
Histogram Equalization (HE), Adaptive Histogram Equali-
zation (AHE), partially overlapped sub-block histogram 
equalization(POSHE) [27], WTHE [29] and AGCWD [33], 
SRIE [85], LIME [86], SCM [113] and HRYNN [119]. A 
example of visual comparison based on different image 
enhancement is shown in Fig. 12.

We can see from Fig. 12 that AHE and SRIE have bet-
ter performance in detail enhancement, but HE, WTHE and 
AGCWD cause serious loss of details, such as the edge of a 
teacup, etc. Obviously, HRYNN has the best detail preserva-
tion performance, as marked by red boxes. In addition, SCM 
seems to have an artifact effect and LIME cause a illumina-
tion over-enhancement, which adds to the noise amplifica-
tion. AHE and AGCWD cannot achieve satisfactory results 
in overall contrast, such as a low contrast of flowers etc.

In summary, the histogram equalization enhancement is 
based on the fact that it represents the statistical relation-
ship between each gray level in the image and the number 
of pixels that appear in the gray level, and reflects the fre-
quency of each gray level in the image. In practice, histo-
gram equalization still has certain limitations. It is usually 
necessary to consider combining a variety of simple and 
effective algorithms, or fusing other enhancement techniques 
to achieve the final enhancement effect, so comprehensive 
image enhancement technology will also become a the key 
of follow-up study. Retinex model assumes that image light-
ness depends on illumination and re ectance. Illumination 
is the radiant flux received by the scene, and reflectivity is 
the effectiveness of reflected radiant energy. In addition, the 
perception of color has a strong correlation with reflectivity 
[47]. Finally, the visual cortex neural network is based on 
the principle of human visual characteristics and has great 
potential in the field of image enhancement.

4.2  Quantitative Assessment

The quantitative assessment method adopts the error 
between the processed image and the original image to 
measure the quality of the processed image. Specifically, the 
greater the grayscale difference from the standard image, the 
more severe the image quality degradation. Representative 
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methods include mean square error (MSE) and peak signal-
to-noise ratio (PSNR). In this section, we first elaborates the 
quantitative evaluation index for the enhanced image. Then, 
the experimental evaluation of deep learning based image 
enhancement methods is conducted.

4.2.1  Quantitative Index

The quantitative measures we introduced here mainly 
involve absolute mean brightness error (AMBE) [153], 
structural similarity of image (SSIM) [154] and peak signal 
to noise ratio (PSNR), discrete entropy (DE) [155], enhance-
ment (EME) [156] and lightness order error (LOE) [157].

First of all, according to literature [153], the absolute 
mean brightness error(AMBE) is defined as:

where MB(X) and MB(Y) represent the mean brightness of 
original image X and enhanced image Y, respectively. In 
addition, the lower the value AMBE the better is preserva-
tion of the original image luminance.

Then, structural similarity of image (SSIM) is used to 
evaluate the similarity of two images and is proposed by 
Wang et al. [154]. It is usually described as follows:

where l(x, y), c(x, y) and s(x, y) denote brightness compari-
son part, contrast comparison part and structure comparison 

(64)AMBE(X, Y) = |MB(X) −MB(Y)|

(65)SSIM(x, y) = l(x, y)� ⋅ c(x, y)� ⋅ s(x, y)�

part of image, respectively. In addition, � , � and � are param-
eters employed to adjust the relative importance of the three 
components. Generally, they are set to 1 and related param-
eters are defined as follows:

where x and y represent the original image and enhanced 
image, respectively. �x , �y , �2

x
 , �2

y
 and �xy denote the mean, 

variance and covariance of image x and y respectively. In 
addition, c1 , c2 and c3 are small constants, just to avoid the 
fact that the denominator is zero. The larger the value of 
SSIM, it means that the structure of the enhanced image is 
similar to the original image and the quality of the enhanced 
image is better. Note SSIM(x,y) ∈ (0,1).

Peak signal-to-noise ratio (PSNR) is usually employed 
to roughly estimate the human perception of reconstruction 
quality [158]. PSNR is calculated as follows:

where peakval is the maximal variation of the input image 
data. If it has an 8-bit unsigned integer data type, peakval 
is 255. In addition, MSE represent the mean square error of 
input image I and enhanced image I0 with resolution m × n:

(66)

l(x, y) =
2�x�y + c1

�2
x
+ �2

y
+ c1

, c(x, y) =
2�x�y + c2

�2
x
+ �2

y
+ c2

,

s(x, y) =
�xy + c3

�
x
�
y
+ c3

(67)PSNR = 10log10(
peakval2

MSE
)

Fig. 12  Visual comparison of different image enhancement based on HE-like methods. a is the original image. Enhanced images generated by: b 
HE; c AHE; d POSHE; e WTHE; f AGCWD; g SRIE; h LIME; i SCM; j HRYNN
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The discrete entropy (DE) of an image X is

where p(xi) is the probability of pixel intensity xi , which is 
estimated from the normalized histogram. A higher value of 
DE indicates the image has richer details.

If we divide the image X into k1k2 non-overlapping sub-
blocks Xij with size �1 × �2 . Then EME can be computed as

where max(Xij) and min(Xij) represent the maximum and 
minimum grey levels in block Xij , respectively. A different 
sub-block size (ie., �1 × �2 ) will result in different EME 
value. High contrast sub-blocks give a high EME value and 
the homogeneous sub-blocks can result in an EME value 
close to 0. Note that EME is highly sensitive to noise. Spe-
cifically, if the algorithm generates an output image, which 
introduces noise over homogeneous regions of the image, 
then although the output image looks unnatural, its corre-
sponding EME value is very high [152].

Finally, the lightness order error (LOE) is of great signifi-
cance for describing the naturalness of the image, which is 
proposed to evaluate the quality of the image. If I represents 
the original image and Ie represents the enhanced image, the 
lightness of the image is represented by the highest bright-
ness among the three channels:

For each pixel, before and after image enhancement, the 
lightness order error related to that pixel is defined as 
follows:

where m and n represent the height and width of the image 
respectively. U(x, y) is step functions, and ⊕ represent the 
exclusive OR operation. Thus, LOE is defined as follows:

(68)MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

‖‖I(i, j) − I0(i, j)
‖‖2

(69)DE(X) = −

255∑
i=0

p(xi) log p(xi)

(70)EME(X) =
1

k1k2

k1∑
i=1

k2∑
j=1

20In
max(Xij)

min(Xij)

(71)L(x, y) = max
c∈{r,g,b}

Ic(x, y)

(72)

RD(x, y) =

m∑
i=1

n∑
j=1

(U(L(x, y),L(i, j))⊕ U(Le(x, y),Le(i, j)))

(73)LOE =
1

m ∗ n

m∑
i=1

m∑
j=1

RD(i, j).

Due to the large amount of calculation of the LOE algo-
rithm, in practical applications, the image is generally down-
sampled with a sampling rate of 50∕min(m, n) to achieve 
the purpose of reducing the amount of calculation. It can 
be seen from equation (73) that the smaller the LOE value, 
the higher the naturalness of the image and the higher the 
quality.

Due to the limitation of the paper length, we only elabo-
rated the detailed algorithm of the above image quality 
evaluation indicators. There are some other evaluation 
indicators, such as average brightness (AB) [159], visual 
information fidelity (VIF) [160], tone mapped image qual-
ity index (TMQI) [161] and learned perceptual image patch 
similarity metric (LPIPS) [162]. Detailed algorithm content, 
which can be found in the original papers, are missed.

4.2.2  Experimental Evaluation

In this section, we compare various image enhancement 
methods on synthetic dataset (SYD) [141]. SYD is a large 
scale low-light simulation dataset with 22,656 scenes, which 
has diverse scenes and lighting conditions. In quantitative 
comparison, some indicators such as PSNR, SSIM [154], 
average brightness (AB) [159], visual information fidelity 
(VIF) [160], lightness order error (LOE) [157], tone mapped 
image quality index (TMQI) [161] and learned perceptual 
image patch similarity metric (LPIPS) [162] are employed 
to evaluate the representative low-lightness image enhance-
ment methods we investigated. All the results are from the 
original paper, and they are recorded in Table 1. Note that 
implementation is done with Keras and Tensorflow.

The evaluated image enhancement methods cover BIMEF 
[164], LIME [86], MSRCR [10], MF [163], SRIE [85], Dong 
[165], NPE [157] , DHECI [166], BPDHE [40], HE, Ying 
[168], WAHE [31], JED [167], Robust [87], LLNet [171], 
DeepUPE [169], GLADNet [170], MBLLEN [139] and Lv 
[141]. Note that in the Table 1 below, blod and underlined 
indicate the best and second place results, respectively. We 
can see from Table 1 that Lv et al. [141] achieved the best 
overall performance. In their work, a multi-branch network 
with a ue-attention map and noise map was proposed to 
enhancement low light images in a region adaptive manner. 
In addition, supervised methods such as LLNet [171], Deep-
UPE [169], GLADNet [170], MBLLEN [139] and Lv [141] 
basically achieved a better performance. For example, their 
metric SSIM reach above 0.6. It is worth noting that JED 
[167] and Robust [87] require a lot of computing resources, 
which can cause insufficient memory when processing large 
images.
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From these results, we can draw the conclusion that deep 
learning-based methods are in the leading position. The 
performance can be improved by the following strategies: 
designing novel optimization loss, modifying channel atten-
tion mechanism, Retinex combination, adapting scale-aware 
enhancement, and learning multi-level fused CNN features.

5  Conclusion

Image enhancement plays important roles in image pro-
cessing. In this paper, we give a comprehensive review 
to analyze image enhancement methods from a super-
vised and unsupervised perspective. There are three main 
aspects. We first survey the unsupervised image enhance-
ment methods, including histogram specification, Retinex 
model, deep learning and visual cortex neural network. 
Then we introduce supervised image enhancement meth-
ods involving deep convolutional neural network. In addi-
tion, we also provide main quality evaluation methods for 
image enhancement. In the future, weakly supervised or 
unsupervised strategies will probably generate new image 
enhancement frameworks and bring a rapid progress than 
state-of-the-art algorithms.
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