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1 Introduction

This chapter aims to give a concise overview of distributed optimization and control
algorithms based on the Augmented Lagrangian based Alternating Direction Inexact
Newton (ALADIN) method. Here, our goal is to provide a tutorial-style introduction
to this relatively new distributed optimization algorithm. In contrast to other existing
algorithms, which are often tailored for convex optimization problems, ALADIN is
particularly suited for solving non-convex optimization problems. Moreover, an-
other principal advantage of ALADIN is that it can achieve a super-linear or even
quadratic convergence rate if suitable Hessian approximations are used.

Brief literature overview

Existing algorithms for distributed convex optimization include dual decomposi-
tion [2, 12] as well as the Alternating Direction Method of Multipliers (ADMM) [15,
16]. The main idea of dual decomposition is that for minimization problems with
separable strictly convex objective function and affine coupling constraint, the dual
function can be evaluated by solving decoupled optimization problems. One way
to solve the dual maximization problem is by using a gradient or an accelerated
gradient method as suggested in a variety of articles [26, 32, 33]. Other methods
for solving this maximization problem are based on semi-smooth Newton meth-
ods [13, 14, 25], which have, however, the disadvantage that additional smoothing

B. Houska and Y. Jiang
School of Information Science and Technology, ShanghaiTech University, China.
e-mail: [borish,jiangyn]@shanghaitech.edu.cn

1



2 Boris Houska and Yuning Jiang

heuristics and line-search routines are needed, as the dual function of most practi-
cally relevant convex optimization problem is usually not twice differentiable. An
example for a software based on a combination of dual decomposition and a semi-
smooth Newton algorithm is the code qpDunes [14].

An alternative to dual decomposition algorithms is the Alternating Direction Method
of Multipliers (ADMM), which has originally been introduced in [15, 16]. In con-
trast to dual decomposition, which constructs a dual function by minimizing the
Lagrangian over the primal variables, ADMM is based on the construction of aug-
mented Lagrangian functions. During the last decade ADMM received great at-
tention from many researchers and can by now be considered as one of the most
promising methods for distributed optimization [6, 8, 9]. In particular, [4] contains
a self-contained convergence proof for a rather general class of convex optimization
problems. The local convergence behavior of ADMM is linear for most problems of
practical relevance, as, for example, discussed in [20] under mild technical assump-
tions.

Besides dual decomposition, ADMM, and their variants, there exist a variety of
other large-scale optimization methods some of which admit the parallelization
or even distribution of most of their operations. For example, although sequential
quadratic programming methods [3, 30, 31, 37] have not originally been devel-
oped for solving distributed optimization problems, they can exploit the partially
separable structure of the objective function by using either block-sparse or low-
rank Hessian approximations [36]. In particular, limited memory BFGS (L-BFGS)
methods are highly competitive candidates for large-scale optimization [27]. As an
alternative class of large-scale optimization methods augmented Lagrangian meth-
ods [1, 19, 35, 29] have been analyzed and implemented in the software collec-
tion GALAHAD [7, 17]. A more exhaustive review of such augmented Lagrangian
based decomposition methods for convex and non-convex optimization algorithms
can be found in [18].

On the road between ADMM and SQP

One of the main differences of ADMM compared to general Newton-type methods
or, more specifically, in the context of optimization, Sequential Quadratic Program-
ming (SQP) methods is that they are not invariant under scaling. In practice this
means that it is advisable to apply a pre-conditioner in order to pre-scale the opti-
mization variables before applying an ADMM method, as the method may converge
very slowly otherwise. A similar statement holds for dual decomposition, if the dual
maximization problem is solved with a gradient or an accelerated gradient method.
Of course, the question whether it is desirable to exploit second order informa-
tion in a distributed or large-scale optimization method must be discussed critically.
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On the one hand, one would like to avoid linear algebra overhead and decompo-
sition of matrices in large-scale optimization, while, on the other hand, (approxi-
mate) second order information, as, for example, exploited by many SQP methods,
might improve the convergence rate as well as the robustness of an optimization
method with respect to the scaling of the optimization variables. Notice that the
above reviewed L-BFGS methods are a good example for a class of optimization
algorithms, which attempt to approximate second order terms while the algorithm
is running, and which are competitive for large-scale optimization when compared
to purely gradient based methods. Thus, if sparse or low-rank matrix approximation
techniques, as for example used in SQP methods, could be featured systematically
in a distributed optimization framework, this might lead to highly competitive dis-
tributed optimization algorithms that are robust with respect to scaling.

Why ALADIN?

The goal of the current chapter is to provide a light introduction to the recently
proposed ALADIN method, which can solve convex and non-convex optimization
problems in a distributed way [22]. As such this chapter does not present any new
technical contribution relative to the original ALADIN article [22] or its variants
that can be found in [10, 24, 28], but it summarizes recent developments from a
unifying perspective. Here, the main reasons, why we focus on ALADIN, can be
summarized as follows:

1. ALADIN is a distributed algorithm that is locally equivalent to a Newton type
method, which means that locally superlinear or quadratic convergence rates
can be achieved under certain regularity assumptions by using suitable Hes-
sian matrix approximations. If the objective or constraint functions are non-
differentiable, these regularity assumptions typically fail to hold. In this case,
ALADIN can still be shown to converge, but only weaker convergence rate es-
timates are possible. It can also be shown that ALADIN contains SQP methods
in the limit case if no nonlinear constraints are present and if the augmented
Lagrangian parameters tend to infinity as shown in [22].

2. ALADIN can be used to solve non-convex optimization problems to local op-
timality. Although there exist similar results for ADMM methods [21] under
certain assumptions on the augmented Lagrangian parameter, ALADIN has the
advantage that its local convergence properties are unaffected by how this param-
eter is adjusted. Moreover, in [10] a detailed numerical comparison of ADMM
and ALADIN is presented for large-scale power network optimization problems,
where it is indeed confirmed that both ALADIN and ADMM converge in princi-
ple, but ALADIN needs much fewer iterations to achieve the same accuracy.
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2 Problem formulation

This section is about structured optimization problems of the form

min
x

N

∑
i=1

fi(xi) s.t.
N

∑
i=1

Aixi = b | λ . (1)

Here, the functions fi : Rn → R∪{∞} are, in the most general case, semi lower-
continuous functions, while the matrices Ai ∈Rm×n and the vector b∈Rm are given.
Throughout this paper dual variables are written immediately after the constraint;
that is, in the above problem formulation, λ ∈ Rm denotes the multiplier that is
associated with the coupled equality constraint. In practice, optimization problems
of the above form often have the following characteristics:

1. the number N ∈ N is potentially large,

2. the functions fi are potentially non-convex, and

3. the matrices Ai are typically sparse.

In order to solve (1) numerically, it is desirable to distribute the required computa-
tions. Here, one often assumes that the i-th processor or agent stores the function
fi and the matrix Ai. For example, in the special case that we have no equality con-
straints, or if these equality constraints happen to be redundant, (1) can be solved by
solving the smaller decoupled optimization problems

min
xi

f (xi) (2)

for all i ∈ {1, . . . ,N} separately. Of course, in practice, the equality constraints are
usually not redundant, but the solution of (2) might still be a good initial approx-
imation of the solution of (1). Intuitively, one might expect that this is the case, if
the dual variable λ is relatively small compared to variations of the objective func-
tions fi.

2.1 Consensus constraints

As much as distributed optimization problems arise in many applications, they are
almost never in standard form (1). In this case, one needs to rewrite the optimiza-
tion problem first in order to bring it into standard form. In order to understand
this, it is helpful to have a look at the sensor network that is shown in Figure 1.
In this example, we have a network with 7 sensors. The position of each sensor is
denoted by χi ∈ R2. If each sensor only takes a measurement ηi of its position χi
and solves
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Fig. 1 Example for a 2-dimensional sensor network. The location of the i-th sensor is denoted by
χi ∈R2. The distance between the first and the second sensor is a nonlinear function of χ1 and χ2,
the distance between the second and third sensor depends on χ2 and χ3, and so on. Thus, one needs
to introduce auxiliary variables in order to express these distances by using local variables only.

∀i ∈ {1, . . . ,7}, min
χi
‖χi−ηi‖2

2 ,

all sensors can estimate their position independently; that is, without communicat-
ing with other sensors. However, as soon as the sensors additionally measure the
distance to their neighbors, we would like to solve a least-squares localization prob-
lem of the form

min
χ

7

∑
i=1

{
‖χi−ηi‖2

2 +(‖χi−χi+1‖2− η̄i)
2
}

with χ8 = χ1 . (3)

Here, η̄i denotes the measurement for the distance between the i-th and the (i+
1)-th sensor. Notice that this optimization is not yet in the form (1), because the
objective function in (3) comprises terms of the form (‖χi−χi+1‖2− η̄i)

2 that are,
unfortunately, coupled in χi and χi+1. However, such couplings can be resolved by
introducing the auxiliary variables

xi = (χi,ζi)
T with ζi = χi+1 .

This has the advantage that we can introduce the separable non-convex objective
functions

fi(xi) =
1
2
‖χi−ηi‖2

2 +
1
2
‖ζi−ηi+1‖2

2 +
1
2
(‖χi−ζi‖2− η̄i)

2 .

Moreover, the affine coupling, ζi = χi+1, can be written as

7

∑
i=1

Aixi = 0

by defining the matrices Ai ∈ {−1,0,1}7×4 appropriately. Constraints of this form
are called consensus constraints, because they enforce the local copies of all vari-
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ables of the different agents to coincide. Thus, a general strategy for formulating
distributed optimization problems can be summarized as follows:

1. introduce local copies for neighbor variables until all terms in the objective func-
tion are decoupled, and

2. introduce affine consensus constraints that enforce all local copies of the same
variable to coincide.

Notice that the same strategy can also be used to decouple inequality constraints as
further elaborated in the section below.

2.2 Inequality constraints and hidden variables

Although we regard (1) as the standard form of distributed optimization problems,
it is important to keep in mind that the functions fi often have a very particular
structure. This is because one is often interested in solving inequality constrained
nonlinear optimization problems of the form

min
x,z

N

∑
i=1

Fi(xi,zi) s.t.


N
∑

i=1
Aixi = b | λ

hi(xi,zi)≤ 0 | κi .

(4)

Here, the functions hi can be used to model bounds or other constraints on the lo-
cal variables. Moreover, the above problem formulation distinguishes between the
variables zi that are entirely local and the variables xi that are coupled via an affine
constraint. In order to write (4) in the form of the standard problem (1), one needs
to set

fi(xi) = min
zi

Fi(xi,zi) s.t. hi(xi,zi)≤ 0 . (5)

This means that an evaluation of the functions fi requires one to solve a parametric
optimization problem. In particular, this notation is only possible, if one addition-
ally defines fi(xi) = ∞ for all xi at which (5) is infeasible. Notice that this notation
hides both the inequality constraints and the variables zi. This is why we call the
variables zi hidden variables. Here, an obvious advantage of introducing the func-
tions fi is that this simplifies notation and makes some of our theoretical derivations
below easier to read. However, one has to keep in mind that this construction implies
that

1. the functions fi are typically non-differentiable, and

2. the functions fi potentially take the value +∞ (if the hidden optimization problem
is infeasible).
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Thus, in the following, although we will usually work with the simplified notation
in (1), we will sometimes come back to formulation (4) whenever the particular
structure of this hidden optimization problem needs to be exploited.

3 Augmented Lagrangian based Alternating Direction Inexact
Newton (ALADIN) method

The most basic variant of ALADIN proceeds by repeating two main steps. In the
first step, one solves decoupled optimization problems of the form

min
yi

fi(yi)+λ
TAiyi +

1
2
‖yi− xi‖2

Σi
, (6)

where λ ∈ Rm is the current iterate for the multiplier of the consensus constraint,
xi the current iterate for the primal variable, and Σi � 0 a positive definite scaling
matrix. Notice that the optimization problem is called “decoupled”, because the
objective function depends only on the i-th objective function fi and on the matrix
Ai that belongs to the i-th agent, too. This means in particular that the optimization
problems (6) can for all i ∈ {1, . . . ,N} be solved in parallel without the need to
communicate information between the agents.

In order to understand the terms in the objective, it is helpful to first consider the
case that the functions fi are twice continuously differentiable. In this case, the
optimality condition of the decoupled NLPs (6) can be written in the form

∇ fi(yi) = Σi(xi− yi)−AT
i λ .

This optimality condition must be compared to the first order stationarity condi-
tion

∇ fi(x∗i ) =−AT
i λ
∗

that is necessarily satisfied at KKT points (x∗,λ ∗) of the original optimization prob-
lem (1) that we wish to compute. Here, it becomes clear that if our current iterate
(x,λ ) is close to (x∗,λ ∗), then the solution yi of (6) can be expected to be close
to x∗i .

Remark 1 The objective function of (6) is in the distributed optimization literature
known under the name Augmented Lagrangian. The properties of such augmented
Lagrangians have been analyzed by many authors [2, 18]. They are frequently used
for developing proximal methods [6] and they may also be considered as one of the
basic ingredients for developing ADMM methods [5, 8].

In the context of ALADIN, the computation of decoupled NLP solutions is alter-
nated with the second main step, namely, the solution of coupled quadratic pro-
gramming problems of the form
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min
∆y

N

∑
i=1

{
1
2

∆yTi Hi∆yi +gTi ∆yi

}
s.t.

N

∑
i=1

Ai(yi +∆yi) = b | λ
+ . (7)

Here, the gradient gi = ∇ fi(yi) and the Hessian matrix approximation Hi ≈∇2 fi(yi)
are both evaluated at the solutions of the decoupled NLP problems. In contrast to
ADMM methods, the introduction of this coupled QP is inspired from the field of
Sequential Quadratic Programming (SQP). In the most basic variant of ALADIN,
the NLP (4) and the QP (7) is all we need to setup a simple method for distributed
optimization. This basic variant is summarized in the form of Algorithm 1. Before
we discuss the convergence properties of this method in more detail, we have a brief
look at possible termination conditions as well as certain advanced variants, which
helps us to get an overview of why and how this basic variant of ALADIN can be
refined.

Algorithm 1: Basic ALADIN

Input: Initial guesses xi ∈ Rn and λ ∈ Rm, scaling matrices Σi ∈ Sn
++ and a termination

tolerance ε > 0.

Repeat:

1. Solve for all i ∈ {1, . . . ,N} the decoupled NLPs

min
yi

fi(yi)+λ
TAiyi +

1
2
‖yi− xi‖2

Σi
.

2. Set gi = ∇ fi(yi) and Hi ≈ ∇2 fi(yi).

3. Solve the coupled equality constrained QP

min
∆y

N

∑
i=1

{
1
2

∆yTi Hi∆yi +gTi ∆yi

}
s.t.

N

∑
i=1

Ai(yi +∆yi) = b | λ
+ .

4. Set x← x+ = y+∆y and λ ← λ+ and continue with Step 1.

Remark 2 If the functions fi are quadratic forms and if the matrices Hi are set to
the exact Hessian matrices, Algorithm 1 converges trivially in one step. This is in
contrast to standard ADMM methods, which usually do not converge in one step,
even if all variables are scaled optimally. For example, if we consider the quadratic
optimization problem

min
x

(qx−1)2 s.t. x = 0 ,

with q 6= 0, the standard way of applying parallel ADMM would be to write this
problem in consensus form

min
x,y

I0(x)+(qy−1)2 s.t. x = y , with I0(x) =
{

0 if x = 0
∞ otherwise .
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The augmented Lagrangian of this optimization problem can be written in the form

Lρ(x,y,λ ) = I0(x)+(qy−1)2 +λ (y− x)+
ρ

2
(y− x)2

such that the associated ADMM iteration has the form

y+ = argmin
y

Lρ(x,y,λ ) =
1

2q2 +ρ
[2q−λ +ρx] (8)

λ
+ = λ +ρ(y− x) (9)

x+ = argmin
x

Lρ(x,y+,λ+) = 0 , (10)

which simplifies to

[λ+−2q] =
2q2

2q2 +ρ
[λ −2q] .

It is clear that this ADMM iteration converges for any ρ > 0 as 2q2

2q2+ρ
∈ (0,1). Be-

cause we have to choose ρ <∞, the contraction factor is never equal to 0. Moreover,
rescaling the optimization variable y is equivalent to using a different q 6= 0. Thus,
no matter how we scale the variables or choose ρ , ADMM never converges in one
step (assuming that we do not initialize at the optimal solution). Thus, ALADIN has,
at least for this test example, a clear advantage over ADMM, since it can achieve
one-step convergence by using exact Hessian matrices.

3.1 Termination conditions

Notice that Algorithm 1 has two main primal iterates: the iterates x, which are
obtained as the solutions of the coupled QPs, and the iterates y, whose block-
components are obtained as the solutions of the decoupled NLPs. Now, one can
terminate Algorithm 1 if the condition

‖yi− xi‖ ≤ ε (11)

is satisfied for all i ∈ {1, . . . ,N} for a user-specified numerical tolerance ε > 0.
Notice that this termination condition measures the distance between the iterates x
and y. Because the iterates y satisfy

∇ fi(yi) = Σi(xi− yi)−AT
i λ

(11)
=⇒ ‖∇ fi(yi)+AT

i λ‖ ≤O(ε) ,

this termination condition is sufficient to ensure that the violation of the first order
stationary KKT condition is small if ε is small. Moreover, because the iterates x
satisfy the coupled feasibility condition, we have
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N

∑
i

Aixi = b
(11)
=⇒

∥∥∥∥∥ N

∑
i=1

Aiyi−b

∥∥∥∥∥≤O(ε) ,

where the latter conclusion follows from (11) and the triangle inequality for norms.
Thus, in summary, it is sufficient to check that (11) holds upon termination, if our
goal is to ensure that (yi,λ ) satisfies the first order KKT optimality conditions up to
a term of order O(ε).

Remark 3 In practice, one has different options for choosing the norm ‖ ·‖ in (11).
Because the scaling matrices Σi are assumed to be positive definite, one can use the
norm

‖yi− xi‖= ‖yi− xi‖Σi
=
√
(yi− xi)TΣi(yi− xi) .

Moreover, if a positive definite Hessian approximation Hi is available, one can di-
rectly set Σi = Hi. In Section 4.2 we will show that this particular scaling leads to a
consistent convergence proof.

3.2 Derivative-free variants

The basic ALADIN Algorithm 1 has (at least in a very similar version) for the first
time been proposed in [22]. However, by now, there have appeared several variants
of this algorithm. One of the most important generalizations (see, for example, [28])
is the derivative-free variant that is briefly discussed in this section. Here, the main
motivation for generalizing Algorithm 1 is that in this algorithm one needs to eval-
uate the first order derivatives gi = ∇ fi(yi) of the functions fi. However, as we have
discussed in Section 2.2, these functions are, in practice, not always differentiable.
But, as long as the functions fi are Lipschitz continuous, we still have

Σi(xi− yi)−AT
i λ ∈ ∂ fi(yi)

at the solution yi of the decoupled NLPs (4). Here, ∂ fi(yi) denotes the Clarke subd-
ifferential of fi at yi, which coincides with the standard subdifferential of fi for the
case that this function is convex. Clearly, the above inclusion motivates to set

gi = Σi(xi− yi)−AT
i λ ,

such that gi ∈ ∂ fi(yi). This expression has the advantage that we can compute gi
without needing to evaluate a derivative of fi—in fact, such derivatives do not even
have to exist at yi. The corresponding derivative-free variant of ALADIN is summa-
rized in the form of Algorithm 2. As we shall see in the following section, one can
still ensure convergence of Algorithm 2 under surprisingly mild conditions; that is,
without assuming that the functions fi are differentiable. Notice that for this variant
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Algorithm 2: Derivative-free ALADIN

Input: Initial guesses xi ∈ Rn and λ ∈ Rm and a termination tolerance ε > 0.

Repeat:

1. Solve for all i ∈ {1, . . . ,N} the decoupled NLPs

min
yi

fi(yi)+λ
TAiyi +

1
2
‖yi− xi‖2

Σi
.

2. Choose matrices Hi ∈ Sn
++ and set gi = Hi(xi− yi)−AT

i λ .

3. Solve the coupled equality constrained QP

min
∆y

N

∑
i=1

{
1
2

∆yTi Hi∆yi +gTi ∆yi

}
s.t.

N

∑
i=1

Ai(yi +∆yi) = b | λ
+ .

4. Set x← x+ = y+∆y and λ ← λ+ and continue with Step 1.

of ALADIN the matrices Hi and Σi should both be properly chosen positive definite
matrices in order to scale the method.

3.3 Inequality constraint variants

In this section we recall that in many applications, the evaluation of the functions fi
requires itself to solve optimization problems of the form

fi(xi) = min
zi

Fi(xi,zi) s.t. hi(xi,zi)≤ 0 . (12)

Here, we also recall that the variables zi are called hidden variables, as discussed in
Section 2.2. Of course, if the functions fi have this form, one should not introduce
a bilevel structure for solving the decoupled NLPs, but solve the joint augmented
Lagrangian minimization problem instead,

min
yi,zi

Fi(yi,zi)+λ
TAiyi +

1
2
‖yi− xi‖2

Σi

s.t. hi(yi,zi)≤ 0 | κi . (13)

Notice that this optimization problem corresponds to the expanded form of the de-
coupled NLPs in Algorithm 2. Here, one should recall that Algorithm 2 is rather
general and can, at least in principle, be applied to any non-differentiable functions
fi. Nevertheless, if the functions Fi and hi are twice Lipschitz-continuously differ-
entiable, one might nevertheless be interested in evaluating the second derivatives
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of these functions in order to achieve a better scaling of Algorithm 2. Unfortu-
nately, there is in general no systematic way of pre-computing optimal choices for
the positive definite matrices Hi. However, one possible heuristic is to introduce a
Gauss-Newton proximal objective function of the form

F̃i(ξi,ζi) = Fi(ξi,ζi)+ ∑
j∈Ai

µi, j

2

∥∥∥∥∥
(

∇yh j(yi,zi)
∇zh j(yi,zi)

)T(
ξi− yi
ζi− zi

)∥∥∥∥∥
2

2

with tuning parameters µi, j > 0. Here, yi and zi denote the solutions of the cur-
rent (expanded) decoupled NLPs and Ai = { j | κi, j > 0} the strictly active set of
the i-th decoupled optimization problem. The second derivatives of F̃i can now be
evaluated at yi and zi, which suggest to set the Hessian matrix Hi to the Schur com-
plement

Hi = ∇
2
ξ ,ξ F̃i(yi,zi)−∇

2
ξ ,ζ F̃i(yi,zi)

[
∇

2
ζ ,ζ F̃i(yi,zi)

]−1
∇

2
ζ ,ξ F̃i(yi,zi) . (14)

We will see in the sections below that this choice for Hi can be justified in the
sense that one can establish locally quadratic convergence for this variant of Algo-
rithm 2 under suitable regularity assumptions as long as the inverse tuning parame-
ters,

1
µi, j

= O(‖xi− yi‖) ,

tend to 0 as the algorithm converges. However, at the current status of research, we
only have working heuristics but no systematic way for choosing these tuning pa-
rameters. More systematic inequality handling routines for ALADIN remain among
the most important open problems for future research.

3.4 Implementation details

Notice that almost all the steps of Algorithms 1 and 2 are completely decoupled.
Consequently, all these steps can be implemented in parallel by the agents of the
system without communication. Here, the only exception is the step in which we
have to solve the coupled QP

min
∆y

N

∑
i=1

{
1
2

∆yTi Hi∆yi +gTi ∆yi

}
s.t.

N

∑
i=1

Ai(yi +∆yi) = b | λ
+ , (15)

which requires the agents to communicate with each other. Let us have a closer look
at how we can solve this coupled QP. For this aim, we introduce the terms
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R =
N

∑
i=1

Ai[yi−H−1
i gi]−b and M =

N

∑
i=1

AiH−1
i AT

i , (16)

which can be computed by evaluating the above running sums by communicat-
ing the vectors Ai[yi−H−1

i gi] and the projected inverse Hessian matrices AiH−1
i Ai,

which is possible as long as we choose positive definite Hessian approximations. In
the following, we call M the dual Hessian matrix, which is known to be invertible,
if the matrices Ai satisfy the Linear Independence Constraint Qualification (LICQ),
that is, if the matrix [A1,A2, . . . ,AN ] has full-rank. Next, the dual solution of the QP
is given by

λ
+ = M−1R . (17)

Notice that the evaluation of the matrix vector product can often be further simplified
if the matrix M (and its inverse) have a particular structure. Here, we assume that
the LICQ condition holds such that the matrix M is indeed invertible. The primal
solution can then be recovered as

∆yi =−H−1
i
(
gi +AT

i λ
+
)
. (18)

The evaluation of this term can be done in decoupled mode.

Notice that if the matrices Hi are kept constant during the iterations, the dual Hes-
sian matrix M and its pseudo-inverse (or a suitable decomposition of M) can be
computed in advance before starting the algorithm. However, one of the main moti-
vations for developing Algorithms 1 and 2 is their similarity to sequential quadratic
programming algorithms, which motivates to update the matrices Hi during the iter-
ations as discussed next. In this case, the decomposition of M needs to be updated,
too.

4 Convergence analysis

The goal of this section is to concisely summarize the main ideas for establishing
convergence of Algorithms 1 and 2. Here, one should keep in mind that the stronger
the assumptions on the functions fi are, the more can be said about the convergence
properties of ALADIN. The following sections focus on the following two prototype
situations:

1. If the functions fi are non-convex, global convergence statements can in general
not be made. Therefore, Section 4.1 focuses on the local convergence properties
of ALADIN under various regularity assumptions, but without assuming that the
functions fi are convex.
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2. Another case of practical interest is the case, where the functions fi are (strictly)
convex. In this case, ALADIN converges under rather mild assumptions to global
minimizers of (1) without needing regularity conditions on the minimizer or dif-
ferentiability of the functions fi.

At this point, it should be mentioned that the sections below are not intended to be
general. Our summary of convergence conditions should rather be understood as an
introduction, which is intended to help the reader to understand the main conceptual
ideas for proving convergence of ALADIN. Of course, in practice, these ideas might
have to be re-combined or generalized depending on the particular properties of
the functions fi. For a complete (but also much more technical) discussion of the
convergence properties of ALADIN, we refer to [22].

4.1 Local convergence results

One of the main advantages of Algorithm 1 compared to other distributed optimiza-
tion algorithms is its favorable local convergence behavior. In order to analyze this
local convergence behavior, we assume for a moment that the objective functions
fi are twice Lipschitz-continuously differentiable in a neighborhood of a local min-
imizer x∗ of (1). This has the advantage that the following auxiliary result can be
derived, which has, in a similar version, originally been established in [22].

Lemma 1 Let the functions fi be twice continuously differentiable and let Σi be
such that the Hessian matrices,

∇
2 fi(xi)+Σi � σ I ,

of the decoupled NLPs are all positive definite, σ > 0, for all x in a local neighbor-
hood of a minimizer x∗ of (1). Then there exist constants χ1,χ2 < ∞ such that the
solution y of the decoupled NLPs satisfies

‖y− x∗‖ ≤ χ1 ‖x− x∗‖+χ2 ‖λ −λ
∗‖ , (19)

whenever ‖x− x∗‖ and ‖λ −λ ∗‖ are sufficiently small.

Proof. By writing out the first order necessary optimality conditions for both the
decoupled NLPs as well as the original coupled optimization problem (1), we find
the equations

0 = ∇ fi(yi)+AT
i λ +Σi(yi− xi) (20)

and 0 = ∇ fi(x∗i )+AT
i λ
∗ . (21)

Subtracting the second from the first equation and resorting terms yields
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∇ fi(x∗i )−∇ fi(yi)+Σi(xi− x∗i ) = AT
i (λ −λ

∗)+Σi(yi− x∗i ) . (22)

Next, we use the fact that the Hessian matrix ∇2 fi(xi)+Σi is positive definite in a
neighborhood of x∗i , which means that the inequality

‖∇ fi(x∗i )−∇ fi(yi)+Σi(x∗i − yi)‖ ≥ σ‖x∗i − yi‖

holds in this neighborhood. Thus, if we take the norm on both sides of (22) and
substitute the above inequality, we find the inequality

‖y− x∗‖ ≤ ‖A‖
σ
‖λ −λ

∗‖+ ‖Σ‖
σ
‖x− x∗‖ .

This inequality implies that the statement of the lemma holds with χ2 = ‖A‖
σ

and
χ1 =

‖Σ‖
σ

. �

Theorem 1 Let the functions fi be twice Lipschitz-continuously differentiable and
let x∗ be a (local) minimizer of (1) at which the conditions from Lemma 1 are sat-
isfied. If the LICQ condition for NLP (1) is satisfied and if we set Hi = ∇2 fi(xi) in
Step 1 of Algorithm 1, then this algorithm converges with locally quadratic conver-
gence rate; that is, there exists a constant ω < ∞ such that we have

‖x+− x∗‖+‖λ+−λ
∗‖ ≤ ω (‖x− x∗‖+‖λ −λ

∗‖)2 ,

if ‖x− x∗‖ and ‖λ −λ ∗‖ are sufficiently small.

Proof. Notice that the statement of this proposition has been established in a very
similar version (and under more general conditions) in [22]. Therefore, we only
briefly recall the two main steps of the proof. In the first step, we analyze the de-
coupled NLPs in Step 2 of Algorithm 1. Lemma 1 states that there exist constants
χ1,χ2 < ∞ such that the solution of the decoupled NLPs satisfy

‖y− x∗‖ ≤ χ1 ‖x− x∗‖+χ2 ‖λ −λ
∗‖ (23)

for all x,λ in the neighborhood of (x∗,λ ∗). Thus, it remains to analyze the coupled
QP, which can be written in the form

min
∆y

N

∑
i=1

{
1
2

∆yTi ∇
2 fi(xi)∆yi +∇ fi(yi)

T
∆yi

}

s.t.
N

∑
i=1

Ai(yi +∆yi) = b | λ
+ ,

since we may substitute gi = ∇ fi(yi) and Hi = ∇2 fi(xi). Next, since the functions
∇2 fi are Lipschitz continuous, we can apply a result from standard SQP theory [27]
to show that there exists a constant χ3 < ∞ such that
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∥∥≤ χ3 ‖y− x∗‖2 and

∥∥λ
+−λ

∗∥∥≤ χ3 ‖y− x∗‖2 . (24)

The statement of the theorem follows now by combining (23) and (24). �

Remark 4 Recall that for the inequality constrained case, which has been dis-
cussed in Section 3.3, the functions fi are in general not twice differentiable and, as
such, the above results are not directly applicable. However, under the additional
assumption that (x∗,z∗) is a regular KKT point of (4); that is, such that the LICQ
conditions, the second order sufficient optimality condition, and the strict comple-
mentarity conditions are satisfied at this point, then fi is still twice continuously
differentiable in a neighborhood of x∗ (see [27] for details). Thus, under such a
regularity assumption the statement of Lemma 1 can be rescued. The statement of
Theorem 1 can be generalized for this case, too: if the Hessian matrix Hi is chosen
as in (14) and if 1

µi, j
= O(‖xi− yi‖), then we can still establish locally quadratic

convergence of Algorithm 2. This follows simply from the fact that the particular
construction of Hi in (14) ensures that solving the coupled QP is locally equivalent
to an (inexact) SQP step. Notice that a more formal proof of this result for the case
with inequalities can be found in [22].

4.2 Global convergence results

This section discusses conditions under which the iterates y of Algorithm 2 con-
verge globally to the set of minimizers of (1). Notice that such global convergence
conditions can be established for the special case that the matrices Σi = Hi are con-
stant and under the additional assumption that the functions fi are closed, proper,
and convex. Although these assumptions are restrictive, this result is nevertheless
relevant, since it implies that ALADIN converges for strictly convex optimization
problems from any starting point and without needing a line-search or other glob-
alization routines. Moreover, the condition that we must set Σi = Hi and that these
matrices are constant can later be relaxed again, but they make our analysis easier,
because under these assumptions the following statement holds.

Lemma 2 If we set Σi = Hi � 0, then the solutions x+ = y+∆y and λ+ of the
coupled QP in Algorithms 1 and 2 satisfy

Mλ
+ = Mλ +2r (25)

and x+i = 2yi− xi−H−1
i AT

i (λ
+−λ ) , (26)

with r = ∑
N
i=1 Aiyi−b.

Proof. We start with Equation (17), which can be written in the form
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Mλ
+ = R =

N

∑
i=1

Ai[yi−H−1
i gi]−b . (27)

Next, because we have Σi = Hi, we substitute the expression for the gradient

gi = Σi(xi− yi)−AT
i λ = Hi(xi− yi)−AT

i λ ,

which yields

Mλ
+ = R =

N

∑
i=1

Ai[yi− (xi− yi)+H−1
i AT

i λ ]−b (28)

= Mλ +2
N

∑
i=1

Aiyi−2b = Mλ +2r . (29)

This corresponds to the first equation of this lemma. The second equation follows
after substituting the above explicit expressions for gi and λ+ in (18). �

The main technical idea for establishing global convergence results for ALADIN is
to introduce the function

L (x,λ ) = ‖λ −λ
∗‖2

M +
N

∑
i=1
‖xi− x∗i ‖

2
Hi

(30)

recalling that M = ∑
N
i=1 AiH−1

i AT
i denotes the dual Hessian matrix of the coupled

QP. Here, x∗ denotes a primal and λ ∗ a dual solution of (1).

Definition 1 In the following, we use the symbol K to denote the set of continuous
and monotonously increasing functions α : R+ → R that satisfy α(x) > 0 for all
x > 0 and α(0) = 0.

An important descent property of L along the iterates of Algorithms 1 and 2 is
established next.

Theorem 2 Let the functions fi be closed, proper, and strictly convex, let Prob-
lem (1) be feasible and such that strong duality holds, and let the matrices Hi = Σi
be symmetric and positive definite. If x∗ = y∗ denotes the primal and λ ∗ a (not nec-
essarily unique) dual solution of (1), then the iterates of Algorithm 2 satisfy

L (x+,λ+)≤L (x,λ )−α (‖y− y∗‖) (31)

for a function α ∈K .

Proof. In Lemma 2 we have shown that the optimality conditions for the coupled
QPs in Algorithms 1 and 2 can be written in the form

Mλ
+ = Mλ +2r (32)

and x+i = 2yi− xi−H−1
i AT

i (λ
+−λ ) , (33)
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where r = ∑
N
i=1 Aiyi−b denotes the constraint residuum. Next, the optimality con-

dition for the decoupled NLPs can be written in the form

0 ∈ ∂ fi(yi)+AT
i λ +Hi(yi− xi)

(33)
= ∂ fi(yi)+AT

i λ
++Hi(x+i − yi)

recalling that ∂ fi(yi) denotes the subdifferential of fi at yi. Since the functions fi are
assumed to be convex, yi is a minimizer of the auxiliary function

f̃i(ξ ) = fi(ξ )+
(
AT

i λ
++Hi(x+i − yi)

)T
ξ .

Moreover, since we additionally assume that fi is strictly convex, the function f̃
inherits this property and we find

f̃i(yi)≤ f̃i(y∗i )− α̃ (‖yi− y∗i ‖)

for a K -function α̃ ∈K . Summing the above inequalities for all i, substituting the
definition of f̃i, and rearranging terms yields

N

∑
i=1
{ fi(yi)− fi(y∗i )} ≤

N

∑
i=1

(
AT

i λ
++Hi(x+i − yi)

)T
(y∗i − yi)− α̃ (‖yi− y∗i ‖)

= −rTλ
++

N

∑
i=1

(x+i − yi)
THi(y∗i − yi)− α̃ (‖yi− y∗i ‖) . (34)

Here, the second equality holds due to the primal feasibility of y∗; that is, b = Ay∗.
In order to be able to proceed, we need a lower bound on the left-hand expression of
the above inequality. Fortunately, we can use Lagrangian duality to construct such a
lower bound. Here, the main idea is to introduce the auxiliary function

G(ξ ) =
N

∑
i=1

fi(ξi)+

(
N

∑
i=1

Aiyi−b

)
λ
∗ .

Since y∗ is a minimizer of the (strictly convex) function G, we find that

G(y∗)≤ G(y)−α
′ (‖y− y∗‖) (35)

for a function α ′ ∈K . This inequality can be written in the equivalent form

−rTλ
∗+α

′ (‖y− y∗‖)≤
N

∑
i=1
{ fi(yi)− fi(y∗i )} . (36)

By combining (34) and (36), and sorting terms it follows that
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−α (‖y− y∗‖) ≥ rT(λ+−λ
∗)+

N

∑
i=1

(yi− y∗i )
THi(x+i − yi)

(32)
=

1
2
(λ+−λ )TM(λ+−λ

∗)+
N

∑
i=1

(yi− x∗i )
THi(x+i − yi) .

with α = α̃ +α ′. The sum on the right hand of the above equation can be written in
the form

∑
N
i=1(yi− x∗i )

THi(x+i − yi)

(26)
= 1

4 ∑
N
i=1
(
x+i + xi−2x∗i +H−1

i AT
i (λ

+−λ )
)T

Hi
(
x+i − xi−H−1

i AT
i (λ

+−λ )
)

=− 1
4 (λ

+−λ )TM(λ+−λ )+ 1
4 ∑

N
i=1

∥∥x+i − x∗i
∥∥2

Hi
− 1

4 ∑
N
i=1 ‖xi− x∗i ‖

2
Hi

By substituting this expression back into the former inequality, it turns out that

−α (‖y− y∗‖) ≥ 1
2
(λ+−λ )TM(λ+−λ

∗)− 1
4
(λ+−λ )TM(λ+−λ )

+
1
4

N

∑
i=1

∥∥x+i − x∗i
∥∥2

Hi
− 1

4

N

∑
i=1
‖xi− x∗i ‖

2
Hi

=
1
4
L (x+,λ+)− 1

4
L (x,λ ) .

This inequality is equivalent to (31), which corresponds to the statement of the the-
orem. �

Notice that Theorem 2 can be used to establish global convergence of ALADIN
from any starting point if the matrices Hi are kept constant during the iterations.
This result is summarized in the corollary below.

Corollary 1 Let the functions fi be closed, proper, and strictly convex and let prob-
lem (1) be feasible and such that strong duality holds. If the matrices Hi = Σi � 0
are kept constant during the iterations, then the primal iterates y of Algorithm 2
converge (globally) to the unique primal solution x∗ = y∗ of (1), y→ y∗.

Proof. If the matrices Hi are constant, it follows from (31) that the function L is
strictly monotonously decreasing whenever y 6= y∗. As L is bounded from below
by 0, the value of L (x,λ ) must converge as the algorithm progresses, but this is
only possible if y converges to y∗. �

The statement of Corollary 1 is rather general in the sense that it establishes global
convergence of the primal ALADIN iterates for potentially non-differentiable but
strictly convex functions fi and without assuming that any constraint qualification
holds (although the dual iterates might not converge in such a general scenario).
Nevertheless, so far, we have not yet addressed the question what happens if the
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functions fi are only convex but not strictly convex. Before we will answer this
question, it should be noted first that if the functions fi are only known to be convex,
the set Y∗ of minimizers of (1) is in general not a singleton. Thus, the best we can
hope for in such a general case is that the ALADIN iterates y converge to the set
Y∗ rather than to a specific minimizer. The following theorem shows that such a
convergence statement is indeed possible.

Theorem 3 Let the functions fi be closed, proper, and convex and let us assume that
strong duality holds for (1). Let Y∗ denote the set of minimizers of (1). If the matri-
ces Hi � 0 are kept constant during all iterations, then the iterates y of Algorithm 1
converge (globally) to Y∗,

min
z∈Y∗
‖y− z‖→ 0 .

Proof. Let Λ ∗ denote the set of dual solutions of (1). As Λ ∗ is a closed convex set,
we can pick a λ ∗ ∈ relint(Λ ∗), where relint(Λ ∗) denotes the relative interior1 of
Λ ∗. Now, we define the function L as above but by using any x∗ = y∗ ∈Y∗ and the
above particular choice of λ ∗ in the relative interior of Λ ∗. Now, the main idea of
the proof of this theorem is to have a closer look at the auxiliary function

G(ξ ) =
N

∑
i=1

fi(ξi)+

(
N

∑
i=1

Aiyi−b

)
λ
∗ ,

which has already been used in the proof of Theorem 2. Clearly, since we assume
that strong duality holds, y∗ is a minimizer of this function, but we may have G(y) =
G(y∗) even if y 6= y∗. However, fortunately, we know that G(y) =G(y∗) if and only if
y ∈ Y∗, since we have strong duality and we have chosen λ ∗ in the relative interior
of Λ ∗. Consequently, since closed, proper, and convex functions are lower semi-
continuous [5], there must exist a continuous and strictly monotonously increasing
function α : R→ R with α(0) = 0 such that

G(y∗)≤ G(y)− 1
4

α

(
min
z∈Y∗
‖y− z‖

)
.

By following the same argumentation as in the proof of Theorem 2, we find that this
implies

L (x+,λ+)≤L (x,λ )−α

(
min
z∈Y∗
‖y− z‖

)
. (37)

The proof of the corollary follows now by using an analogous argumentation as in
Corollary 1. �

Notice that the convergence statements of Corollary 1 and Theorem 3 only prove
that the iterates y of Algorithm 1 converge to the set of minimizers of Y∗ of Prob-

1 If Λ ∗ is a singleton, we have relint(Λ ∗) = Λ ∗
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lem 1, but no statement is made about the convergence of the iterates x and λ .
However, if additional regularity assumptions are introduced, the iterates x and λ

also converge, as expected.

Lemma 3 If the conditions of Theorem (3) are satisfied and if the functions fi are
continuously differentiable, then we have both

x→ y and, as a consequence, min
z∈Y∗
‖x− z‖→ 0 .

Moreover, if the LICQ condition for (1) holds, the dual iterates also converge, λ →
λ ∗.

Proof. As we assume that the functions fi are continuously differentiable, we
have ∥∥∇ fi(yi)+AT

i λ
∗∥∥2

H−1
i
→ 0 ,

since ∇ fi is continuous and y → y∗. By writing the left-hand expression in the
form

N

∑
i=1

∥∥∇ fi(yi)+AT
i λ
∗∥∥2

H−1 =
N

∑
i=1

∥∥Hi(xi− yi)−AT
i (λ −λ

∗)
∥∥2

H−1
i

= (λ −λ
∗)T M (λ −λ

∗)

+
N

∑
i=1
‖xi− yi‖2

Hi
+2rT(λ −λ

∗) ,

now, y→ y∗ implies r→ 0 and, consequently, we find

(λ −λ
∗)T M (λ −λ

∗)+
N

∑
i=1
‖xi− yi‖2

Hi
→ 0 ,

which implies ‖x− y‖ → 0. If LICQ holds, the dual Hessian matrix M is invertible
and we also have λ → λ ∗. �

Remark 5 The assumption that the functions fi are continuously differentiable is
rather restrictive for practical applications. However, this regularity condition can
be relaxed by generalizing the proof of Lemma 3. For example, if fi can be written
in the form

fi(xi) = f̃i(xi)+

{
0 if h̃i(xi)≤ 0
∞ otherwise

with closed, proper, convex, and differentiable functions f̃i : Rn → R as well as
h̃i : Rn → Rnh and if (x∗,λ ∗) is a regular KKT point of (1) as defined in [27], we
can still show that x→ y and λ → λ ∗. The proof of this generalization of Lemma 3
is technical but straightforward and therefore not further elaborated in the current
chapter. �
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5 Numerical implementation and examples

In this section we present one explicitly worked out tutorial example, which il-
lustrates the convergence properties of ALADIN, as well as an application of dis-
tributed optimization that arises in the context of model predictive control.

5.1 Tutorial example

In order to understand the local and global convergence properties of Algorithm 2,
let us consider the tutorial optimization problem

min
x

1
2

q1x2
1 +

1
2

q2(x2−1)2 s.t. x1− x2 = 0 | λ (38)

with q1,q2 ≥ 0, q1+q2 > 0. The explicit solution of this problem is given by

z∗ = x∗1 = x∗2 =
q2

q2 +q1
and λ

∗ =− q2q1

q2 +q1
.

The initialization of the primal variable is set to x1 = x2 = z. Thus, if we choose
H1 = H2 = H > 0 the subproblems from Step 1 of Algorithm 2 can be written in the
form

min
y1

1
2

q1y2
1 +λy1 +

H
2
(y1− z)2 and min

y2

1
2

q2(y2−1)2−λy2 +
H
2
(y2− z)2 .

The explicit solution of these subproblems is given by

y1 =
Hz−λ

q1 +H
and y2 =

Hz+λ +q2

q2 +H
.

Next, we work out the solution of the QP in Step 3 (z+,λ+), with z+ = x+1 = x+2 ,
which yields (

λ+−λ ∗

z+− z∗

)
=C

(
λ −λ ∗

z− z∗

)
with

C =
1

(q1 +H)(q2 +H)

(
q1q2−H2 H2(q2−q1)

q1−q2 H2−q1q2

)
.

In this form it becomes clear that the convergence rate of the ALADIN iterates
depends on the magnitude of the eigenvalues of the matrix C, which are given
by
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eig(C) =±

√
q1−H
q1 +H

q2−H
q2 +H

.

Notice that for any H > 0 these eigenvalues are contained in the open unit disc. This
implies that ALADIN converges independent of how we choose H. However, the
above eigenvalues depend on the term q1−H

q1+H ∈ (−1,1), which can be interpreted as
the relative Hessian approximation error of the first objective function. Similarly,
q2−H
q2+H ∈ (−1,1) is the relative error associated with the second objective function.
Thus, the closer H approximates q1 or q2 the better the convergence rate will get.
This convergence behavior is also visualized in Figure 2.

Fig. 2 The absolute value of the maximum eigenvalue, |eig(C)|, of the contraction matrix C versus
the scaling H ∈ [10−3,103] for q1 = 0.1 and q2 = 10. Notice that we have |eig(C)|< 1 for all H > 0,
which implies that ALADIN converges for all choices of H. However, the method contracts faster
if H ≈ q1 or if H ≈ q2, as the eigenvalues of C are close to 0 in these cases.

5.2 Model Predictive Control

This section applies ALADIN in the context of model predictive control (MPC). We
consider an optimal control problem in discrete-time form,

min
ξ ,ν

N−1

∑
i=0

`(ξi,νi)+T (ξN) s.t.


∀i ∈ {0, ...,N−1},
ξi+1 = A ξi +Bνi

ξi ∈ X , νi ∈ U , ξN ∈ XN .

(39)

The main idea of MPC is to solve (39) iteratively at every sampling time based on
the current initial state or measurement ξ0. Here ξ and ν denote state trajectory
and control inputs, respectively. The stage cost is denoted by ` and T denotes the
terminal cost. The matrices A and B are assumed to be given. Moreover, X and U
denote state and control constraint sets, and XN denotes a terminal set.
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Standard form

The above optimization problem can be written in the form of the distributed opti-
mization problem (1). For this aim, we introduce the optimization variables

x0 = ν0 , xi = [ξT
i ,νT

i ]
T , and xN = ξN .

The associated objective functions are given by

fi(xi) =

{
`(ξi,νi) if (ξi,νi) ∈ X×U
∞ otherwise

and fN(xN) =

{
T (ξN) if ξN ∈ XN

∞ otherwise
.

Last but not least, we introduce the matrices

A0 =


B
0
0
...
0

 , A1 =


−I 0
A B
0 0
...

...
0 0

 , A2 =


0 0
−I 0
A B
...

...
0 0

 , . . . , AN =


0
0
0
...
−I


in order to represent the dynamics in the form of an affine coupling constraint.
Notice that this optimization problem has 6N primal and 4(N + 1) dual vari-
ables.

Parameters

In order to setup a benchmark case study with 4 states and 2 controls, we use the
system matrices

A =


0.999 −3.008 −0.113 −1.608
0.000 0.986 0.048 0.000
0.000 2.083 1.010 0.000
0.000 0.053 0.050 1.000

 , B =


−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002

 ,

the quadratic stage cost

`(ξ ,ν) = ξ
>


0.1 0 0 0
0 100 0 0
0 0 0.1 0
0 0 0 100

ξ +ν
>
(

10 0
0 10

)
ν ,

the locally exact terminal cost



Distributed Optimization and Control with ALADIN 25

T (ξ ) = ξ
>


1.42 −26.08 −0.96 10.33
−26.08 1462.89 53.93 −776.41
−0.96 53.93 10.25 36.37
10.33 −776.41 36.37 1291.95

ξ ,

and the constraint sets

X =

{
ξ ∈ R4

∣∣∣∣[−0.5
−10

]
�
(

0 1 0 0
0 0 0 1

)
ξ �

[
0.5
10

]}
,

U =

{
ν ∈ R2

∣∣∣∣[−25
−25

]
� ν �

[
25
25

]}
.

The terminal constraint is set to XN = X and we use the initial state

ξ0 = (10,0,10,10) .

Numerical results

Fig. 3 Logarithm of the distance of the current iterates to the optimal solution for ALADIN with
exact Hessian (red circles), ALADIN with fixed Hessians (black triangles), and ADMM (blue
rectangles).

In this section, we solve the above MPC problem with ADMM [4] as well as the
presented ALADIN method. Figure 3 shows the convergence of two variants of AL-
ADIN versus traditional ADMM for the first MPC iteration. Here, the first variant
of ALADIN uses a constant Hessian matrix while the other one updates Hi during
the iterations. Notice that both ADMM as well as ALADIN with constant Hessian
have a linear convergence rate. This is in contrast to the other variant of ALADIN,
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where we use exact Hessians in order to achieve a locally quadratic convergence
rate, as discussed in Theorem 1.

Fig. 4 First two components of the closed-loop state trajectory for 3 ALADIN iterations per sam-
pling time (red dotted line) and 10 ALADIN iterations per sampling time (blue dashed line). The
black solid line depicts the optimal closed-loop trajectory.

Figure 4 shows the closed-loop state trajectory that has been obtained by running the
proposed algorithm with a fixed number of iterations per sampling time. Here, we
simulate 200 time steps with sampling time 0.05 using 3 or 10 ALADIN iterations
per sampling time, respectively. The corresponding optimal closed-loop trajectory
is shown as a reference in the form of the black solid line.

6 Conclusions

This chapter has presented a light introduction to a relatively new distributed opti-
mization algorithm, named Augmented Lagrangian based Alternating Direction In-
exact Newton (ALADIN) method. This algorithm can be used to solve both convex
as well as non-convex optimization problems, while exploiting separable structures.
Here, one major advantage to traditional ADMM methods is that one can update the
Hessian matrix during the iterations such that a locally quadratic convergence rate
can be observed. Moreover, we have discussed how global convergence guarantees
can be derived for ALADIN under the assumption that the objective functions are
strictly convex.

In a second part of this chapter we have additionally illustrated the numerical per-
formance of ALADIN compared to ADMM, as well as its use in real-time model
predictive control. During the past years, there have appeared a couple of arti-
cles on applications of ALADIN for convex and non-convex distributed optimiza-



Distributed Optimization and Control with ALADIN 27

tion [10, 11, 22, 23, 24, 28, 34], which all report promising numerical performance
for a large variety of applications. Nevertheless, as we have also discussed in this
chapter, there are still a number of pressing open problems in distributed optimiza-
tion. For example, it is not clear at the current status of research whether one can still
ensure global convergence of ALADIN for convex problems, if the Hessian matrices
are updated during the iterations. Similarly, it is not at clear at all how to update these
Hessian matrices in the presence of active set changes in the distributed solvers.
Last but not least, although one option for designing a globalization routine for AL-
ADIN with application to non-convex problems has been presented in [22], much
more research will be needed to make these globalization routines robust enough to
perform well on larger benchmark case studies for non-convex optimization. Thus,
as much as this chapter has provided an introduction to ALADIN, it has also been
intended to serve as an invitation to the optimization and control community to join
this promising direction of distributed optimization method development.
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