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Despite advances in treatment, cancer remains the 2nd most common cause of death in the United States. Poor cure rates may result
from the ability of cancer to recur and spread after initial therapies have seemingly eliminated detectable signs of disease. A growing
body of evidence supports a role for cancer stem cells (CSCs) in tumor regrowth and spread after initial treatment. Thus, targeting
CSCs in combination with traditional induction therapies may improve treatment outcomes and survival rates. Unfortunately,
CSCs tend to be resistant to chemo- and radiation therapy, and a better understanding of the mechanisms underlying CSC
resistance to treatment is necessary. This paper provides an update on evidence that supports a fundamental role for CSCs in
cancer progression, summarizes potential mechanisms of CSC resistance to treatment, and discusses classes of drugs currently in

preclinical or clinical testing that show promise at targeting CSCs.

1. Introduction

Individualized cancer treatment has been an attractive con-
cept since the beginning of cancer research. Breakthroughs
in research have allowed the characterization of malignancies
according to their unique gene expression, which has allowed
the pragmatic targeting of many cancer types based on their
specific gene expression patterns. For example, trastuzumab
improves the overall and progression-free survival in human
epidermal receptor 2- (Her2-) positive breast cancer [1-3].
The receptor-specific monoclonal antibodies bevacizumab
[4, 5] and cetuximab [6] have shown remarkable outcome
in vascular growth factor receptor- (VEGF-) positive and
epidermal growth factor receptor (EGFR)-positive cancer,
respectively. Examples of other targeted therapies [7-9] are
shown in Table 1. Indeed, the age of individualized cancer
therapy has begun.

Individualized profiling and targeting systems provide
novel tools to improve both prognostic accuracy and indi-
vidualized treatment for patients [10]. In addition, each of

the classical pillars of cancer therapy—(1) surgical resection,
(2) chemotherapy, and (3) radiation therapy—has made
significant technological strides, and numerous clinical
studies have improved our ability to effectively apply
and combine these modalities. Vaccines that prevent the
spread of the human papilloma virus (HPV) promise to
dramatically reduce cervical cancer; conversely, viruses are
being developed that directly attack carcinogenic cells [11].
Advancements such as functional imaging, magnetic reso-
nance imaging, immunohistochemistry, and flow cytometry
have recently refined our ability to tease out, subdivide,
prognosticate, and define the myriad of permutations in
this uniquely complex and malignant disease. A growing
arsenal of prevention strategies and screening technologies
has allowed physicians to diagnose and treat cancer earlier
in its progression than ever before. All of these evolving
modalities and strategies to manage cancer have helped
result in a pattern of continuously dwindling cancer-related
morbidity and mortality in the United States [12].
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TasLe 1: Update on clinical trials for CSC molecular targets.
Target Drug Cancer Phase http://clinicaltrials.gov/ Sponsor
Identifier
Wnt Resveratrol Colon L 1I NCT00256334 University of California, Irvine
Notch MKO0752 Breast I NCT00106145 Merck
Pancreatic IL1II NCT01098344 Cancer Research UK
RO4929097 Renal cell 11 NCT01141569 University Health Network, Toronto
PF-03084014 Leukemia I NCT00878189 Pfizer
Hedgehog GDC-0449 Solid tumors I NCT00968981 Genentech
Colorectal 1I NCT00636610 Genentech
PF-04449913 Hematologic I NCT00953758 Pfizer
BMS-833923 Basal cell I NCT00670189 Bristol-Myers Squibb
LDE225 Medulloblastoma I NCT00880308 Novartis

However, despite this progress, cancer remains the 2nd
most common cause of death in the United States [13]. Our
continuing inability to cure cancer is largely attributed to the
ability of cancer cells to spread and repopulate after initial
therapies have eliminated all detectable signs of disease.
New interventions that reduce this capacity could have a
far-reaching impact on our ability to prevent recurrences,
extend survival, and cure many types of cancer. Thus, better
understanding the mechanisms of cancer progression for
the development of antirepopulation therapies is likely to
offer significant clinical benefit. The cancer stem cell (CSC)
hypothesis has emerged within this line of investigation.
This hypothesis has helped explain how cancer might recur
and metastasize despite effective initial treatment and thus
represents a promising new front in the war on cancer.

2. The CSC Hypothesis

A paradigm shift in our understanding of cancer tumori-
genesis emerged in 1994 when John Dick and colleagues
demonstrated that human acute myeloid leukemia (AML)
has a hierarchical organization that originates from a
primitive hematopoietic cell [14]. This popularized a concept
first proposed over a century ago: that cancer growth within
a given neoplastic process may be dependent upon only a
small fraction of progenitor cells [15, 16]. These cancer cells
that retain their normal stem cell properties of self-renewal
and pluripotency are often referred to as CSCs. Within the
framework of the CSC hypothesis, normally dormant stem
cells may inadvertently acquire tumorigenic DNA mutations
and become CSCs which inappropriately begin dividing and
direct the neoplastic process. Multiple studies have recently
provided compelling support of the CSC hypothesis [17-19].

Despite controversies surrounding the CSC hypothesis
[20, 21], substantial evidence has emerged that supports
its role in cancer including AML [22], brain [23], breast
[24], colon [25], head and neck [26], lung [27], liver
(28], melanoma [29], pancreatic [30], prostate [31], and
squamous cell [32] cancer (Figure 1). At least 15 drugs
designed to exploit the CSC hypothesis have entered clinical
trials [33]. However, the CSC hypothesis has not been fully

established and will likely evolve as unknown molecular
targets capable of promoting tumorigenesis continue to
be discovered [34]. Moreover, the translation from the
theoretical benefit of CSC eradication into its actual clinical
benefit has to be experimentally demonstrated. Another
poorly understood nuance is that certain cancer types may
be relatively independent of fractional CSC populations,
operating more consistently with classical stochastic or clonal
evolution models [35]. Although there are limitations to
the CSC hypothesis, it is evident that cancer often possesses
functionally defined CSCs, and is likely to be at least partially
dependent on CSCs for growth and survival.

In cancer types where neoplastic growth and differ-
entiation depend on CSCs, complete eradication of this
population may be curative. Furthermore, agents that
force CSCs to rapidly differentiate en masse within such
cancer types may limit disease progression. Alternatively,
suppressing residual CSCs after initial tumor debulking may
sustain remissions and extend the progression-free survival
of patients receiving CSC suppressive therapy. Considering
these distinct therapeutic potentials of targeting CSCs, it
appears that CSC-targeted therapies could be an effective
complement to traditional treatment approaches such as
surgery, chemotherapy, and radiation therapy. Indeed, it
is possible that these traditional strategies leave behind
residual CSCs which are capable of spreading and regener-
ating tumors, leading to cancer recurrence and metastasis.
Moreover, these recurring tumors often acquire resistance to
chemotherapy and radiation [36, 37]. Multiple investigators
have demonstrated the ability of CSCs to develop resistance
traits after induction chemo- and radiation therapy.

Evidence suggests that CSCs are highly heterogeneous
[38, 39]. This heterogeneity may be responsible for the evo-
lution of resistance to first-line therapies in recurrent cancer
since treatment-resistant cells within a heterogeneous tumor
population may be selected for during induction therapy.
The outcome may be a more aggressive and treatment-
resistant malignant recurrence [36]. In addition, CSC het-
erogeneity may make the pharmacological eradication of
the entire CSC population difficult since these cells may
exhibit variable expression of drug-targeted genetic markers.
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FiGurek 1: Cell surface phenotype of cancer stem cells. A summary of cancer stem cells surface markers identified in a variety of cancer types.

This task is complicated by the possibility that cancer may
exhibit fluctuating phenotypes, frequencies, and biological
properties within an individual patient [40]. Furthermore,
existing microenvironmental signaling pathways may recruit
or promote CSC functions, perhaps through neoplastic
clonal dedifferentiation processes [40, 41]. Until these chal-
lenges are overcome, CSC-targeting therapies will not reach
their full potential. Regardless, research surrounding the CSC
hypothesis has already helped generate numerous potential
pharmacological interventions, and combinations of these
CSC-specific therapeutic approaches with traditional cancer
treatment strategies may show synergistic benefits since their
mechanisms of action are distinct and complementary.

3. Frequent Cancer Recurrence May Be due to
the Preferential Killing of Differentiated Cells
While Leaving CSCs behind

As previously mentioned, cancer recurrence may be partly
due to the fact that conventional therapies such as chemo-
and radiation therapy fail to specifically target CSCs.
Instead, these therapies likely enrich CSC populations by
preferentially killing differentiated cancer cells that had
little potential to sustain cancer growth. Numerous studies
indicate that CSCs are resistant to chemo- and radiotherapy
and are therefore preferentially preserved when cancer cells
are targeted by these approaches [15, 42—45]. Interestingly,
during differentiation therapy for the treatment of acute
promyelocytic leukemia (APML), all-transretinoic acid and
arsenic trioxide are used to induce the differentiation of

CSCs down their hematopoietic lineage. The outcome is
dramatically reduced self-renewal capacity and extended
patient survival [46]. The dramatic anticancer effects of
combined modality differentiation therapy in leukemia also
demonstrate how synergy between independent therapeutic
approaches can achieve remarkable outcomes in cancer
therapy [47]. Thus, differentiation treatment of APML serves
to illustrate (1) the relative impotence of differentiated cells
in cancer, (2) the potential therapeutic benefit of specifically
targeting CSCs, and (3) the potential synergy between CSC-
specific therapies and existing modalities.

4. The Detection and Identification of CSCs

In recent years, an effort has been made to successfully
identify stem cells in multiple human malignancies, includ-
ing hematological, breast, colorectal, brain, pancreatic, and
maxillofacial cancer [22, 25, 32, 34, 36, 48-50]. Much
attention has been directed to specific cell-surface proteins.
Among these, CD133/prominin-1 is a cell-surface molecule
thought to be a stem cell marker for multiple cancer types,
including CNS, colon, hepatocellular, pancreatic, prostate,
and renal cancer [51]. Eramo et al. demonstrated that freshly
excised small cell and nonsmall cell lung cancers tissues
contain a small subset of CD133-positive cells capable of
generating long-term lung tumor spheres in vitro and differ-
entiating into tumors in vivo. Matsumoto et al. elucidated a
mechanistic relationship between CD133 and the hypoxia-
inducible factor-la (HIF-1«), a downstream molecule in
the mammalian target of rapamycin (mTOR) cell signaling



pathway, suggesting a role for mTOR in the regulation of
CD133 expression [52].

In addition to cell-surface markers, many investigators
have focused on the selective overexpression of certain
genes normally present in progenitor cells. Leukemia cells,
which have been transformed from the normally present
“partially committed” cells responsible for physiological
cellular maintenance, undergo mutations that result in self-
perpetuated renewal capabilities. These cells can be identified
by selective gene overexpression [24, 53-57]. In an attempt
to link cellular pathways to gene expression patterns in
lung CSCs, Stevenson et al. compiled and tested a model
of 100 signature genes to determine embryonic stemness.
Cells with a high embryonic stemness score were found
to affect multiple cellular processes, including Ras, Myc,
chromosomal instability, and cellular invasiveness [58]. Seo
and colleagues demonstrated increased expression of 13
genes in side-population (SP) A549 nonsmall cell lung cancer
cells, as compared to non-SP cells [59].

Interestingly, Glinsky has developed a novel clinical
model to assess the relative “stemness” of cancer cells by
quantifying gene expression signatures, and he has shown
that this model may predict therapeutic outcomes. The
“BMII pathway” algorithm is based on a collective signature
of 9 individual gene characteristics: TEZ, EED pathway,
Suz12/POLII, Suzl2, Nanog/Sox2/Oct4, PcG-TE, BCD-TFE
ESC pattern, and BMI1 pathway. This multifactorial model
allowed the stratification of patients into high-risk and low-
risk groups in a retrospective analysis of large cohorts of
breast, prostate, lung, and ovarian cancer patients [60]. It
remains to be confirmed whether an individual cellular
marker can accurately identify normal stem cells or CSCs or
whether a multifactorial phenotypic model is required.

5. Mechanisms of CSC Resistance to
Chemotherapy and Radiation

CSCs have been found to exhibit a number of genetic and
cellular adaptations that confer resistance to classical ther-
apeutic approaches. These include relative dormancy/slow
cell cycle kinetics, efficient DNA repair, high expression
of multidrug-resistance-type membrane transporters, and
resistance to apoptosis (Figure 2). Cancer often acquires
resistance to chemo- or radiotherapy after nonlethal expo-
sure [36]. This process likely represents the natural selec-
tion of resistant CSCs. Radiotherapy and most types of
chemotherapy exert their antineoplastic function by dis-
rupting cancer cell DNA integrity; therefore, it is possible
that the oncogenic resistance of CSCs results from increased
expression of DNA integrity-maintenance systems [61]. In
addition, increased expression of drug efflux pumps may
promote oncogenic resistance against cytotoxic chemother-
apeutic agents [62, 63].

5.1. Resistance to DNA Damage within CSCs. Normal, non-
cancerous stem cells exhibit well-fortified DNA mutation
defense systems that typically serve to prevent mutation
into carcinogenic CSCs. Unfortunately, when mutations that
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create CSCs do occur, the inherent defense systems of stem
cells serve to protect them from DNA-targeting chemo- and
radiation therapy. The chemo- and radioresistance of CSCs
has now been demonstrated in numerous experiments [64],
although the mechanisms underlying this resistance are not
fully understood. In one experiment, radiation was shown to
cause equal levels of damage to all cancer cells, but CSCs were
able to repair this damage more rapidly [15].

One potential modulator of CSC resistance to DNA-
targeting agents is the family of checkpoint kinases 1/2
(Chk1/2 kinases), which become activated after genotoxic
stress and arrest the cell cycle to allow DNA repair. These
kinases have higher basal and inducible activities in CSCs
than in nonstem cells [65]. Supporting the role of Chk1/2
kinases in CSCs, Chk1/2 inhibitors partially reverse the
resistance of glioblastoma CSCs to radiation-induced cell
death [65, 66].

In addition to augmented DNA repair systems, CSCs may
also exhibit changes in telomerase function, which allows
resistance to chromosomal degradation in these rapidly
dividing cells. Telomerase is a complex ribonucleoprotein
enzyme that synthesizes and maintains telomeric repeats at
the ends of chromosomal strands [67]. Sustained telomerase
function is critical in conferring cellular immortality, as
telomeres are otherwise shortened with each cell division,
eventually triggering cellular senescence. Telomerase func-
tion was recently shown to be downregulated in brain CSCs,
and several drugs that interfere with telomerase function
are already in clinical trials, including arsenic trioxide,
GRN163L, and vaccines [68-72].

5.2. Resistance to Drug Penetration into CSCs. An important
component of the DNA integrity defense systems in normal
stem cells is the relatively high expression of efflux trans-
porters from the ATP-binding cassette (ABC) gene family
[73]. These pumps allow normal stem cells to preserve
their genome more effectively against chemical mutagens
in an attempt to prevent carcinogenesis. Similar to the
way that CSCs may derive resistance to DNA damage from
the preexisting DNA repair systems in normal stem cells,
CSCs may also derive resistance to chemical mutagens
(e.g., chemotherapy) through the expression of drug efflux
pumps in normal stem cells from which they were derived.
Moreover, the relatively high expression of these transporters
may be used to identify CSCs within a neoplasm [74]. Drugs
that block the function of efflux transporters or that down-
regulate their expression have the potential to overcome
CSC chemoresistance. Although multidrug transporters are
not likely to significantly influence the direct cytotoxicity of
radiation-based therapies, chemotherapy or chemoradiation
therapy may benefit from blockade of multidrug efflux
pumps in CSCs.

5.3. Resistance to Apoptosis within CSCs. Resistance to ther-
apy might also be conferred to CSCs through the activation
of the Akt pathway [75, 76] and the overamplification of
apoptosis inhibitor proteins. This was first demonstrated
in chemoresistant hepatocellular carcinoma CSCs, which
were found to preferentially activate Akt/PKB and bcl-2
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FIGURE 2: Schematic diagram of the mechanisms leading to cancer stem cell resistance to chemo- and radiation therapy. Cancer stem cells
have been found to exhibit a number of genetic and cellular adaptations that confer resistance to classical therapeutic approaches, including
relative dormancy/slow cell cycle kinetics, efficient DNA repair, high expression of multidrug-resistance-type membrane transporters,

resistance to apoptosis, and protection by a hypoxic niche environment.

cell survival pathways [77]. Moreover, inhibition of Akt by
perifosine sensitizes CSCs to radiation-induced apoptosis
[78]. This suggests that characterization of Akt and bcl-
2 expression in CSCs may have significant clinical utility.
FMS-like tyrosine kinase 3 (FLT3) receptor signaling is an
important hematopoietic growth pathway upstream of Akt.
FLT3 receptors are often mutated in AML and are associated
with a high relapse rate and poor prognosis [79]. Inhibition
of FLT3 signaling with CEP701 reduces the tumorigenicity
of xenografts [80], and CEP 701 has reached phase 2 clinical
trials [81].

The mitochondrial pathway of apoptosis is triggered by
cytochrome c release and second mitochondria-derived acti-
vator of caspase (Smac) activation [82]. Smac, in association
with Direct Inhibitor of Apoptosis Binding Protein with low
pl (Smac/DIABLO), promotes apoptosis via neutralization
of inhibitor of apoptosis (IAP) proteins [82]. Most human
cancers have high levels of IAPs, including the X-linked
inhibitor of apoptosis protein (XIAP) isoform, which are
associated with poor treatment responses [83]. Based on
these observations, Vellanki et al. found that the inherent
radioresistance of glioblastoma CSCs could be alleviated by
promoting apoptosis with an XIAP inhibitor. Importantly,
this treatment had no undesirable radiosensitizing effects on
normal rat neurons or glial cells [84]. This provides another
promising pathway for therapeutic intervention targeting the
apoptotic regulation of CSCs.

Another promising molecular target to promote apop-
tosis in CSCs is nuclear factor kB (NFxB). NFxB is a
transcription factor believed to be intricately involved in the
development and progression of certain cancer types [85].
Nuclear factor nB (NFnB), a cousin of NF«B, is an anti-
apoptotic transcription factor that is activated in leukemias
(86, 87], pancreatic adenocarcinoma [88], and melanoma
[89]. Although these nuclear factors are not as well studied as
Akt, they may offer promising drug targets. NF-xB inhibitors
include NPI-0052 (salinosporamides A), which is in phase I

clinical trials, and TDZD-8 (parthenolide), which is still in
preclinical testing.

5.4. The Microenvironment and CSCs. Oxygen is a well-
known radiosensitizing agent due to its ability to form
radiation-induced reactive oxygen species that can damage
DNA. Accordingly, radioresistance in breast CSCs may be
mediated by increased production of free-radical scavengers
[37]. Considering the dependence of radiotherapy on oxygen
free radicals, it has long been postulated that areas of low
oxygen tension within tumors create microenvironments
that are relatively protected from radiation-induced damage
[44]. Unexpectedly, it was discovered that CSCs reside
along perivascular areas [90] and are thus likely to be
well oxygenated [15]. This may help explain the efficacy
of antiangiogenic therapies such as bevacizumab in that
such therapies may be CSC-specific. Theoretically, CSC
compartment hypoxia may be induced by antiangiogenic
therapies, conferring radioresistance to the CSCs, although
this has yet to be demonstrated in vivo, and the clinical
significance of this remains unknown. Still, we speculate that
radiation might be more effective in treating cancer if it is
administered before any antiangiogenic chemotherapies are
applied.

Vermeulen and colleagues recently discovered another
interesting role of the microenvironment, specifically in
the promotion of cancer cell stemness. They found that
high Wnt pathway signaling functionally defines colon CSCs
[91]. Importantly, Wnt signaling in these cells depended on
costimulation by c-Met signaling. Activated myofibroblasts
in the tumor microenvironment were responsible for c-
Met activation through production of hepatocyte growth
factor (HGF) [91]. Thus, inhibition of stromal-produced
HGF or the subsequent activation of c-Met signaling via c-
Met inhibitors may represent additional approaches to target
CSCs [92].
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FIGURE 3: Schematic diagram of the canonical Wnt/S-catenin signaling. Wnt/f-catenin pathway may promote genomic instability after
irradiation, thus allowing tumor cells to both survive after irradiation and develop additional adaptive mutations. ICG-001, PKF115-854,
and CGP049040 are anticancer drugs in development that target the Wnt signaling pathway.

6. Induction Therapy May Enrich CSCs

An important result of the well-documented CSC resistance
to radiation and chemotherapy is that these therapies often
serve to enrich the resistant CSC subpopulation, perhaps
even selecting for more resistant clones within a hetero-
geneous CSC population. Evidence of radiation-induced
enrichment has been shown in both brain [15, 45] and breast
[42] CSCs. Furthermore, radiation has little effect on the
ability of remaining CSCs to regrow tumors [15]. Thus, CSC
enrichment may be the basis for the relative inability of most
single modality cancer treatment strategies to control long-
term cancer growth. This pattern of initial response followed
by long-term failure is known as “the paradox of response
and survival in cancer therapeutics” [93]. CSC-specific
pharmaceutical interventions are being developed that may
eliminate both primary and acquired CSC chemoresistance.
This may dramatically improve the treatment of cancer by
abrogating the potential for CSC-induced tumor regrowth
and systemic disease spread after initial treatment. For exam-

ple, in experiments by Sung et al. showing that pancreatic
CSCs could survive and expand after serial exposures to
gemcitabine, this chemoresistance was overcome by the use
of CD44 or ABC transporter inhibitors [94].

Additional strategies to overcome therapeutic resistance
during cancer treatment are as follows.

6.1. Concurrent Therapy: The Key to CSC Eradication. It
is now well established that combination therapy helps
prevent the development of cancer resistance, except in a
select group of cancer types where a single pharmaceutically
correctable mutation exists [95]. For example, many clinical
trials have shown improvements in cancer survival with the
use of concurrent chemo- and radiation therapy [96]. This
likely reflects the broadly held belief that the best chance for
curing cancer is during the first round of therapy before the
selection pressure promotes the evolution of resistant CSCs.
In later rounds of therapy, not only has the cancer had time to
grow and spread further, but it has also evolved resistance to
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FIGURE 4: Schematic diagram of the Notch signaling pathway. The Notch/y-secretase/Jagged signaling pathway is an important regulator of
differentiation and helps specify cell fate. Notch signaling pathways have been shown to be activated in both breast CSCs and in endothelial
cells in response to radiation. MK-0752 and R4733 are drugs under development targeting y-secretase in this signaling pathway.

previously encountered therapies. Unfortunately, coadmin-
istration of chemotherapy and radiation therapy is not
effective against all types of cancer, and it is not always
feasible due to its potential significant toxicity. Thus, it
will be important to design preclinical studies and clinical
trials that evaluate potential synergistic benefits of adding
CSC-targeted therapies to traditional cancer regimens.

6.2. Surgical Resection Following Induction. As new data
supports a role for the CSC hypothesis in solid tumors in
addition to hematologic malignancies, outcomes following
the surgical resection of solid tumors may significantly
improve. If induction approaches can be effectively aug-
mented with anti-CSC therapies, then followup surgical
resection may show improved curative outcomes. Theoreti-
cally, CSC-specific induction chemotherapies should offer an
immediate reduction in CSC metastatic potential and should
reduce any hematogenous and lymphatic CSC micrometas-
tases that would otherwise diminish the efficacy of surgical
resection. Considering its powerful therapeutic potential,
CSC-targeted therapies may be particularly valuable in
surgically challenging malignancies such as pancreatic [97]
and brain [98] cancer.

6.3. Targeting CSCs. In order to more effectively target
CSCs, molecular proliferation and survival mechanisms of
CSCs must be better understood. Many institutions have
developed large banks of malignant tissues with coordinated
clinical data, and this resource is being actively mined.
Techniques for concentrating, isolating, and enriching CSCs
from resected tumors are also rapidly evolving, and cell
culture and xenograft models that allow us to transplant
and sustain CSCs are maturing. Finally, these advances
have been translated into the development of several ther-
apeutic opportunities. Here, we will review some of the
prominent classes of drugs that will potentially yield clinical
benefits in the near future. An update of clinical trials
assessing these targets is illustrated in Table 1 (data from
http://clinicaltrials.gov/).

6.3.1. Wnt Inhibitors. Developmental pathways that direct
the differentiation of normal stem cells represent attractive
targets for drug discovery. In particular, the roles of Notch
and Wnt/B-catenin [99] signaling have been examined,
and both have been implicated in the development and
progression of several types of leukemia [100, 101].
For instance, Wnt signaling serves an important role in
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FIGURE 5: Schematic diagram of the Sonic Hedgehog signaling pathway. The hedgehog signaling pathway is a potential modulator of cancer
stem cell carcinogenesis with significant therapeutic implications. GDC-0449, XL-139, and IPI-926 are drugs under development targeting

this signaling pathway.

promoting the proliferation of immature thymocytes [102].
The nonsteroidal anti-inflammatory drug (NSAID) etodolac
inhibits Wnt signaling and may be of benefit in the treatment
of chronic lymphocytic leukemia [101]. In fact, all NSAIDS
may have anti-Wnt properties and thus potentially have
anticancer properties [99].

The Wnt/f-catenin pathway promotes genomic instabil-
ity and DNA damage tolerance that may be enhanced by
DNA damage in CSCs [15]. The pathway has been shown
to promote genomic instability in colon cancer [103] and
possibly promotes conversion of normal stem cells to CSCs
in gliomas [104]. Moreover, it has been shown that high
Wnt activity defines colon CSCs [91]. It has been postulated
that the Wnt/S-catenin pathway may promote genomic
instability after irradiation, thus allowing tumor cells to
both survive after irradiation and to develop additional
adaptive mutations. Wnt inhibitors have been designed to
therapeutically prevent this possibility and include ICG-
001, fungal derivatives PKF115-854 and CGP049090, as well
as monoclonal antibodies against Wnt-1 and Wnt-2 [105]
(Figure 3).

6.3.2. Notch Inhibitors. The Notch/y-secretase/Jagged signal-
ing pathway is an important regulator of differentiation and
helps control cell fate [106]. The Notch ligands, Jagged 1
& 2 and Deltal (D1) to Delta3 (D3), induce the release
of the Notch intracellular (Notch-IC) domain via enzy-
matic proteolytic cleavage by a- and y-secretases. Notch-IC

translocates to the nucleus where it induces transcription of
Notch responsive genes [106, 107]. Notch signaling pathways
are activated in both breast CSCs [108] and in endothelial
cells [109] in response to radiation. Inhibition of Notch
signaling via y-secretase inhibitors can potentially block CSC
self-renewal and decrease medulloblastoma growth [110],
and significant efforts to downregulate Notch signaling
are underway [111]. Currently available Notch signaling
inhibitors include MK-0752, a y-secretase inhibitor that
is in clinical development for the treatment of leukemia
(Figure 4).

In addition to the classical Notch pathway, other rou-
tes may be used to modulate the carcinogenic potential
of elevated Notch signaling in CSCs. In particular, the
Delta/Notch-like epidermal growth factor-related receptor
(DNER) can be induced by histone deacetylase inhibition
to inhibit the growth of and induce the differentiation of
Glioblastoma neurospheres and xenografts [112]. This pro-
vides a basis for the manipulation of noncanonical signaling
pathways for therapeutic intervention against CSCs.

6.3.3. Hedgehog Inhibitors. The hedgehog signaling pathway
may represent an important modulator of CSC carcinogene-
sis with significant therapeutic implications [113-117]. Sim-
ilar to Notch signaling, hedgehog signaling may also benefit
from expanded drug discovery efforts within noncanonical
pathways [118]. Already, hedgehog inhibitors have been
shown to inhibit medulloblastoma growth in mice [119], and



Journal of Oncology

at least 3 different hedgehog inhibitors have reached phase I
clinical trials (Figure 5).

6.3.4. Targeting the CSC Marker CDI133. As mentioned
previously, the cell-surface molecule CD133 is believed to
be a stem cell marker for multiple cancer types [51]. Its
tumor-initiating function has been demonstrated in CNS
cancer, where only CD133" cells from brain tumor biopsy
samples were able to reform tumors in in vivo mouse
models [120]. A recent study by Wang et al. demonstrated
the potential therapeutic use of targeting CD133 to direct
therapy specifically towards CSCs. They conjugated single-
walled carbon nanotubules (SWNTs), which allow localized
hyperthermia treatment, to anti-CD133 monoclonal anti-
bodies, and cultured these products with both CD133" and
CD133"~ glioblastoma (GBM) cells. A mixture of CD133*
and CD133 cells were then exposed to near-infrared laser
light, and the CD133* GBM cells were selectively destroyed.
They found in vivo benefits of this technique as well in mouse
models [121].

7. Concluding Remarks

With the advent of multidisciplinary approaches to cancer
therapy, significant strides have been made in the treatment
of cancer. Now with new discoveries relating to CSCs, we
have yet another mechanism of therapeutic arsenal that may
prove beneficial in combination with current therapeutic
modalities. The basic foundations for CSC-targeted therapy
are actively being discovered, and there are already several
pharmacologic agents available that are capable of specif-
ically modulating CSC intracellular signaling. Still, much
remains unknown about the basic signaling mechanisms of
CSCs that confer resistance to treatment, and better methods
for the disruption of CSC signaling must be developed
to fully integrate the CSC hypothesis into our treatment
paradigms. Interestingly, CSCs may not necessarily need to
be eradicated to prevent cancer progression if they can be
forced to differentiate down their lineage en masse as they do
in the treatment of APML. It is important for future studies
to focus on the discovery of new molecular targets for the
development of better pharmaceutical agents to eliminate or
differentiate CSCs and that these agents be studied in tandem
with traditional cancer therapies.
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