
Proceedings of The
IEEE International Conference
on Industrial Technology, 1996

Messy Genetic Algorithm Based New Learning Method
for Structurally Bptimised Neurofuzzy Controllers

M. Munir-ul M. Chowdhury
Centre for Systems and Control and

Dept. of Electronics and Electrical Engineering
University of Glasgow, Rankine Building,

Glasgow G12 8LT, U.K.
E-mail: chy(@elec. gla. ac. uk

Abstract - The success of a neurofuzzy control system solving
any given problem critically depends on the architecture of the
network Various attempts have been made in optimising its
structure using genetic algorithm automated designs. In a
regular gcnctic algorithm, however, a difficulty exists which
lie$ in the encoding of the problem by highly fit gene
combinations of a fixed-length. For the structure of the
controller to be coded, the required linkage format is not
exactly known and the chance of obtaining such a linkage in a
random generation of coded chromosomes is slim. This paper
presents a new approach to structurally optimised designs of
neurofuzzy controllers. Here, we use messy genetic algorithms,
whoqe main characteristic is the variable length of
chromosomes, to obtain structurally optimised FLC.
Structural optimisation is regarded important before neural
network based local learning is switched into. The example of
a cart-pole balancing problem demonstrates that such an
optimal design realises the potential of nonlinear proportional
plus derivative type FLC in dealing with steady-state errors
without the need of memberships or rule dimensions of an
integral term

Keyaru's: Fuzzy Control, Neurofuzzy Control;
Algorithms.

I. INTRODUCTION

By far the most successful application
(FL) [11 has been to systems and control, and this is termed
fuzzy logic control (FLC) [2]. It is very effective for
controlling complex and poorly defined systems as it
incorporates the knowledge of human experts to achieve
good control strategies. Once the controller structure is
determined, the key elements influencing the performance
of the FLC are the rules, scaling factors and shapes of the
membership functions (MFs) [3]. By carefully choosing the
parameters of the fuzzy controllers, it is always possible to
design a FLC that is suitable for the non-linear system
under consideration.

Messy Genetic

of fuzzy logic

Yun Li
Centre for Systems and Control and

Dept. of Electronics and Electrical Engineering
University of Glasgow, Rankine Building,

Glasgow G12 8LT, U.K.
E-mail: Y .Li@elec. gla. ac. uk

However, the main drawback in conventional designs
is their dependence on the human experience and, in
particular, that on the choice of the controller structure.
Other limitations of conventional FLC designs are that they
can be tedious, trial and error and unadaptive. A number of
hybrid techniques, such as artificial neural networks
(ANNs) and genetic algorithms (GAS), have been employed
to tackle some of these problems in the past decade [3,4].

In this paper, a new approach to globally optimal
design of the NFCs is proposed based on messy genetic
algorithms (mGAs). Structural Optimisation is achieved by
the flexible encoding mechanism of the mGA, before on-
line adaptation using ANN learning. The layout of the
remainder of the paper is as follows. Section 2 outlines the
type of neurofuzzy structure employed, while section 3 gives
an overview of mGA. The optimisation and learning
algorithm is described in Section 4. The techniques are
illustrated with an example in Section 5 and we conclude in
Section 6.

II. NEUROFUZZY STRUCTURE

An ANN is a network of highly interconnected
elements, or neurons, which is structurally similar to the
biological nervous system in the brain, and thus enabling
the whole network to function in a similar manner to the
brain. The main feature of ANNs is their ability to learn
from examples. This is achieved by adjusting the strengths,
or weights. of the interconnections according to some
learning rule that can be supervised or unsupervised. An
important feature of an ANN is that it is a universal model
and also an integrated controller. The network adapts to and
represents the real world by direct inputloutput (I/O)
mapping. This is in common with fuzzy logic [4]. It is thus
natural and feasible to map an FLC onto an ANN to form a
neurofuzzy controller (NFC) and exploit the adaptive
capabilities while inferencing by rules.

Of all the schemes used to integrate the learning
abilities of ANNs with FCC systems. the most wdely used

0-7803-3104-4
I * 274 *

is one in which the fuzzy system is installed in an ANN
architecture akin to a multilayered neural network. Each
node of the network performs a functim such as to make the
entire network equivalent to the fuzzy system. In this
approdch, the gradient descent method that is similar to the
backpropagation algorithm is used. Fig. 1 shows the
structure of the neurofuzzy controller. This NFC is
essentially a connectionist model in the form of a
multilayered feedforward network.

In this architecture x, is the input state vector. Layers
(1) to (3) represent the premise part and layers (4) and (5)
represent the consequent part of the rules. The Mamdani
min-max inferencing is used and so neurons with (A)

indicate a min operation and (v) indicate a normalising
operation. The node a(ii and b(i) are the fuzzy sets of the
inputs and d(i) the fuzzy sets of the output. The
defuzdification method used to obtain the crisp output y is
the centre of gravity (COG). Since the network essentially
represents a FLC mapping there are restrictions on how
much the network can be adjusted in order to achieve the
desired actions from the systems, e.g. the number of layers
cannot be altered since this has direct relation to the
inferencing mechanism. This limits the structural
optimisation to the type of activation function of the
neurons; the number of neurons per layer and the necessary
links between adjacent layers.

' III. MESSY GENETIC ALGORITHMS

Genetic algorithms are loosely modelled on processes
that appear to be at work in biological evolution and the
workiag of the immune systems. Central to evolutionary
system is the idea of a population of genotypes that are
elements of high dimensional search space. More

Fig. 1 Structure of an NFC

generally, a genotype can be thought of as an arrangement
of genes, where each gene takes on values from a suitably
defined domain of values. Each genotype encodes for
typically one, but possibly a set of candidate solutions,
phenotypes, - in our case a class of neuro-fuzzy architecture.
The evolutionary process works on a population of such
genotypes, preferentially selecting genotypes that code for
high fitness phenotypes and reproducing them. Genetic
operators such as mutation. crossover, inversion, etc., are
used to introduce variety into the population and to sample
variants of candidate solutions represented with in the
current population. Thus by survival of the fittest GA over
several generations, the population gradually evolves
towards genotypes that correspond to high fitness
phenotypes. A GA is a normdetermiitistic search algorithm
based on the ideas of genetics. GAS try to mimic the
Darwinian theory of natural selection and evolution,
tending to find optimal solutions to problems instead of
trying to solve them directly.

GAS are global optimisation methods requiring no
deriitative information and have been successfully applied to
many fuzzy control applications, but not without objections.
The problem arises with the encoding of the problem
parameters. In a regular GA, a coded chromosome is in
fixed length that highly fit allele combinations are formed
to obtain a convergence towards global optima.
Unfortunately the required linkage format (or the structure
of the controller to be coded) is not exactly known and the
chance of obtaining such a linkage in a random generation
of coded string is poor. Poor linkage also means that the
probability of disruption on the building block by the
genetic operators is much higher [11. Although inversion
and reordering methods can be used to adaptively search
tight gene ordering, these are too slow to be considered
useful.

The new learning method proposed uses messy GA
[5,6]. The main difference between an mGA and a regular
GA is that the mGA uses varying string lengths;+the coding
scheme considers both the allele positions and values; the
crossover operator is replaced by two new operators called
cut and splice; and it works in two phases - primordial
phase and juxtapositional phase.

A. Coding and Decoding

In this paper, efficient integer [3] (as opposed to
binay) coding is used in the mGA. Here, one parameter
uses one coding variable and hence dramatically reduces the
memory usage. This ensures that the string length is kept to
a minimal and speeds up evolutionary operations, while also
reducing the unnecessary inner-parameter disruptions
caused by crossover and mutation [3] .

In the original mGA, each gene is a set of numbers
which indicates the gene's index, and its value. For

example, the set (2,4) would correspond to the second gene
with value ‘4’. Another feature of mGA is that the order of
the string is irrelevant, i.e. the strings ((2,3) (3,l) (1,3)) and
((3,l) (2,3) (l,3)) are identical. It is also possible for a
string to not have the full gene complement. For example,
€or a three parameter problem the strings ((1,l) (2,l)) and
((1,l) (2,l) (3,3) (2,2)) are both valid. In the first case the
string is said to be under-specified because there is no gene
3, and in the second case the string is said to be over-
specified because gene 2 appears twice.

Over-specification is the easier of the two to handle,
we simply select conflicting genes on a jjrst-come-jjrst-
serve precedence rule. More often than not, a full gene
complement is required in order to evaluate the objective
function, hence the method for tackling under-specification
if important. Under-specification is handled by making a
simplifying assumption about the structure of the fitness
function. Templates are used to fill in the unnamed genes
with a locally optimal stmcture. However, since
information about locally optimal solution is not usually
known, a level-wise mGA is used. In level one, the initial
population is created to comprise of all possible string
length to a problem. and a random fixed template is used to
handle under-specification. In successive levels, the local
optimal solution to the previous level is used as the template
for the current level.

B. mGA Operators

To handle strings of variable length, the standard
crossover operator is no longer suitable. Instead it is
replaced by two new operators called cut and splice, Fig. 2.
The cut operator splits a string at a randomly chosen
position with cutting probability Pc=(/2-1)PK, where P K is
the gene-wise cutting probability and A is the string length.
The splice operator concatenates two strings in a randomly
chosen order with a fixed probability P,. The difference
between these operators and the crossover operator is that
for crossover, the crossover point has to be at the same
position for both parents.

Fig. 3 illustrates the pseudo code for messy genetic
algorithms. The selection mechanism is as in regular GA
but executed in primordial and juxtapositional phases.
Dunng the primordial phase, the population is first

Before Cut and Splice After cut and splice
EIBsssB -

1 2 1 4

3 4 3 2

initialised to contain the all possible building blocks of a
particular length, thereafter only the selection operator is
applied. This results in enriched population of building
blocks whose combination will create optimal or near
optimal strings. Also, during this phase, the population size
is reduced by halving the number of individuals at specified
intervals. The juxtapositional phase follows the primordial
phase, and here the GA invokes the cut, splice and the other
GA operators.

IV. STRUCTURE OPTIMISATION AND LEARNING

The success of an NFC solving any given problem
critically depends on the architecture of the network. In
addition to influencing the quality and performance of the
controller, an inappropriate choice of architecture can lead
to slow or no convergence. NFC are typically specified in
terms of the topology. functions computed by the neurons
and the connection weights.

’ We start by initialising the NFC, that is by identif)ing
the inputs and outputs; defining an initial number of
neurons per layer; types of activation functions (Gaussian,
triangular, etc.) of each neuron and the links between
adjacent laycrs. The learning algorithm is based on an
adaptation of the backpropagation method which mimic
fuzzy inferencing and defuzzification. The parameters to
learn are the weights which relate to the shape of the
activation (or membership) functions. In our case these are
the centres and widths of the fuzzy sets. On the first run we

Joid mGA

template = zeros,
for (level= 1 , Ievel<max-level ,level++)

eval(template,population).
while (pnmordialqhase)
{

select(population),
reduceqop(popu1ation).

while Quxtapositionjhase)
c

select(population),
cut@opulat ion),
splice(population),
mutate@opulation),

1
template = best(population),

Fig. 2: A messy Cut and Splice operation Figure 3. Messy GA Pseudo Code

take our guestimated NFC and test it against an crror
minimlising function. If it is found that thc NFC structurc
needs bdjustmcnts then the proccss rc-enters the loop.

The relevant parts of the network requiring
optimikation are layers 1,2 and 4 as only these influence the
action of the controller. The other parts on the network are
kept constant. Each gene in the mGA is a set of numbers
which indicates the I/O index, the neuron of the adjacent
layer it connects to and the type of activation of the neuron
Initially we assume a skew-symmetric rule base but no
knowlddge of the rule base or of the number of membership
functiops per inputloutput variable. However we do know
the nupbers of input and output variables. Consider a
coded itring as in Fig. 4. Assuming therc arc 2 inputs and
one oqkput, then the string ((1,1,2) (3,2,2) (3,0,1) (2,3,1))
would be interpreted as:

Input 1 connecls to [he
activation of type 2.

neuron of layer 2 which has

Input 2 connects to the 3rd neuron of layer 2 which has
activation oftype 1.

Output; 1 connects to the Yd neuron of layer 4 which has
activati~on of<ype 2.

Tlbis is an overspecified gene because reference to the
output { S made twice and we handle this as before on a jrst-
corrw-first-served rule. The drawback with coding is that
occasionally we could end up with cases where there are no
preinisq or consequence parts (under-specification). In such
cases we discard the corresponding connection. The initial
template is a mapping of a manually tuned rule basc.

Tic activation functions correspond to thc shape of the
membe@ip functions which we limit to the two inost
commo$ly used, viz. triangular and Gaussian simply for the
facts stdted earlier. In this work, a Gaussian type activation
was sct i s (ype I and triangular activation was set to type 2.
After the topology of the network is detcrmined the weights
are fine-tuned using the learning algorithm.

V. A SIMPLE EXAMPLE

Therc arc many practical engineering robot-arm likc
applications. such as ballistics, cranes, space shuttle ann,
which depend on precision, stability and flexibility. A good
prototype is the highly non-linear inverted pendulum on a
cart model. The problem is to control the motion of the cart
along a horizontal line so that the pole will not fall down
and eventually stand vertical, Fig. 5.

The overall control objective or tlic coinpositc cost
function to minimise is described by:

4 initial conditions 250 epochs c
r=l J = 1

where T, is the settling time (defined as the time by W3ich
the pendulum must remain stable to +3" to the vertical) and
set at 5 seconds, and f is a penalty function defined as the
amount the pendulum is away from the vertical. The four
initial conditions were used to generalise the solution.

A symmetrical fuzzy rule-base with five fuzzy sets per
inputloutput variable was initially generated for starting the
mGA. Fig. 6 shows the resulting structurally optimised
neurofuzzy network. Fig 7 illustrates the response of the
pendulum for various initial conditions outside the ones
used for optimisation for the best final solution. The
simulation was also carried out using regular GA and the
responses for both the regular GA and mGA optimisation
are superimposed to present a comparison. We can see that
with thc mGA optimisation the pendulum settles to the
vertical position very quickly and that the controller
robustly offers zero steady state errors even for crltlcdl
initial conditions. However, the regular GA does not reach
vertical position, although it does settle down to within the
specified error margin in a shorter time.

Fig 4. Coding offiuzy rule base. a sample gene Fig 5. Schematic ofthe cart-pole model.

Fig 6 Optimised Neurofuzzy Network

VI. CONCLUSION

A new and efficient method of globally and
structurally optimising neurofuzzy controllers using messy
genetic algorithms has been presented. Structural
optimisation is regarded important before ANN based on-
line local learning is attempted or switched into. The test
results show that the flexible structure of this method
provides a means of obtaining a more accurate neurofuzzy
controller. Its ability in structural optimisation releases the

potential of the nonlinear proportional plus derivative FLC
in dealing with steady state errors without an integral term.

An interesting test would be to compare the flexibility
of mGAs with other flexible methods such as the genetic
programming (GP) [9]. It is expected that a mGA is to
yield more logic and faster combinations than GP.

ACKNOWLEDGEMENT

The authors wish to acknowledge the Engineering &
Physical Sciences Research Council of the UK for assisting
in the funding for this work.

REFERENCES

[l] L A Zadek “Fuzzy Sets”, Informahon anr‘ Control, 8, 1965, pp 338-
353

[Z] E H M a d a m , “Applwations of Fuzzy Algonthms
Plant”, Proceedings ofrheIEEE, 122(12), 1974, pp 1585-1588

[3] Y Li, and K C Ng, “A uniform approach to model-based fuzzy control
system design and structural optinusation”, Genetic Algorithms and Soft
Computing, F Herrera and J L Verdegay (Eds), Physica-Verlag Senes
“Studies m Fuzzmess”, 8, 1996, pp 129-151

[4] H Takagi, and M b e , “Integratmg design stages of fuzzy systems using
genetlc algorithms” Proceedings of the Second IEEE International
Conference onj5izzy Systems, 1993, pp 612-617

[5] D E Goldberg, et a1 “Messy genetic algonthms motivation, analysis,
and first results ” Complex Systems, 3, 1989, pp 493-530

[6] D E Goldberg, et a1 “Messy genetic Algorithms Revisited Studies in
Mixed Slze and Scale”, Complex Systems, 4, 1990, pp 41 5-444

[7] C Km, “Genetic Algorithms for fuzzy controllers”, AI Expert, 2, 1991,

[8] K Kropp “Optmation of fuzzy logc controller inference rules using
genetic algorithms” Proceedings of the EUFIT’93, Aachem, 1993, pp
1090-1096

[9] G J Gray, Y Li, D J Murray-Smith and K C Sharmq “Structural
System Identlfcation Using Genetic Progr-mg and a Block Diagram
Onented Smulation Tool”, EZectronics Letterb, 32(1 9 , 18 July 1996

pp 27-33

