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Abstract - The success of a neurofuzzy control system solving 
any given problem critically depends on the architecture of the 
network Various attempts have been made in optimising its 
structure using genetic algorithm automated designs. In a 
regular gcnctic algorithm, however, a difficulty exists which 
lie$ in the encoding of the problem by highly fit gene 
combinations of a fixed-length. For  the structure of the 
controller to be coded, the required linkage format is not 
exactly known and the chance of obtaining such a linkage in a 
random generation of coded chromosomes is slim. This paper 
presents a new approach to structurally optimised designs of 
neurofuzzy controllers. Here, we use messy genetic algorithms, 
whoqe main characteristic is the variable length of 
chromosomes, to obtain structurally optimised FLC. 
Structural optimisation is regarded important before neural 
network based local learning is switched into. The example of 
a cart-pole balancing problem demonstrates that such an 
optimal design realises the potential of nonlinear proportional 
plus derivative type FLC in dealing with steady-state errors 
without the need of memberships or  rule dimensions of an 
integral term 

Keyaru's: Fuzzy Control, Neurofuzzy Control; 
Algorithms. 

I. INTRODUCTION 

By far the most successful application 
(FL) [ 11 has been to systems and control, and this is termed 
fuzzy logic control (FLC) [2]. It is very effective for 
controlling complex and poorly defined systems as it 
incorporates the knowledge of human experts to achieve 
good control strategies. Once the controller structure is 
determined, the key elements influencing the performance 
of the FLC are the rules, scaling factors and shapes of the 
membership functions (MFs) [3]. By carefully choosing the 
parameters of the fuzzy controllers, it is always possible to 
design a FLC that is suitable for the non-linear system 
under consideration. 
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However, the main drawback in conventional designs 
is their dependence on the human experience and, in 
particular, that on the choice of the controller structure. 
Other limitations of conventional FLC designs are that they 
can be tedious, trial and error and unadaptive. A number of 
hybrid techniques, such as artificial neural networks 
( ANNs) and genetic algorithms (GAS), have been employed 
to tackle some of these problems in the past decade [3,4]. 

In this paper, a new approach to globally optimal 
design of the NFCs is proposed based on messy genetic 
algorithms (mGAs). Structural Optimisation is achieved by 
the flexible encoding mechanism of the mGA, before on- 
line adaptation using ANN learning. The layout of the 
remainder of the paper is as follows. Section 2 outlines the 
type of neurofuzzy structure employed, while section 3 gives 
an overview of mGA. The optimisation and learning 
algorithm is described in Section 4. The techniques are 
illustrated with an example in Section 5 and we conclude in 
Section 6. 

II. NEUROFUZZY STRUCTURE 

An ANN is a network of highly interconnected 
elements, or neurons, which is structurally similar to the 
biological nervous system in the brain, and thus enabling 
the whole network to function in a similar manner to the 
brain. The main feature of ANNs is their ability to learn 
from examples. This is achieved by adjusting the strengths, 
or weights. of the interconnections according to some 
learning rule that can be supervised or unsupervised. An 
important feature of an ANN is that it is a universal model 
and also an integrated controller. The network adapts to and 
represents the real world by direct inputloutput (I/O) 
mapping. This is in common with fuzzy logic [4]. It is thus 
natural and feasible to map an FLC onto an ANN to form a 
neurofuzzy controller (NFC) and exploit the adaptive 
capabilities while inferencing by rules. 

Of all the schemes used to integrate the learning 
abilities of ANNs with FCC systems. the most wdely used 
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is one in which the fuzzy system is installed in an ANN 
architecture akin to a multilayered neural network. Each 
node of the network performs a functim such as to make the 
entire network equivalent to the fuzzy system. In this 
approdch, the gradient descent method that is similar to the 
backpropagation algorithm is used. Fig. 1 shows the 
structure of the neurofuzzy controller. This NFC is 
essentially a connectionist model in the form of a 
multilayered feedforward network. 

In this architecture x, is the input state vector. Layers 
(1) to (3) represent the premise part and layers (4) and ( 5 )  
represent the consequent part of the rules. The Mamdani 
min-max inferencing is used and so neurons with (A) 

indicate a min operation and (v) indicate a normalising 
operation. The node a(ii and b(i)  are the fuzzy sets of the 
inputs and d(i) the fuzzy sets of the output. The 
defuzdification method used to obtain the crisp output y is 
the centre of gravity (COG). Since the network essentially 
represents a FLC mapping there are restrictions on how 
much the network can be adjusted in order to achieve the 
desired actions from the systems, e.g. the number of layers 
cannot be altered since this has direct relation to the 
inferencing mechanism. This limits the structural 
optimisation to the type of activation function of the 
neurons; the number of neurons per layer and the necessary 
links between adjacent layers. 

' III. MESSY GENETIC ALGORITHMS 

Genetic algorithms are loosely modelled on processes 
that appear to be at work in biological evolution and the 
workiag of the immune systems. Central to evolutionary 
system is the idea of a population of genotypes that are 
elements of high dimensional search space. More 

Fig. 1 Structure of an NFC 

generally, a genotype can be thought of as an arrangement 
of genes, where each gene takes on values from a suitably 
defined domain of values. Each genotype encodes for 
typically one, but possibly a set of candidate solutions, 
phenotypes, - in our case a class of neuro-fuzzy architecture. 
The evolutionary process works on a population of such 
genotypes, preferentially selecting genotypes that code for 
high fitness phenotypes and reproducing them. Genetic 
operators such as mutation. crossover, inversion, etc., are 
used to introduce variety into the population and to sample 
variants of candidate solutions represented with in the 
current population. Thus by survival of the fittest GA over 
several generations, the population gradually evolves 
towards genotypes that correspond to high fitness 
phenotypes. A GA is a normdetermiitistic search algorithm 
based on the ideas of genetics. GAS try to mimic the 
Darwinian theory of natural selection and evolution, 
tending to find optimal solutions to problems instead of 
trying to solve them directly. 

GAS are global optimisation methods requiring no 
deriitative information and have been successfully applied to 
many fuzzy control applications, but not without objections. 
The problem arises with the encoding of the problem 
parameters. In a regular GA, a coded chromosome is in 
fixed length that highly fit allele combinations are formed 
to obtain a convergence towards global optima. 
Unfortunately the required linkage format (or the structure 
of the controller to be coded) is not exactly known and the 
chance of obtaining such a linkage in a random generation 
of coded string is poor. Poor linkage also means that the 
probability of disruption on the building block by the 
genetic operators is much higher [ 11. Although inversion 
and reordering methods can be used to adaptively search 
tight gene ordering, these are too slow to be considered 
useful. 

The new learning method proposed uses messy GA 
[5,6]. The main difference between an mGA and a regular 
GA is that the mGA uses varying string lengths;+the coding 
scheme considers both the allele positions and values; the 
crossover operator is replaced by two new operators called 
cut and splice; and it works in two phases - primordial 
phase and juxtapositional phase. 

A. Coding and Decoding 

In this paper, efficient integer [ 3 ]  (as opposed to 
binay) coding is used in the mGA. Here, one parameter 
uses one coding variable and hence dramatically reduces the 
memory usage. This ensures that the string length is kept to 
a minimal and speeds up evolutionary operations, while also 
reducing the unnecessary inner-parameter disruptions 
caused by crossover and mutation [ 3 ] .  

In the original mGA, each gene is a set of numbers 
which indicates the gene's index, and its value. For 



example, the set (2,4) would correspond to the second gene 
with value ‘4’. Another feature of mGA is that the order of 
the string is irrelevant, i.e. the strings ((2,3) (3,l) (1,3)) and 
((3,l) (2,3) (l,3)) are identical. It is also possible for a 
string to not have the full gene complement. For example, 
€or a three parameter problem the strings ((1,l) (2,l)) and 
((1,l) (2,l) (3,3) (2,2)) are both valid. In the first case the 
string is said to be under-specified because there is no gene 
3, and in the second case the string is said to be over- 
specified because gene 2 appears twice. 

Over-specification is the easier of the two to handle, 
we simply select conflicting genes on a jjrst-come-jjrst- 
serve precedence rule. More often than not, a full gene 
complement is required in order to evaluate the objective 
function, hence the method for tackling under-specification 
if important. Under-specification is handled by making a 
simplifying assumption about the structure of the fitness 
function. Templates are used to fill in the unnamed genes 
with a locally optimal stmcture. However, since 
information about locally optimal solution is not usually 
known, a level-wise mGA is used. In level one, the initial 
population is created to comprise of all possible string 
length to a problem. and a random fixed template is used to 
handle under-specification. In successive levels, the local 
optimal solution to the previous level is used as the template 
for the current level. 

B. mGA Operators 

To handle strings of variable length, the standard 
crossover operator is no longer suitable. Instead it is 
replaced by two new operators called cut and splice, Fig. 2. 
The cut operator splits a string at a randomly chosen 
position with cutting probability Pc=(/2-1)PK, where P K  is 
the gene-wise cutting probability and A is the string length. 
The splice operator concatenates two strings in a randomly 
chosen order with a fixed probability P,. The difference 
between these operators and the crossover operator is that 
for crossover, the crossover point has to be at the same 
position for both parents. 

Fig. 3 illustrates the pseudo code for messy genetic 
algorithms. The selection mechanism is as in regular GA 
but executed in primordial and juxtapositional phases. 
Dunng the primordial phase, the population is first 
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initialised to contain the all possible building blocks of a 
particular length, thereafter only the selection operator is 
applied. This results in enriched population of building 
blocks whose combination will create optimal or near 
optimal strings. Also, during this phase, the population size 
is reduced by halving the number of individuals at specified 
intervals. The juxtapositional phase follows the primordial 
phase, and here the GA invokes the cut, splice and the other 
GA operators. 

IV. STRUCTURE OPTIMISATION AND LEARNING 

The success of an NFC solving any given problem 
critically depends on the architecture of the network. In 
addition to influencing the quality and performance of the 
controller, an inappropriate choice of architecture can lead 
to slow or no convergence. NFC are typically specified in 
terms of the topology. functions computed by the neurons 
and the connection weights. 

’ We start by initialising the NFC, that is by identif)ing 
the inputs and outputs; defining an initial number of 
neurons per layer; types of activation functions (Gaussian, 
triangular, etc.) of each neuron and the links between 
adjacent laycrs. The learning algorithm is based on an 
adaptation of the backpropagation method which mimic 
fuzzy inferencing and defuzzification. The parameters to 
learn are the weights which relate to the shape of the 
activation (or membership) functions. In our case these are 
the centres and widths of the fuzzy sets. On the first run we 

Joid mGA 

template = zeros, 
for (level= 1 , Ievel<max-level ,level++) 

eval(template,population). 
while (pnmordialqhase) 
{ 

select(population), 
reduceqop(popu1ation). 

while Quxtapositionjhase) 
c 

select(population), 
cut@opulat ion), 
splice(population), 
mutate@opulation), 

1 
template = best(population), 

Fig. 2: A messy Cut and Splice operation Figure 3.  Messy GA Pseudo Code 



take our guestimated NFC and test it against an crror 
minimlising function. If it is found that thc NFC structurc 
needs bdjustmcnts then the proccss rc-enters the loop. 

The relevant parts of the network requiring 
optimikation are layers 1,2 and 4 as only these influence the 
action of the controller. The other parts on the network are 
kept constant. Each gene in the mGA is a set of numbers 
which indicates the I/O index, the neuron of the adjacent 
layer it connects to and the type of activation of the neuron 
Initially we assume a skew-symmetric rule base but no 
knowlddge of the rule base or of the number of membership 
functiops per inputloutput variable. However we do know 
the nupbers of input and output variables. Consider a 
coded itring as in Fig. 4. Assuming therc arc 2 inputs and 
one oqkput, then the string ((1,1,2) (3,2,2) (3,0,1) (2,3,1)) 
would be interpreted as: 

Input 1 connecls to [he 
activation of type 2. 

neuron of layer 2 which has 

Input 2 connects to the 3rd neuron of layer 2 which has 
activation oftype 1. 

Output; 1 connects to the Yd neuron of layer 4 which has 
activati~on of<ype 2. 

Tlbis is an overspecified gene because reference to the 
output { S  made twice and we handle this as before on a jrst- 
corrw-first-served rule. The drawback with coding is that 
occasionally we could end up with cases where there are no 
preinisq or consequence parts (under-specification). In such 
cases we discard the corresponding connection. The initial 
template is a mapping of a manually tuned rule basc. 

Tic  activation functions correspond to thc shape of the 
membe@ip functions which we limit to the two inost 
commo$ly used, viz. triangular and Gaussian simply for the 
facts stdted earlier. In this work, a Gaussian type activation 
was sct i s  (ype I and triangular activation was set to type 2. 
After the topology of the network is detcrmined the weights 
are fine-tuned using the learning algorithm. 

V. A SIMPLE EXAMPLE 

Therc arc many practical engineering robot-arm likc 
applications. such as ballistics, cranes, space shuttle ann, 
which depend on precision, stability and flexibility. A good 
prototype is the highly non-linear inverted pendulum on a 
cart model. The problem is to control the motion of the cart 
along a horizontal line so that the pole will not fall down 
and eventually stand vertical, Fig. 5. 

The overall control objective or tlic coinpositc cost 
function to minimise is described by: 

4 initial conditions 250 epochs c 
r=l J = 1  

where T, is the settling time (defined as the time by W3ich 
the pendulum must remain stable to +3" to the vertical) and 
set at 5 seconds, and f is a penalty function defined as the 
amount the pendulum is away from the vertical. The four 
initial conditions were used to generalise the solution. 

A symmetrical fuzzy rule-base with five fuzzy sets per 
inputloutput variable was initially generated for starting the 
mGA. Fig. 6 shows the resulting structurally optimised 
neurofuzzy network. Fig 7 illustrates the response of the 
pendulum for various initial conditions outside the ones 
used for optimisation for the best final solution. The 
simulation was also carried out using regular GA and the 
responses for both the regular GA and mGA optimisation 
are superimposed to present a comparison. We can see that 
with thc mGA optimisation the pendulum settles to the 
vertical position very quickly and that the controller 
robustly offers zero steady state errors even for crltlcdl 
initial conditions. However, the regular GA does not reach 
vertical position, although it does settle down to within the 
specified error margin in a shorter time. 

Fig 4. Coding offiuzy rule base. a sample gene Fig 5. Schematic ofthe cart-pole model. 



Fig 6 Optimised Neurofuzzy Network 

VI. CONCLUSION 

A new and efficient method of globally and 
structurally optimising neurofuzzy controllers using messy 
genetic algorithms has been presented. Structural 
optimisation is regarded important before ANN based on- 
line local learning is attempted or switched into. The test 
results show that the flexible structure of this method 
provides a means of obtaining a more accurate neurofuzzy 
controller. Its ability in structural optimisation releases the 

potential of the nonlinear proportional plus derivative FLC 
in dealing with steady state errors without an integral term. 

An interesting test would be to compare the flexibility 
of mGAs with other flexible methods such as the genetic 
programming (GP) [9]. It is expected that a mGA is to 
yield more logic and faster combinations than GP. 
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