• Home
  • RIKEN
  • Brain Science Institute (BSI)
  • Yuka Iwamoto
Yuka Iwamoto

Yuka Iwamoto
RIKEN | RIKEN AICS · Brain Science Institute (BSI)

About

8
Publications
1,678
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
664
Citations
Additional affiliations
April 2012 - October 2013
Japan Science and Technology Agency (JST)
Position
  • Research Investigator
April 2005 - present
RIKEN
Position
  • Technician
April 2002 - March 2005
Japan Science and Technology Agency (JST)
Position
  • Technician

Publications

Publications (8)
Article
Full-text available
Population signals from neuronal ensembles in cortex during behavior are commonly measured with EEG, local field potential (LFP), and voltage-sensitive dyes. A genetically encoded voltage indicator would be useful for detection of such signals in specific cell types. Here we describe how this goal can be achieved with Butterfly, a voltage-sensitive...
Article
Over the last decade, researchers in our laboratory have engineered and developed several series of genetically encoded voltage-sensitive fluorescent proteins (VSFPs) by molecular fusion of a voltage-sensing domain operand with different fluorescent reporter proteins. These genetically encoded VSFPs have been shown to provide a reliable optical rep...
Chapter
Full-text available
Imaging activity of neurons in intact brain tissue was conceived several decades ago, and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded f...
Article
Full-text available
Genetically-encoded optical probes for membrane potential hold the promise of monitoring electrical signaling of electrically active cells such as specific neuronal populations in intact brain tissue. The most advanced class of these probes was generated by molecular fusion of the voltage sensing domain (VSD) of Ci-VSP with a fluorescent protein (F...
Article
Full-text available
Over the last decade, optical neuroimaging methods have been enriched by engineered biosensors derived from fluorescent protein (FP) reporters fused to protein detectors that convert physiological signals into changes of intrinsic FP fluorescence. These FP-based indicators are genetically encoded, and hence targetable to specific cell populations w...
Article
Full-text available
Imaging activity of neurons in intact brain tissue was conceived several decades ago and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded fl...
Article
Full-text available
UV-sensitive syndrome (UVsS) is a rare autosomal recessive disorder characterized by photosensitivity and mild freckling but without neurological abnormalities or skin tumors. UVsS cells show UV hypersensitivity and defective transcription-coupled DNA repair of UV damage. It was suggested that UVsS does not belong to any complementation groups of k...

Network

Cited By