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Abstract

It is now widely accepted that gene organisation in eukaryotic genomes is non-random and it is proposed that such
organisation may be important for gene expression and genome evolution. In particular, the results of several large-scale
gene expression analyses in a range of organisms from yeast to human indicate that sets of genes with similar tissue-specific
or temporal expression profiles are clustered within the genome in gene expression neighbourhoods. While the existence of
neighbourhoods is clearly established, the underlying reason for this facet of genome organisation is currently unclear and
there is little experimental evidence that addresses the genomic requisites for neighbourhood organisation. We report the
targeted disruption of three well-defined male-specific gene expression neighbourhoods in the Drosophila genome by the
synthesis of precisely mapped chromosomal inversions. We compare gene expression in individuals carrying inverted
chromosomes with their non-inverted but otherwise identical progenitors using whole-transcriptome microarray analysis,
validating these data with specific quantitative real-time PCR assays. For each neighbourhood we generate and examine
multiple inversions. We find no significant differences in the expression of genes that define each of the neighbourhoods.
We further show that the inversions spatially separate both halves of a neighbourhood in the nucleus. Thus, models
explaining neighbourhood organisation in terms of local sequence interactions, enhancer crosstalk, or short-range
chromatin effects are unlikely to account for this facet of genome organisation. Our study challenges the notion that, at
least in the case of the testis, expression neighbourhoods are a feature of eukaryotic genome organisation necessary for
correct gene expression.
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Introduction

Understanding gene regulation and genome organisation

presents a complex challenge. Traditional techniques typically

involve a gene-by-gene approach and provide a wealth of

information about the control regions at which transcription

factors and repressors bind to regulate transcription. The more

recent use of genome-wide approaches enables the expression

levels of all genes in a genome to be analysed simultaneously and

the increasing collections of such data has led to the idea that

genes are not only controlled individually but may also be

regulated according to their location in the genome. The idea that

genomic location has an impact on gene regulation is not new,

since it is well established from work in several species that the

expression pattern or activity of transgenes is influenced by

genomic insertion site [1–3]. There is accumulating evidence from

statistical analyses of genome-wide expression data, derived from

both microarray and sequencing-based assays, that suggests gene

order in eukaryotic genomes is not random and that genes with

similar expression profiles tend to be clustered within genomic

neighbourhoods. Genome-scale studies with the budding yeast

Saccharomyces cerevisiae were the first to indicate clustering of

coexpressed genes [4–6]. Subsequently, this phenomenon of

non-random clustering of similarly expressed genes in localised

genomic neighbourhoods has been observed in all metazoan

organisms examined, including Arabidopsis thaliana [7,8], Caenor-

habditis elegans [9–12], Drosophila melanogaster [13–16], mouse

[17,18], and humans [19–21].

While clustering can be partially accounted for by features such

as overlapping genes, tandemly duplicated genes, homologous

genes, and operons (for example, in C. elegans the coexpression of

neighbouring genes is mostly due to operons and duplicate genes

[11]), the majority of co-expression neighbourhoods cannot be

accounted for in these ways. The analysis of several species has

shown that there is a significant tendency for genes in the same

metabolic pathway to cluster, although the patterns of pathway

clustering appear to be species-specific [22]. In the human genome

there is a general trend for clustering of genes that are expressed

across most tissues (housekeeping genes), whereas clustering of

genes expressed in specific tissues is less apparent [20]. In

Drosophila melanogaster, clustering of testis-specific genes is well

described: one analysis of EST expression [13] showed that

approximately 45% of genes uniquely expressed in the testes

cluster in neighbourhoods of at least four contiguous genes. An

analysis based on a series of microarray studies allowed for clusters

that contain intervening genes with different expression patterns

and concluded that more than 20% of genes in the Drosophila

genome are clustered into neighbourhoods [14]. The study
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identified approximately 200 neighbourhoods of 20 to 200 kb

across the fly genome, each containing 10–30 adjacent co-

regulated genes. The genes defining each neighbourhood are not

functionally related in any obvious way, although some of the

neighbourhoods represent genes with testis-enriched expression. A

more stringent statistical analysis of sex-specific gene expression

identified a smaller number of neighbourhoods associated with

testis expression [23]; some of these correspond to the testis

neighbourhoods from the large microarray study [14]. Clustering

of testis expressed genes is not unique to Drosophila, with testis

expression neighbourhoods also identified in the mouse [17,18].

Genes displaying marked sexually dimorphic expression are

under different evolutionary constraints than genes expressed

equally between the sexes; for example, male-biased genes are

under-represented on the X-chromosome and show greater

sequence divergence compared to female biased genes [24,25]

and a variety of studies have identified considerable variation in

expression levels of male-specific genes both within and between

species [26–28]. While it is possible that there may be different

mechanisms acting to select testis neighbourhoods compared to

gene expression neighbourhoods in somatic tissues, there is no a

priori reason to indicate this.

Although there is extensive evidence indicating that co-

expressed genes cluster into neighbourhoods across all major

eukaryotic phyla, the mechanism(s) behind this organisation and

the functional significance of gene co-expression neighbourhoods

is currently unclear. If co-expression neighbourhoods are non-

functional and/or purely coincidental, we would not expect them

to be conserved during evolution. In contrast, a comparison

between S. cerevisiae and C. albicans indicates that co-expressed

genes are conserved more than expected by chance [29]. An

analysis of metazoan genomes indicates natural chromosomal

breakpoints tend to avoid gene expression neighbourhoods; for

example, breakpoints within neighbourhoods are under-represent-

ed when comparing Drosophila species [30], human and mouse

[31,32], or human and chicken genomes [33]. Finally, the

majority of neighbourhoods defined in the D. melanogaster genome

have been conserved across the 12 sequenced Drosophila species

[16,34,35]. Taken together, these data support the view that at

least some neighbourhoods are functionally advantageous and thus

conserved by natural selection.

A variety of models have been proposed to explain the existence

of gene expression neighbourhoods, including (i) those invoking

the local activity of transcription factors via one or more closely

located regulatory sequences, (ii) models that suppose coordinate

regulation through local structural features of chromatin organi-

sation such as boundary elements, and (iii) long-range effects due

to higher order aspects of chromatin organisation in the nucleus

[36–40]. While each of these models has attractive features, there

is little experimental evidence available to evaluate the likely

contribution of each of these effects. Thus despite a plethora of

reports describing the existence of neighbourhoods, experiments

formally testing the requirement for this aspect of genome

organisation for normal gene expression are currently lacking.

Here we address this issue by generating precisely mapped

chromosomal inversions that target the disruption of testis gene

expression neighbourhoods in the Drosophila genome. Using

microarray analysis to compare gene expression in individuals

carrying inverted chromosomes with their non-inverted but

otherwise identical progenitors, we find there are no significant

differences in the expression of genes that define the neighbour-

hoods. Our experiments indicate that in the fly testis the

organisation of genes into expression neighbourhood clusters is

not essential for their normal expression.

Results

If the genes within a neighbourhood need to be contiguous for

their observed co-expression, then altering their proximity should

result in changes in gene expression. However, if the linear

association of genes in a neighbourhood is not essential for co-

expression, then disrupting neighbourhoods will have little impact

on gene expression. To examine these alternatives we tested the

effect of disrupting the continuity of a set of neighbourhoods in the

Drosophila genome by generating chromosomal inversions with one

breakpoint within a neighbourhood and a second breakpoint some

distance away. We chose a set of three well-defined gene

expression neighbourhoods associated with male-specific expres-

sion [13,14,23] and used an FRT-based recombination system to

induce precisely defined chromosomal inversions with breakpoints

within each neighbourhood (Figure 1). We compared gene

expression in individuals carrying the inversion with individuals

carrying un-inverted chromosomes, but that are otherwise

genetically identical. The relevant chromosomes of the latter

individuals harbour the two FRT-bearing RS elements that direct

the recombination event and are referred to as cis stocks (see

below).

Two of the neighbourhoods (35F and 50B) were identified by

two independent microarray studies and an EST analysis

[13,14,23]. Although the third neighbourhood (19F) was not

identified by the stringent statistical threshold used in one of the

microarray studies [23], it was selected for analysis since the X

chromosome is known to be underrepresented for testis-expressed

genes in Drosophila [24] and may be under different evolutionary

constraints in terms of genome organisation. Since sex-specifically

expressed genes are known to vary considerably between different

Drosophila strains [26,27,41], we compared male and female gene

Author Summary

The order of genes within eukaryotic genomes is not
completely random. In all genomes characterised to date
there are regions of the genome, known as gene
expression neighbourhoods, which contain clusters of
genes that are expressed together in a particular tissue or
at a particular developmental stage. Comparative geno-
mics indicates that at least some neighbourhoods have
been conserved during evolution, suggesting that this
facet of genome organisation may be functionally
advantageous. While several models explaining the organi-
sation of the genome into neighbourhoods have been
proposed, the functional significance of neighbourhood
organisation has not been experimentally tested. Here, we
report experiments that disrupt defined testis gene
expression neighbourhoods in the Drosophila genome.
We generated chromosomal inversions with a breakpoint
within a neighbourhood, defined as having genes co-
expressed within the testis. Comparing gene expression in
flies carrying inversions with their otherwise identical
progenitors shows that maintaining the linear organisation
of genes in a neighbourhood is not necessary for correct
gene expression. We also show that it is not necessary for
genes in a neighbourhood to be in close proximity in the
nucleus for them to be co-expressed, since the inversions
disrupt the spatial organisation of neighbourhood genes
in the nucleus. Our experiments indicate that the current
models used to account for the existence of gene
expression neighbourhoods are unlikely to be sufficient.

Drosophila Gene Expression Neighbourhoods
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expression in one of our inversion stocks and in its un-inverted

progenitor (the cis stock) to confirm male-specific expression in the

selected neighbourhoods. This analysis demonstrates that the

microarrays we use are reproducible when inversions and

progenitor stocks are compared since the male-female expression

ratios are similar across both experiments (Table S1). We also

examined the FlyAtlas tissue expression database [42] to confirm

the male-specific expression profile of the genes within each

neighbourhood (Table S1). These data demonstrate that the

selected neighbourhoods are over-represented for genes that are

predominantly expressed in the testis.

Inversions were constructed using RS3 and RS5 P elements

generated by the DrosDel project (Figure S1) [43,44]. Importantly,

the only difference between the non-inverted and inverted

chromosomes is that the latter carries a functional copy of the

white reporter gene while the former carries the separate 59 and 39

ends of the gene; otherwise the genetic background of inversion

and cis-stocks are identical. We generated seven inversions, six of

which are homozygous viable and fertile (Table 1), and verified

them by genomic PCR and polytene chromosome cytology (Figure

S2). For gene expression analysis we used oligonucleotide

microarrays to directly compare RNA from inversion stocks with

their un-inverted progenitors, biologically replicating each com-

parison at least three times but usually four. A summary of the

expression data for genes in each neighbourhood is provided in

Table S2 with the full dataset in Table S3.

For the X chromosome we created two inversions disrupting a

190 kb neighbourhood at 19F [14]. Both inversions break the

neighbourhood between CG32511 and CG14579, with their other

breakpoints at 17C (In(1)EIN101) and 18E (In(1)EIN103),

Figure 1. Inversions disrupting male-specific gene expression neighbourhoods. Diagrammatic representation of the seven inversions
generated in three expression neighbourhoods. (A) Inversions in the X chromosome neighbourhood at 19F. (B) The Chromosome 2L inversions
disrupt the 35F neighbourhood. (C) Inversions disrupting the chromosome 3R neighbourhood at 50B. Each of the three neighbourhoods is
represented by the shaded boxes with the arrows indicating relative orientation. The genes in the neighbourhood are indicated underneath with
bold text indicating male elevated expression; the gap represents the location of the breakpoint in each neighbourhood. Note that the inversions in
the 35F region have two different breakpoints. The chromosomal location of each breakpoint is indicated below the wild type chromosome cartoon.
Below the wild type, the structure of each inversion is diagrammed to show how the relative position and orientation of genes in the neighbourhood
changes. The grey circles represent the centromeres and the stars represent genes assayed by RT-PCR.
doi:10.1371/journal.pbio.1000552.g001
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respectively (Figure 1A). A comparison of males carrying the

inverted X chromosomes with males carrying the un-inverted

progenitor chromosomes (cis stocks) showed very minor changes in

gene expression levels (Figure 2A). Three genes (CG14579,

CG1724, and CG1722) showed 1.2- to 1.3-fold down regulation

in In(1)EIN101 males (p,0.05), but of these only CG1722 shows a

change in In(1)EIN103 males (1.1-fold). At the other breakpoints of

the inversions there were no significant changes in gene expression

between inverted and un-inverted stocks (Figure S3). Importantly,

we find that there is no difference in the signal to noise ratios of

intensity (A) values or in the 95% confidence limit range for the

ratio (M) values when we compare the measurements observed in

inverted neighbourhoods with those experiments in which the

neighbourhood is not inverted (Figures S7 and S8; Tables S8 and

S9). This supports the view that the inversions do not significantly

alter the expression of the genes within the neighbourhood.

The X-chromosome inversions are relatively small, encompass-

ing 1.4–2.6 Mb of chromatin, and it is possible that local

chromatin effects may still be active over this distance. To explore

this we disrupted a neighbourhood at 35F with larger inversions,

involving approximately 13 Mb of chromosome arm 2L. We made

two inversions starting from slightly different places at the distal

end of the neighbourhood (Figure 1B). One inversion, In(2-

L)EIN133, breaks within an intron of the PRL-1 gene but has no

apparent phenotype. Homozygous In(2L)EIN133 males show a

slight but significant reduction in PRL-1 expression (1.7-fold,

p,0.05), but otherwise there are no significant changes in

expression compared to the cis-progenitor. The reduction in

PRL-1 expression is most likely a direct consequence of disrupting

PRL-1 regulatory sequences since there is no change in expression

observed with the second inversion (Figure 2B). We considered the

possibility that using RNA from whole males might obscure small

changes in gene expression in the testis and therefore compared

expression in the dissected testes of inversion and non-inversion

males. We see a slight change in PRL-1 expression, but otherwise

the genes are similarly expressed in the inversion and cis-stocks

(Figure 2B). The second inversion, In(2L)EIN135, is homozygous

lethal due to disruption of cropped (crp), and we therefore generated

males transheterozygous for In(2L)EIN133 and In(2L)EIN135,

which we compared with males transheterozygous for the

respective cis-stocks. Again we see very few significant changes in

the expression of neighbourhood genes in the transheterozygotes

apart from a 1.5-fold reduction in CG34168. This gene does not

change expression in the In(2L)EIN133 homozygotes, suggesting it

is a local effect from the 23D end of In(2L)EIN135. At the 23A end

of In(2L)EIN133 we see a slight increase in Pgk expression in testis,

suggesting it may be influenced by the male-specific expression of

the neighbourhood gene CG12455 (Figure S4).

To disrupt genome organisation to a greater extent we

generated paracentric (In(2R)EIN137) and pericentric (In(2-

LR)EIN136 and In(2LR)EIN138) inversions interrupting a neigh-

bourhood at 50B on chromosome arm 2R (Figure 1C). The latter

two inversions involve over 30 Mb of euchromatin along with the

centromeric heterochromatin and encompass approximately 25%

of the euchromatic genome. As before, inversion-bearing males

were compared to their un-inverted progenitors and showed no

significant impact on gene expression (Figure 2C). To try and

eliminate any contributions that chromosome pairing effects may

make to gene expression in the neighbourhood, we generated

transheterozygotes between the pericentric inversions and the

In(2R)EIN137 paracentric inversion. In this case we expect the

somatic pairing of homologous chromosomes to be completely

disrupted [45]. Again we found no significant differences in

expression between inverted and non-inverted lines (Figure S5).

Clustering of testis-specific genes is not unique to Drosophila, since

it has also been shown that a large proportion of testis-specific genes

are similarly clustered in mouse [18]. However, it may be argued

that the testis represents a highly derived specialised organ

dedicated to spermatogenesis and it is possible that the lack of

significant gene expression effects in the inversion stocks may not be

representative of other tissues, especially if they are under different

evolutionary constraints. To begin to address this issue we

investigated the effect of disrupting a 60 kb embryo-specific

neighbourhood between CG14255 and CG32530 at 18E3 (Spell-

man block 209, [14] Figure S6) with the other breakpoint at 19F

(In(1)EIN103, Table 1). Once again we observed no significant gene

expression differences in the genes defining the neighbourhood

when inversion and cis stocks are compared (Figure 3). A summary

of the expression data for genes in this neighbourhood is provided in

Table S2 and the full genome dataset in Table S4.

While the microarray platform we use has been shown to

perform well in detecting gene expression changes [46], we elected

Table 1. Inversions generated.

Domain Size Elevated Inversion Element 1 Location Element 2 Location Cytology

19F 190 kb 8 (14) In(1)EIN101 CB-6796-3 21042575 5-SZ-4085 18428636 17C; 19F

In(1)EIN103 CB-6796-3 21042575 5-SZ-3054 19607527 18E: 19F

35F 238 kb 18 (33) In(2L)EIN133 5-SZ-4036 16251443 CB-5496-3 2750975 23A; 35F

In(2L)EIN135 CB-5425-3 16281817 5-HA-2004 3055770 23D; 35F

50B 265 kb 9 (22) In(2LR)EIN136 CB-5832-3 9510372 5-SZ-3330 2750920 23A; 50B

In(2R)EIN137 CB-5832-3 9510372 5-HA-1133 18289458 50B; 58D

In(2LR)EIN138 5-SZ-3339 9510512 CB-0114-3 3018404 23C; 50B

18E 160 kb 11 (17) In(1)EIN103 CB-6796-3 21042575 5-SZ-3054 19607527 18E; 19F

Domain = gene expression neighbourhood cytological region according to the standard Drosophila cytological map. Size = approximate neighbourhood size.
Elevated = number of male elevated genes or embryo elevated in the 18E domain (total number of genes). Each inversion along with the starting RS elements and their
genomic locations are indicated. Cytology = location of the second breakpoint on the cytological map.
doi:10.1371/journal.pbio.1000552.t001
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to validate our microarray data by quantitative Reverse Tran-

scription PCR. We selected seven male-biased and three control

genes, testing gene expression in males and females from three

different inversion stocks and their cis progenitors. The gene

expression estimates from quadruplicated qRT-PCR assays are

very similar to those obtained with the microarray analysis and

again show no significant changes in male-specific gene expres-

sion associated with the inversion (Figure 4). We do however

observe slight expression changes in females homozygous for In

(2LR)EIN136, indicating the assay is sensitive to small changes in

expression.

While there are no changes in the expression of neighbourhood

genes in the inversion stocks, we do see effects on the expression of

genes elsewhere in the genome in some stocks (Table S5). In

general there are very few effects on gene expression with the

chromosome 2 inversions: between 11 and 57 genes across the

entire genome with significant changes (1.5-fold: p,0.01) in the

testis or whole males. In the case of the X chromosome inversions

we found that 176 (In(1)EIN101) and 138 (In(1)EIN103) genes

showed significant changes in whole adult males. However, the

vast majority of the affected genes encode proteolytic functions

associated with the midgut (p = 4.1E-09) and are likely to reflect

environmental or gut flora differences introduced by the crossing

scheme used to generate the X inversions. In support of this we

find that these gene expression changes are not seen in the analysis

of In(1)EIN103 in embryos, where we only detect 13 genes across

the whole genome with significant expression changes (1.5-fold:

p,0.01, Table S5).

We have engineered inversions to separate two halves of gene

expression neighbourhoods by genomic distances of up to 30 Mb.

While the inversions certainly disrupt the linear organisation of the

chromosome, it is possible that the two distant regions of the

inversion can re-associate in the nucleus and come into close

proximity in the same sub-nuclear compartment. While we argue

this is unlikely to be the case where we have disrupted somatic

pairing of homologous chromosomes by combining para- and

peri-centric inversions, we cannot eliminate the possibility. The

association of neighbourhoods in the three-dimensional space of

the nucleus offers a plausible explanation as to why neighbour-

hood gene expression is unaffected by the inversions. To test this

possibility we employed two colour DNA fluorescence in situ

hybridisation (DNA FISH) to measure the distance between

Figure 2. Microarray analysis of gene expression. (A) 19F, (B) 35F, and (C) 50B. For each neighbourhood the heatmaps display the average log2
expression ratio of each gene in the indicated comparisons according to the colour scale at the bottom. The location of the inversion breakpoint
within each neighbourhood is indicated by the arrows. Data from the In(2L)EIN133 inversion and cis male versus female comparisons are shown for
each neighbourhood. The ‘‘cis’’ designation is shorthand for the uninverted progenitor chromosome that carries the 2 RS insertions used to direct the
recombination event. Grey regions indicate no data. While the male versus female comparisons show strong male biased expression (yellow), when
inversion males are compared to their non-inversion progenitors there is very little change in expression (black). T, testis.
doi:10.1371/journal.pbio.1000552.g002
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probes that recognise DNA sequences flanking the In(2LR)EIN136

inversion breakpoint disrupting the neighbourhood at 50B. We

hybridised the fluorescent probes to dissected testes from inversion

homozygotes and measured the distance between the two different

fluorescent signals in spermatocyte nuclei. Linearly, the two

fluorescent probes are separated by a genomic distance of less than

25 kb in the un-inverted neighbourhood and greater than 30 Mb

after inversion. If the two halves of the disrupted neighbourhood

come together in three-dimensional space, then we expect the

distance between signals from the two probes to be close together

in the spermatocyte nucleus. However, our measurements

(Figure 5) clearly show that there is a significant difference

between the probe distances in the inversion (mean = 3.89

microns, SD = 1.86, n = 17) compared to the un-inverted progen-

itor (mean = 0.48 microns, SD = 0.19, n = 29) (p = 1026).

Combined with the gene expression data, our analysis clearly

indicates that although genes in the two separated parts of the

inverted neighbourhood are in distant territories within the

spermatocyte nucleus, they are nevertheless expressed at levels

similar to those in their native un-inverted configuration. Co-

localisation of genes in a neighbourhood to the same physical

region of nucleus is therefore unlikely to be a critical mechanism

for their co-expression.

Discussion

Regulation of gene expression is subject to multiple layers of

control [47,48]. While the expression of an individual gene is

generally independently controlled by its promoter and associated

regulatory elements, it may also be regulated by local epigenetic

mechanisms such as DNA methylation, histone modification, and

chromatin remodelling [49]. The discovery of clusters of co-

expressed genes in many organisms has lead to the suggestion that

gene expression is additionally regulated by genome position.

Non-random organisation of the genome allows compartmental-

isation of the nuclear space: at a simple level this could be

separating active and inactive genes. Such organisation may help

enhance the efficiency of transcriptional activation or repression

and evidence is growing that there is indeed a spatial component

to gene regulation and genome evolution (reviewed in [50–52]).

One facet of gene organisation is suggested to be the clustering of

genes into expression neighbourhoods. In this study we conclude,

at least for the well-defined gene expression neighbourhoods we

have examined, that the contiguous physical organisation of genes

in neighbourhoods is not necessary for the correct expression of

the genes defining that neighbourhood. It is possible that

disrupting gene expression neighbourhoods results in changes in

gene expression levels that are too subtle to be detected by the

microarray or PCR assays we used. While we recognise this we

note that we are able to reproducibly detect small changes in

expression (1.2-fold), and therefore we are confident in asserting

that neighbourhood organisation is unlikely to be a major

contributor to gene expression.

A second caveat is that our inversions rely on transposable

elements carrying recombination sites and it is possible that the

element we use inserts non-randomly with respect to gene expression

neighbourhoods. For example, with the X chromosome inversion,

the RS element is inserted in a 30 kb region between divergent genes

and it is conceivable that this may be a natural break separating two

smaller but independent neighbourhoods. While the analysis of three

independent neighbourhoods suggests that it is unlikely that this

occurs in all three cases, we must nevertheless consider this a

possibility and we are currently disrupting other neighbourhoods to

confirm or refute our conclusions.

Figure 3. Disrupting an embryo gene expression neighbourhood. (A) In(1)EIN103 disrupts an embryo neighbourhood at 18E; the genes in
the neighbourhood and their location in the wild type and inverted chromosomes is indicated. (B) Graph of gene expression ratios from a microarray
comparison of In(1)EIN103 and its uninverted progenitor. The y-axis represents log2 expression ratios.
doi:10.1371/journal.pbio.1000552.g003
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Several methods have been proposed to account for gene

expression neighbourhoods, including bystander gene activation

or the ripple effect, whereby genes are activated simply because of

their proximity to another intensively transcribed gene [53,54].

Other models invoke local effects from strong enhancers, co-

regulating all of the genes in a neighbourhood [40] or unique local

chromatin domains [55]. Based on our disruption experiments,

these models are unlikely to account for gene expression

neighbourhoods since the inversions remove at least some of the

neighbourhood genes away from any local enhancers as well as

disrupting putative chromatin domains.

Interestingly, a recent analysis of gene expression in males of

seven Drosophila species indicates that two of the neighbourhoods we

examined (19F and 50B) are conserved co-expression domains while

the third (35F) lies adjacent to a conserved neighbourhood [16]. It

has been proposed that at least some gene expression neighbour-

hoods are conserved in related species [34,56], including mammals

[31,32]. Our analysis suggests that such evolutionary conservation is

not driven by selection for cis-acting regulatory influences.

Higher order features of genome architecture have been

proposed to account for co-expression of neighbouring genes

[37,39,57]. The coupling of gene co-expression in neighbourhoods

could be controlled by particular histone modifications, initiated at

specific sites and spreading along a chromosomal region until a

boundary element such as an insulator is reached (reviewed in

[58–60]). This type of chromatin domain organisation may

explain the existence of some neighbourhoods, however there is

little association between the currently mapped insulator-binding

proteins and the boundaries of expression neighbourhoods in the

Drosophila embryo [61]. Therefore, although we cannot rule out

the possibility that insulators or other, as yet unknown, sequence

or protein features define the boundaries of gene expression

neighbourhoods, we can conclude that separating boundaries has

no obvious effect on gene expression.

Figure 4. Confirmation by quantitative Real-Time PCR. (A) Supporting the microarray experiments, four genes in the 35F neighbourhood and
two genes flanking the other end of the inversion breakpoint at 23A3 show expected male-specific expression and no change in expression when
inversion bearing males are compared with undisrupted progenitors. (B and C) Similar confirmation of the microarray data is seen with homozygous
(B) and transheterozygous (C) inversions in the 50B neighbourhood. Note the small change in expression detected in females in (B).
doi:10.1371/journal.pbio.1000552.g004
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We explored the possibility that despite disrupting linear

chromosome organisation the inversions do not affect three-

dimensional organisation of chromatin in the nucleus. First we

generated transheterozygotes with a peri- and paracentric

inversion to severely disrupt chromosome organisation, and

second we directly assayed nuclear location by a fluorescent in

situ hybridisation assay. We show that the two halves of a

neighbourhood which are separated by an inversion do not

associate within the same sub-nuclear territory. We therefore

conclude that it is not essential for neighbourhood genes to be in

close proximity in the spermatocyte nucleus for normal levels of

gene expression. Of course we cannot rule out that association

between the separated parts of the neighbourhood may occur

transiently, for example during the initiation of gene expression,

and that such dynamic interactions may not be captured by our

DNA FISH analysis. The eukaryotic interphase nucleus is known

to be a highly compartmentalised, organised, and dynamic

organelle (reviewed in [62,63]). There have been several examples

demonstrating how the activity of genes is linked to their position

within the nucleus ([64–66]; reviewed in [67]), and it is likely that

sub-nuclear positioning contributes to optimising gene activity.

Some distant genes associate via chromatin looping to specific

regions of the nucleus containing high local concentrations of

transcriptional and mRNA-processing machinery, known as

transcription factories [68,69]. Presumably this organisation

contributes to more effective coordination of transcription,

although the functional significance of transcription factories is

currently unclear. If the nuclear concentration of a transcription

factor is limiting [70,71], localising genes regulated by similar

factors could potentially lead to more efficient co-regulation,

however loss of this localisation may not necessarily be deleterious.

We therefore speculate that gene expression neighbourhoods have

tended to remain intact during evolution due to the likelihood that

the genes would be more efficiently co-transcribed. However, it is

clear from our neighbourhood disruption experiments that co-

expression is not absolutely dependent on close gene proximity.

While we examined a somatic gene expression neighbourhood

and found no expression changes associated with inversion, the

majority of our experiments were carried out with testis

neighbourhoods and we cannot eliminate the possibility that the

spermatocyte nucleus represents a special case of neighbourhood

organisation. For example, it is known that the dramatic changes

in gene expression characterising the spermatogenic programme

are associated with the deployment of a specific set of basal

transcription factors, the testis-specific TAFs, and the reorganisa-

tion of at least some aspects of chromatin structure [72–74].

Similar types of changes are also associated with mammalian

spermatogenesis [75,76]. Thus it is possible that in the testis,

neighbourhoods have arisen because they facilitate the organisa-

tion of TAFs into the type of transcription factories described

above. In this scenario we imagine that testis expression is slightly

more efficient with neighbourhood organisation but that the small

effects resulting from simply dividing the neighbourhood in two

are not visible at the level of resolution we can achieve. Since our

current understanding of testis gene expression indicates each gene

is likely to be regulated by discrete, specialised testis promoters

[74], it may be that a single breakpoint has only a very small effect.

Clearly the analysis of additional somatic cell neighbourhoods will

be required to address this issue more fully.

In summary, we demonstrate that in the case of the testis, the

linear integrity of gene expression neighbourhoods, or the physical

co-location in the nucleus of genes defining gene expression

neighbourhoods in the Drosophila genome, is not required for

normal gene expression. We conclude that models explaining the

existence of neighbourhoods that rely on gene proximity or locality

are unlikely to be sufficient to explain this conserved facet of

genome organisation and suggest that more subtle effects, not

easily detected under laboratory conditions, are selected by

evolution to maintain neighbourhoods.

Materials and Methods

Drosophila Methods
All fly stocks were maintained on standard cornmeal-yeast-agar

at 25uC. The RS element stocks used to generate the inversions

are described in Table 1. Inversions were generated according to

the crossing schemes described in Ryder et al. [43]. Salivary gland

polytene chromosomes were prepared from EIN/+ larvae grown

on yeast glucose food, stained with acetic acid-orcein, and viewed

with a Zeiss Axiophot phase contrast microscope.

Microarray Analysis
Adult male and female flies were separated at 4–7 d post-

eclosion and aliquots of 12–15 flies transferred directly into 300 ml

Trizol reagent. Total RNA was extracted according to our

Figure 5. Two colour DNA FISH in spermatocytes. Confocal
microscopy and 3D measurement of separation distances between
proximal and distal probes. DNA FISH 3D reconstructed image from
confocal stack on spermatocytes of (A) progenitor stock and (B)
inverted stock. Proximal probe (A555, yellow arrow), distal probe (A488,
blue arrow). Nuclei are counterstained with DAPI. (C) Histogram plot of
separation distances between proximal and distal probes in progenitor
(n = 29) and inversion (n = 17).
doi:10.1371/journal.pbio.1000552.g005
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standard protocol and directly labelled by incorporation of Cy3 or

Cy5 dCTP during first strand cDNA synthesis reactions. For testis

samples, RNA was extracted from 4–7-d-old adult males and

directly stored in Trizol. Eight pairs of testes devoid of accessory

structures were pooled for RNA extraction and the samples

labelled by random priming with Klenow polymerase after

conversion to double-stranded cDNA. Embryos were aged

between 0 and 21 h and dechorionated in bleach before being

transferred directly into Trizol. Microarrays were printed in-house

on PowerMatrix slides using a Qarray2 spotter with a set of long

oligonucleotides (GEO platform accession GPL8244). After

hybridisation and washing, microarrays were scanned at 5 mm

resolution in a GenePix 4000B dual-laser scanner with GenePix

Pro 5.1 imaging software using 100% laser power and individually

optimised PMT gain settings. Spot-finding and signal quantifica-

tion were performed with Dapple v0.88pre2 [77] followed by

variance stabilizing normalisation [56]. Average expression values

from biological replicates (a minimum of three), standard

deviations, t statistics, and p values were calculated with Cyber

T [78]. Full details of experimental protocols are available from

www.flychip.org.uk. Over-representation of Gene Ontology terms

was calculated using the Hypergeometric distribution and a

Benjamini-Hochberg test correction in FlyMine (www.flymine.org)

[79]. All of the raw microarray data are available from the NCBI

Gene Expression Omnibus under series accessions GSE15565 and

GSE21607.

Real-Time PCR
Two mg total RNA was treated with 1U RQ1 DNase for 30 min

at 37uC prior to reverse transcription. RNA was heated at 65uC for

10 min together with 500 ng anchored oligo(dT)23 primer and

10 nMoles dNTPs, briefly cooled on ice, and incubated with 1 ml

RNAsin, 1 mMole DTT, 1x first strand buffer, and 200 U

Superscript III Reverse Transcriptase for 1 h at 50uC. The reaction

was terminated by incubation at 70uC for 15 min. cDNA

synthesised from 8 ng total RNA was used as a template for

quantitative real-time PCR. Real-time PCR was performed on the

cDNA using the BioRad iQ5 Cycler Real-Time PCR Detection

System, 2x SensiMix Plus SYBR and Fluorescein Kit (Quantace;

Cat. No. QT615-02), 0.5 pMoles primer 1 and primer 2. Cycling

was for 3 min at 95uC, followed by 60 cycles of 95uC for 10 s, 56uC
for 30 s, and 77uC for 6 s. A melt curve was performed directly after

the cycling to verify the products by increasing the temperature

from 56uC to 95uC in 0.5uC increments and acquiring fluorescence

data after each increment. Four independent samples for each

genotype were assayed in three technical replicates. Expression for

each gene was normalised to Rp49 using the deltaCT method: Ratio

(reference/target) = 2CT(reference) – CT(target), where reference =

Rp49 and target = gene of interest. One-tailed t tests were

performed to determine the significance of differences between the

inversion and progenitor genotypes. See Table S6 for primer

sequences used in qPCR.

Probe Labelling for DNA FISH
Probes were designed to amplify genomic DNA regions with the

neighbourhood, either side of the In(2LR)EIN136 inversion

breakpoint at 9510372. Primers were designed to amplify 10

different 2 kb products spread across ,25 kb proximal region

from 9479506 to 9503810 (C probes) and distal region from

9526878 to 9551429 (D probes). All 10 PCR products for each

region were combined before labelling. Fluorescently labelled

probes were generated by using the PCR products as the template

for nick translation to enzymatically incorporate an amine-

modified nucleotide into the probe template, followed by a second

dye-coupling step. Probes were labelled either with Alexa Fluor

488 using FISH Tag DNA Green Kit (Invitrogen F32947) or

Alexa Fluor 555 using FISH Tag DNA Orange Kit (Invitrogen

F32948), according to the manufacturer’s protocol. See Table S7

for primer sequences.

Dissection, Fixation, and Hybridisation of Adult Testes
Testes were dissected from 1–2-d-old adult males from

In(2LR)EIN136 and its progenitor cis stock in PBS. Dissected

testes were pooled in batches of 10 for each genotype and

transferred to 1 ml fix (4% formaldehyde in PBT [PBS+0.1%

Tween-20]) for 20 min, followed by 3610 min washes in fresh

PBT, and then continued directly with hybridisation steps. Two-

colour DNA FISH on whole-mount tissues was performed as

previously described [80], with minor modifications. See Protocol

S1 for detailed protocol.

Microscopy, 3D Image Analysis, and Statistical Analysis of
the Data

Optimally spaced Z-stacks were collected using a Leica SP5

confocal microscope (Leica Microsystems) with a 636 1.4NA l-

corrected objective. Measurement of distance between labelled

sites was performed using Imaris software (Bitplane) with the

‘‘Measurement Points’’ function to measure the distance between

pairs.

Supporting Information

Figure S1 Creating inversions. Chromosomes containing an

RS3 and RS5 element in cis, where one element resides within the

gene expression neighbourhood, are created by recombination

between two chromosomes carrying single elements. The white+

RS elements are reduced by heatshock-induced FLP-recombinase

to generate w2 chromosomes. A second round of FLP recombi-

nase treatment induces recombination between the two elements

in cis generating an easily identified w+ chromosome that is

inverted between the P elements.

Found at: doi:10.1371/journal.pbio.1000552.s001 (0.30 MB JPG)

Figure S2 Inversion cytology. Confirmation of the inversions

by cytological examination of salivary gland polytene chromo-

somes. For each of the indicated inversions, which are in trans with

a wild type chromosome, the breakpoints are marked by the

arrows and cytological locations are indicated.

Found at: doi:10.1371/journal.pbio.1000552.s002 (3.24 MB JPG)

Figure S3 Neighbourhood 19F. Genomic map of the 19F

region from FlyBase with the indicated gene models. Above the

map, the log2 expression ratios in the indicated genotypes. The

triangle and arrow represents the location of the RS insertion. The

lower graphs show the other ends of the inversion breakpoints with

the gene expression measures.

Found at: doi:10.1371/journal.pbio.1000552.s003 (1.44 MB JPG)

Figure S4 Neighbourhood 35F. Genomic map of the 35F

region from FlyBase with the indicated gene models. Above the

map, the log2 expression ratios in the indicated genotypes. The

triangle and arrow represents the location of the RS insertion. The

lower graphs show the other ends of the inversion breakpoints with

the gene expression measures.

Found at: doi:10.1371/journal.pbio.1000552.s004 (1.45 MB JPG)

Figure S5 Neighbourhood 50B. Genomic map of the 50B

region from FlyBase with the indicated gene models. Above the

map, the log2 expression ratios in the indicated genotypes. The

triangle and arrow represent the location of the RS insertion. The
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lower graphs show the other ends of the inversion breakpoints with

the gene expression measures.

Found at: doi:10.1371/journal.pbio.1000552.s005 (1.45 MB JPG)

Figure S6 Embryo neighbourhood. Heatmap of expression

values for the 18E embryo domain (Spellman block 209). The log2

mean centred expression values for each gene in the neighbour-

hood across 88 experiments with RNA from embryo or adults is

plotted according to the colour scale. Neighbourhood genes are

indicated in bold. Data from Spellman and Rubin (2002), main

text reference [14].

Found at: doi:10.1371/journal.pbio.1000552.s006 (0.70 MB JPG)

Figure S7 Plots of mean signal to noise ratio of
normalised A values in disrupted and intact neighbour-
hoods. For each gene, the signal/noise ratio of vsn normalised A

values was averaged for all samples within a replicate group (EIN

and cis together or male and female together). Each gene within the

19F (A), 35F (B), or 50B (C) neighbourhood is represented by a

different symbol. The distribution of signal/noise ratios does not

differ between the experiments where a neighbourhood is disrupted

(indicated by the black bars) and those in which it is intact.

Found at: doi:10.1371/journal.pbio.1000552.s007 (0.85 MB JPG)

Figure S8 MA plots of average signal intensity versus
log-ratio. Genes within a neighbourhood are not significantly

differentially expressed between inverted (EIN) and intact

progenitor (cis) samples. M is the log differential expression ratio

and A is the mean log intensity between the two channels. Small

panels show normalised, log(2)-transformed data from individual

slides of a replicate group and large panel shows the average values

of the replicate group. Genes within the 35F and 50B neighbour-

hoods are shown in red, all other genes on the array are shown in

black. Dotted green line shows loess fit.

Found at: doi:10.1371/journal.pbio.1000552.s008 (1.11 MB JPG)

Protocol S1 Detailed DNA FISH protocol.
Found at: doi:10.1371/journal.pbio.1000552.s009 (0.05 MB DOC)

Table S1 Sex-specific expression. For each of the three

male-specific gene expression neighbourhoods, the FlyAtlas gene

expression call (Up, enriched in testis; None, not enriched in testis;

AG, enriched in male accessory gland), the average log2

expression ratio and p value for male versus female comparisons

in In(2L)EIN133/In(2L)EIN133 and EIN133-cis/EIN133-cis.

Found at: doi:10.1371/journal.pbio.1000552.s010 (0.00 MB

TXT)

Table S2 Neighbourhood gene expression measures.
Average log2 expression ratios and p values for the indicated

genotypes for each of the four neighbourhoods tested.

Found at: doi:10.1371/journal.pbio.1000552.s011 (0.01 MB

TXT)

Table S3 Complete dataset for 19F, 35F, and 50B
inversions. UniqueID, spot identifier; Clone-ID, FlyBase

transcript identifier; FlyBaseID, unique FlyBase identifier; FlyBa-

se_gene, gene name. For each indicated genotype the results of the

CyberT analysis are provided: number of arrays (N), average log2

expression ratio (x), standard deviation (sd), t statistic (t), and

p value (p).

Found at: doi:10.1371/journal.pbio.1000552.s012 (9.48 MB

TXT)

Table S4 Complete dataset for 18E inversion in embryos.
UniqueID, spot identifier; Clone-ID, FlyBase transcript identifier;

FlyBaseID, unique FlyBase identifier; FlyBase_gene, gene name.

For each indicated genotype the results of the CyberT analysis are

provided: number of arrays (N), average log2 expression ratio (x),

standard deviation (sd), t statistic (t), and

p value (p).

Found at: doi:10.1371/journal.pbio.1000552.s013 (1.49 MB

TXT)

Table S5 Significant gene expression changes. For each

inversion the average log 2 ratio and p values for genes with

significant expression changes are listed (.1.5-fold change,

p,0.01).

Found at: doi:10.1371/journal.pbio.1000552.s014 (0.01 MB

TXT)

Table S6 Primer sequences for RealTime PCR probes.
The cytological location and sequence of PCR primer pairs and

product size for RealTime PCR are listed.

Found at: doi:10.1371/journal.pbio.1000552.s015 (0.00 MB

TXT)

Table S7 Primer sequences for DNA FISH probes. The

cytological location and sequence of PCR primer pairs for

generating DNA FISH probes are listed.

Found at: doi:10.1371/journal.pbio.1000552.s016 (0.00 MB

TXT)

Table S8 Signal to noise levels. For each gene within the

three testis neighbourhoods, the average VSN normalised intensity

value for each replica group (Average A), the standard deviation of

this measure (SD), and the signal to noise ratio were calculated.

The Spot status (A, accept; R, reject; S, suspect) assigned by the

Dapple spotfinder is also indicated. Generally the signal to noise

measures are very high and similar irrespective of whether or not

the neighbourhood is disrupted. Low S/N ratios are observed

where suspect or rejected spots are identified.

Found at: doi:10.1371/journal.pbio.1000552.s017 (0.03 MB

TXT)

Table S9 Expression ratio confidence values. 90% and

95% confidence intervals for the average expression ratio (M

value) of each gene in each experiment. The Spot status (A, accept;

R, reject; S, suspect) assigned by the Dapple spotfinder is also

indicated.

Found at: doi:10.1371/journal.pbio.1000552.s018 (0.04 MB

TXT)
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