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Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km
resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in
urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was
developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between
MAIAC AOD and PM2.5 as measured by the 27 EPA ground monitoring stations was investigated. These results
were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The
coefficients of determination for MOD04 and for MAIAC are R2 =0.45 and 0.50 respectively, suggested that AOD
is a reasonably good proxy for PM2.5 ground concentrations. Finally, we studied the relationship between PM2.5
and AOD at the intra-urban scale (610 km) in Boston. The fine resolution results indicated spatial variability in
particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM2.5
relationship does not depend on relative humidity and air temperatures below ~7 °C. The correlation improves
for temperatures above 7 – 16 °C. We found no dependence on the boundary layer height except when the
former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical
depth (AOD) retrievals from MODIS to predict PM2.5 concentrations within the greater Boston area. With this
approach we can control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends
on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and
ground surface reflectance. Our results show that the model-predicted PM2.5 mass concentrations are highly
correlated with the actual observations (out-of-sample R2 of 0.86). Therefore, adjustment for the daily variability
in the AOD-PM2.5relationship provides a means for obtaining spatially-resolved PM2.5 concentrations.
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High resolution aerosol data from MODIS satellite for urban air quality studies

1. Introduction

The adverse health effects from particulate matter (PM)pollution with aerodynamic diameter 6 2.5 µm (PM2.5)must be considered in developing policies to improveair quality [1]. Substantial epidemiologic literature hasdemonstrated that exposure to ambient particulate mat-ter (PM) is associated with increased morbidity and mor-tality, particularly associated with cardiopulmonary dis-ease [2, 3] and lung cancer [3, 4]. Since PM is createdby various anthropogenic and natural sources with vastlydifferent atmospheric residence times, it has a high spatio-temporal variability. An accurate assessment of this vari-ability is important as it leads not only to stronger associ-ations between exposure and health but also to deeper un-derstanding of epidemiological time-series studies [5, 6].Routine measurements of ground-level PM2.5 concentra-tions by air quality monitoring networks are of great im-portance in assessing exposures, but their spatial coveragehas been limited. However, recently it has become clearthat satellite remote sensing can be an important tool tocomplement the ground level measurements. The relevantsatellite-derived parameter is the aerosol optical depth(AOD) which quantifies the extinction of solar radiationat a given wavelength due to presence of aerosols in anatmospheric column. Because the satellite-derived AODis a measure of how much light is absorbed/scattered byparticles in the column that are affected by ambient con-ditions (e.g., variable humidity and consequently variableamounts of water adsorbed on particles), while PM2.5 massis a measure of dry particles near the surface, these twoparameters are not expected to be strictly correlated. Fur-thermore, to be used for air quality applications, includ-ing health studies, the satellite retrieved AOD data (e.g.a total column optical measurement) must be convertedto estimates of PM2.5 concentrations (e.g. a surface-levelparticulate mass measurement). This type of analysis re-quires PM2.5-AOD collocated pairs which itself is a re-strictive requirement [7].Until recently, the main source of global satellite aerosoldata was the MODIS satellite MOD04 algorithm, whichprovides data at a 10 km resolution. Recently, a newMulti-Angle Implementation of Atmospheric Correction(MAIAC) algorithm was developed for MODIS which pro-vides aerosol information at 1 km resolution [8, 9]. Westarted with a direct comparison between MOD04 andMAIAC retrievals. Toward this end, we conducted a multi-year analysis to study the relation of same-day/same lo-cation AOD vs PM2.5(2002 – 2008) in the southern partof New England. In addition, we conducted a multi-yearanalysis by breaking down AOD vs PM2.5 regressions byseason (spring, summer, fall, winter) and by site location.

Furthermore, we studied the intra-urban (at scales lessthan 10 km) variability of the relationship between PM2.5and AOD for Boston. Finally, we explore whether it ispossible to obtain accurate estimates of PM2.5 concen-trations using a MAIAC AOD retrieval and mixed effectsmodel approach (daily adjustment for AOD vs PM2.5 re-lationship). Our goal is to show how variability in theAOD vs PM2.5 relationship can be captured by a statis-tical model during one year of data (January 1 throughDecember 31, 2003).
1.1. Ground level PM2.5observations

Twenty-four hour-integrated PM2.5 concentrations weremeasured at 26 U.S. Environmental Protection Agency(EPA) PM2.5 monitoring sites during 2002 – 2008 (Fig-ure 1, highlighted by dots and Table 1). These include15 sites from Massachusetts (MA) and 11 sites from Con-necticut (CT). Sampling frequency differed by site and in-cluded samples collected every day, every third day, andevery sixth day. Additionally, we used 24 hour-integratedPM2.5 concentrations from the Harvard School of PublicHealth (HSPH) supersite located near downtown Boston.Data from this site have been used in a large number ofepidemiological studies to assess the temporal variabilityof individual and population exposures in the region.

Figure 1. Study area and EPA monitoring sites for New England
used for comparison between MOD04 and MAIAC data.
Area highlighted by box is the Boston urban domain.
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Table 1. EPA ground monitoring sites used in this study over New
England. Boston sites are highlighted in italic font.

Site ID City Latitude Longitude09-001-0010 Bridgeport, CT 41.17 −73.1909-001-0113 Bridgeport, CT 41.18 −73.1909-001-1123 Danbury, CT 41.40 −73.4409-001-2124 Stamford, CT 41.06 −73.5309-001-3005 Norwalk, CT 41.11 −73.4109-001-9003 Westport, CT 41.12 −73.3409-003-1003 E. Hartford, CT 41.78 −72.6309-003-1018 Hartford, CT 41.76 −72.6709-009-0018 New Haven, CT 41.29 −72.9009-009-0026 New Haven, CT 41.29 −72.8909-009-1123 New Haven, CT 41.31 −72.9209-009-2008 New Haven, CT 41.33 −72.9209-009-2123 Waterbury, CT 41.55 −73.0409-009-8003 W. Haven, CT 41.28 −72.9609-011-3002 Norwich, CT 41.52 −72.0825-005-1004 Fall River, MA 41.68 −71.1725-009-2006 Lynn, MA 42.47 −70.9725-009-5005 Haverhill, MA 42.77 −71.1025-013-0008 Chicopee, MA 42.19 −72.5625-013-0016 Springfield, MA 42.11 −72.5925-013-2009 Springfield, MA 42.11 −72.6025-023-0004 Brockton, MA 42.08 −71.0125-025-0027 Boston, MA 42.37 −71.0625-025-0042 Boston, MA 42.33 −71.0825-025-0043 Boston, MA 42.36 −71.0525-025-0002 Boston, MA 42.35 −71.1025-027-0020 Worcester, MA 42.27 −71.80Harvard supersite Boston, MA 42.34 −71.10

1.2. Satellite data

A new algorithm MAIAC [8] has been developed to processMODIS data. MAIAC retrieves aerosol parameters overland at 1 km resolution simultaneously with parametersof a surface bidirectional reflectance distribution function(BRDF). This is accomplished by using the time seriesof MODIS measurements and simultaneous processing ofa group of pixels. The MAIAC algorithm ensures thatthe number of measurements exceeds the number of un-knowns, a necessary condition for solving an inverse prob-lem that does not require the assumptions typically usedby current operational algorithms. The MODIS time se-ries accumulation also provides multi-angle coverage forevery surface grid cell, which is required for the BRDFretrievals from MODIS data. The aerosol parameters in-clude optical depth (total aerosol) and fine mode frac-tion. Following the MODIS operational aerosol algorithm

(MOD04) [9], models for the fine and coarse aerosol frac-tions are specified regionally based on the climatologyof the Aerosol RObotic NETwork (AERONET) [10] sun-photometer data. AERONET validation over the conti-nental USA showed that the MAIAC and MOD04 algo-rithms have a similar accuracy over dark and vegetatedsurfaces, but also showed that MAIAC generally improvesaccuracy over brighter surfaces, including most urban ar-eas [8]. The improved accuracy of MAIAC resulted fromthe explicit surface characterization method, in contrastto the empirical surface parameterization approach, uti-lized in the MOD04 algorithm. Furthermore, MAIAC in-corporates a cloud mask (CM) algorithm based on spatio-temporal analysis which augments traditional pixel-levelcloud detection techniques [11]. In addition, the residualcontamination by clouds and cloud shadows was reducedby discarding 2 pixels adjacent to detected clouds.
In addition to MAIAC data we used daily MODIS Level2 (MOD04) Collection 5.1 Aerosol data from the Terraplatform that are produced at a spatial resolution of10×10 km2 (at nadir). More details about the MODISAOD retrieval are reported in [8, 12]. We conducted acomparative analysis of AOD between MAIAC and the re-spective MYD04 product. It is important to mention thatthe MYD04 product is reported for an area of 20 by 20,500 m pixels in the swath format. This area correspondsto spatial resolution of 10×10 km2 at nadir, however itgrows with the scan angle reaching ~20×40 km2 at theedge of scan due to the respective growth of the MODISpixel footprint by a factor of ~2×4. Conversely, MAIACprovides a uniform 1 km gridded resolution at selectedprojection regardless of the scan angle. This means thatthe MAIAC product is under-sampled by a factor of 4 atnadir, considering maximal available spatial informationfrom 500 m pixels, and is oversampled by a factor of 2 atthe edge of scan. In this regard, MYD04 data are alwaysunder-sampled by a factor of 400. In order to perform a di-rect MYD04-MAIAC comparison, the area of each MYD04pixel was approximated by a polygon, and all MAIAC 1 kmdata fitting this area were averaged.
1.3. Meteorological data

All meteorological variables used in the analysis (tem-perature, boundary layer and relative humidity) were ob-tained through the National Climatic Data Center (NCDC)(NCDC, 2010). Only continuous operating stations withdaily data running from 2000 to 2008 were used. In ad-dition, we used meteorological data from Boston Loganairport. Grid cells were matched to the closest weatherstation for meteorological variables.
3
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High resolution aerosol data from MODIS satellite for urban air quality studies

1.4. Data analyses
We investigated the associations between AOD and PM2.5daily measurements at the sampling sites for the years2002-2008. We first made a direct comparison betweenMOD04 and MAIAC retrievals, with a multi-year analy-sis of AOD vs PM2.5 for the same days (2002-2008) andlocations (27 EPA monitoring stations) in New England.Using the same data we performed AOD vs PM2.5 regres-sion analysis by season (spring, summer, fall, and winter)for each of the three regions. In addition, we conductedAOD vs PM2.5 regression analysis by site location.Next, we analyzed the intra-urban variability in AOD vsPM2.5 relationship inside a 10×10 km2 area of greaterBoston containing four EPA ground monitors and the Har-vard Supersite. To take into account the variability ofthe sampling frequency of the EPA stations, only dayswith at least three available AOD-PM2.5 pairs inside a10×10 km2 box were selected (Figure 1, highlighted bythe polygon). There were a total of 304 days with 3 –5 observations. In addition, we analyzed PM2.5 vs AODassociation in relation to PM2.5 particle levels, temper-ature, boundary layer height and relative humidity. Fi-nally, we explored whether it is possible to obtain ac-curate estimates of PM2.5 concentrations using MAIACAOD retrievals and statistical modeling with a resolutionof 1×1 km2 conducted for Boston, MA in the northeasternpart of U.S.
1.5. Mixed effects model approach
In this study we used a mixed-effects model approach thataccounts for day-to-day variability. A basic assumption isthat the relationship varies daily because it depends ontime-varying parameters such as relative humidity, PM2.5vertical and diurnal concentration profiles, PM2.5 opticalproperties and surface reflectance. In a recent paper, weshowed that the mixed effects model approach provideshigher accuracy and precision in predicting PM2.5 con-centrations based on the MODIS AOD dataset than asimple regression model [13, 14]. In the present study weuse this model approach to predict PM2.5 concentrationsbased on MAIAC AOD retrievals. Consequently, quan-titative relationships between PM2.5 concentrations mea-sured at the 27 PM2.5 monitoring sites and AOD valuesin their corresponding grid cells were derived. We usedthe following mixed effects model with random interceptsand slopes (Eq. 1):
PMij = (α+uj )+[(β1+vj )×AODij ]+Si+εij (ujvj ) ∼ [(oo),Σβ ](1)where PMij is the PM2.5 concentration at a spatial sitei on day j; AODij is the AOD value in the grid cell cor-

responding to site i on day j; α and uj are the fixed andrandom intercepts, respectively; β1 and vj are the fixed andrandom slopes, respectively; Si ~N(0, σs2) is the randomintercept of site i; εij ~N(0, σ2) is the error term at sitei on a day j; and Σβ is the variance-covariance matrixfor the random effects. The AOD fixed effect in the model(Eq. 1) accounts for the effect of AOD on PM2.5, which wasthe same for all study days. The AOD random effects ex-plain the daily variability in the PM2.5-AOD relationship.The solution of the mixed model equations is a maximumlikelihood, a form of estimation that accounts for the pa-rameters in the fixed-effects structure of the model to re-duce the bias in the covariance parameter estimates [15].Currently, this is the method implemented for the SASstatistical software package (proc mixed).Finally, PM2.5 concentrations for each grid cell on a dayj were estimated using the corresponding AOD values asfollows:
PMij = (α + uj ) + [(β1 + vj )× AODij ] + εij (2)

The fixed and random intercepts, and the fixed and randomslopes for each study day were derived previously fromEq. 1. Note that the random estimates for the site termwere excluded. In this way AOD values were unbiasedand representative of their corresponding grid cell.We use a cross-validation (CV) approach to evaluate theability of the model to predict PM2.5 concentrations foreach pixel in the study area. Thus, the dataset was re-peatedly randomly divided into 90% (calibration) and 10%(held-out test) splits. We applied the fitted calibrationmodel to estimate PM2.5 for the held-out test set. This“out-of-sample” process was repeated ten times to calcu-late the cross-validated (CV) R2 values.
2. Results
2.1. Direct comparison with MOD04 retrieval
This section studies the subset of MYD04/MAIAC datafor days when both products are available for a given EPAsite. Figure 2 shows the direct comparison between PM2.5and AOD for MOD04 (10 km) and MAIAC (1 km) for thesame days and locations (2002-2008) in New England (27locations, N=2310, p<0.0001). The coefficients of deter-mination (R2) for MOD04 and MAIAC are 0.45 and 0.50respectively, suggesting that AOD is a reasonably goodproxy for PM2.5 ground concentrations. In other words,near-surface PM2.5 concentrations do not reflect the totalAOD column values.The previous research has shown that the PM2.5 vs AODrelationship varies seasonally and by location [16]. Ta-
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ble 2 presents a multi-year, seasonal (spring, summer,fall, winter) comparison between MOD04 and MAIAC. Al-though MAIAC shows intercepts that are lower than thosefor MOD04, for 8 year of measurements, slopes for bothretrievals are similar, with the range of slopes between 7 –8 µg/m3 in winter and 26 – 31 µg/m3 in spring, summerand fall. The slight improvement in correlation is relatedto the finer resolution of MAIAC with its better correspon-dence between the monitoring site and the respective gridcell size, and better performance over bright urban areas.

Figure 2. Comparison between PM2.5 and AOD for MODIS 10 km
(MOD04) and MAIAC 1 km for the same days and
locations (2002-2008) in New England (27 locations,
N=2310). The solid line represents the regression line,
and the dashed line displays the 1:1 line.

Table 2. Seasonal comparison between coarse MOD04 AOD 10 km
and fine resolution MAIAC 1 km AOD for the same days and
locations.

Data Source Statistics Summer Fall Winter Spring

MOD04

N 786 886 74 564Intercept 8.15 7.26 7.41 5.38Slope 26.3 28.9 7.7 26.2
p-value <.0001 <.0001 0.285 <.0001
R2 0.45 0.30 0.002 0.35

MAIAC

N 786 886 74 564Intercept 6.08 5.8 7.04 3.56Slope 25.3 28.9 8.04 31.9
p-value <.0001 <.0001 0.226 <.0001
R2 0.50 0.35 0.007 0.41

Figure 3 shows the frequency distribution of the correla-tion coefficient between PM2.5 and AOD by date for 2002-2008, for the same days and sites. In general, both re-trievals provide a similar accuracy. Importantly, as can bealso seen, the AOD vs PM2.5 relationship changes by datefor both, MOD04 and MAIAC indicating a clear temporalvariation in the association between both parameters.While Figure 3 shows the daily variability in AOD vs

Figure 3. Frequency distribution of daily AOD vs PM2.5 correlations.

PM2.5 relationship, Figure 4 presents correlation coeffi-cients between PM2.5 and AOD by the EPA site locationfor 2002-2008 (the same days were used for MAIAC andMOD04, p<0.005 for all sites). In general, both retrievalsprovide similar results. Note that the range of correla-tions for both retrievals across the sites is substantial,which most likely reflects the local meteorological condi-tions and spatial homogeneity of PM2.5, namely how wellthe local PM2.5 measurement can be generalized to thelarger footprint of the AOD pixel.

Figure 4. Correlation coefficient between PM2.5 and AOD by EPA
site location for 2002-2008: dashed line indicates corre-
lation for MAIAC and solid line for MOD04.

2.2. Intra-urban variability in the AOD vs
PM2.5 relationship
The high resolution AOD potentially carries informationabout local-scale variability, which is especially impor-tant for highly populated urban areas. We define the lo-cal variability as the variability in daily averaged PM2.5values among different EPA stations (from 3 to 5) in the10x10 km2 box. Figure 5 shows an intra-urban AOD-PM2.5 correlation in Boston with R2 =0.38 for the entirestudy period 2002 – 2008 (N=304 days). Each PM2.5value for a given station in Figure 5 represents a dailyaveraged value.
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High resolution aerosol data from MODIS satellite for urban air quality studies

Figure 5. Intra-urban scatter plot between PM2.5 at EPA monitoring
stations (with at least 3 ground PM2.5 measurements) and
1 km MAIAC AOD measured over the entire period 2002-
2008 for Boston (N=304 days). The solid line represents
the regression line, and the dashed line displays the 1:1
line.

First, we explored an intra-urban AOD-PM2.5 correlationduring different pollution days, based on EPA observa-tions. Figure 6 shows correlation coefficient by date fordifferent levels of daily averaged PM2.5 concentrations.As expected, at low PM2.5 levels (<5 µg/m3), the distri-bution of correlation coefficient is almost uniform in therange [−1; 1] indicating low sensitivity of AOD and highrelative errors of both AOD and PM2.5. The correlationimproves at higher PM2.5 levels, notably for ranges 5-10and 10 – 20 µg/m3. The correlation seems to decrease athigher PM levels (>20 µg/m3) which may be an artifactof low sampling statistics.The intra-urban AOD-PM2.5 correlation (Figure 5) in-cludes the temporal meteorological variability for 2002 –2008. It has been shown that under conditions of a well-mixed boundary layer with low ambient relative humid-ity (RH), the relationship between PM2.5 and AOD maybe very robust [17]. With this in mind, in Figure 7a-cwe studied the influence of temperature, relative humidityand boundary layer height (BLH) on daily PM2.5 vs AODcorrelations. Our results do not show any dependence ofdaily AOD-PM2.5 correlations in the Boston metropolitanarea on RH and air temperature below 7°C. The correla-tion improves at higher temperatures, in particular above7°C typical of late spring-summer-early fall conditions.Figure 7b also shows an improved correlation for the mod-erate boundary layer heights of 250 – 500 m, and a poorercorrelation outside of this range. Some of these resultshave a clear physical explanation: for example, the low

Figure 6. Correlation coefficient as a function of spatial variability in
PM2.5 concentrations.

temperatures with shallow BLH are associated with win-ter conditions when average PM2.5 and AOD are low andone cannot expect good AOD-PM2.5 correlation.
2.3. Prediction of PM2.5 concentrations using
mixed effect model approach
Since these relationships between AOD and PM2.5 mea-surements vary daily, mixed effects models were used toallow for the regression intercepts and slopes to varydaily. The fixed effects of the AOD intercept and slopewere statistically significant: α =9.3 (p<0.0001) and
β1 =17.2 (p<0.0001) respectively. The fixed effects ofspatial and temporal predictors were also significant. Inaddition, the random slopes for AOD by day, and by dayand region were both significant (p<0.0001). Figure 8shows the daily variation of random AOD intercepts andslopes. Note that these results support the findings thatbecause the parameters influencing the relationship be-tween PM2.5 and AOD vary from day to day within a givendomain, it is necessary to adjust for this daily variability.
The measured and predicted PM2.5 concentrations in thecross validation (CV) model are shown in Figure 9. As canbe seen, the CV mixed effects model performed quite well.The CV test resulted in a R2 value of 0.90 and slope of0.91, indicating a good agreement between the measuredand predicted concentrations.Finally, the model was applied for retrieval days to ex-plore the pattern of PM2.5 concentrations on a daily basis.June 25th was selected as the high pollution event to an-alyze the predicted PM2.5 concentrations resulting fromthe mixed effect model approach. During this day, the av-erage concentrations on EPA monitoring stations in the
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Figure 7. Correlation coefficient by date conditioned at several meteorological parameters: a) temperature, b) boundary layer height, and c)
relative humidity.

Figure 8. Frequency distribution of the random intercepts and
slopes.

New England area ranged between 25-42 µg/m3. During20-24th of June 2003, a forest fire in the Quebec province,Canada, brought smoke pollution into Massachusetts, NE.Figure 10 presents a MODIS Level 1B true-color image

Figure 9. Measured vs predicted PM2.5 concentrations for the cross-
validation model (left) and the test set (right). The solid
line represents the regression line, and the dashed line
displays the 1:1 line.

and shows long range transport of thick haze from firesin the Quebec province, Canada on June 24, 2003 (A)and June 25, 2003 (B) (left, red arrow) along the east-ern seaboard of the U.S. Figure 9 C and D highlight highAOD values at 550 nm (right) which are elongated withthe plum.In Figure 11 we show the spatial pattern of PM2.5 con-centrations resulting from the mixed effect model on June25, 2003. As can be seen, the spatial concentration pat-terns are different across the domain and are highest inBoston due to high pollution transport from forest fires inCanada. Importantly, as shown in Figure 11, the variabil-ity in PM2.5 concentrations at fine scale resolution canbe high even during high pollution events when the con-
7
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Figure 10. Maps A and B: MODIS Level 1B true-color image shows
long range transport of thick haze from fires in the Que-
bec province, Canada on June 24, 2003 (A) and June
25, 2003 (B) (left, red arrow) along the eastern seaboard
of the U.S. Maps C and D: High AOD values at 550 nm
(right) are elongated with the plume.

trast in pollution levels between geographically adjacentareas is not expected to be high. Compare dashed line 1on Figure 11: for the area of ~20 km, there is variabilityin particle concentration ~4 µg/m3 that can be captured.Furthermore, the fine resolution results indicated spatialvariability at a sub-10 kilometer scale.
3. Conclusions
This paper analyzed how the spatial resolution of theAOD product affected the correlation between satellite-retrieved AOD and ground based PM2.5 concentrationsusing 7 years of MODIS Terra observations over thesouthern part of New England. A direct comparison be-tween coarse MOD04 10 km AOD and high resolutionMAIAC 1 km AOD for all collocated AOD-PM2.5 pairs forthe same days and locations showed that although bothretrievals provide reasonable results, MAIAC was found toprovide a slightly better correlation. Furthermore, there isclear temporal variation in the association between AODand PM2.5. Importantly, a local analysis for Boston areashowed that AOD-PM2.5 relationship does not depend onRH and air temperatures below ~7°C. The correlation im-proves for temperatures above 7 – 16°C. We found a poorercorrelation between AOD and PM2.5 on days with very lowor very high boundary layer height.From the epidemiological and exposure assessment pointof view, it is of high importance to have information about

Figure 11. PM2.5 concentrations modeled by mixed effects ap-
proach for June 25, 2003.

the spatial variability of the exposures in the city. Sev-eral studies published in the last 3 years have shown thathigh spatial resolution is essential to detect spatial vari-ability in PM levels [18] and in aerosol loadings at re-gional and at a sub-10 km scale (e.g. intra-urban do-main) [19, 20]. Our study using MAIAC data and mixedeffect approach showed high accuracy in the New Eng-land domain thereby indicating that our model based onMAIAC data can be used to investigate the intra-urbanexposure contrasts in PM2.5 levels.Our results show a daily adjustment using a mixed ef-fects model approach effectively controls the combinedeffects of many parameters that can influence the dailyvariability in the AOD-PM2.5 relationship. This impliesthat within a given region, the types of aerosols may bemore homogeneous and the height of the boundary layerand humidity may be more uniform, making the relation-ship between AOD to PM2.5 less variable. Therefore, theproposed method has the advantage that it can easily beapplied to other regions by taking into account the con-ditions prevailing in each region, and adjusting for dailyvariability in the AOD vs PM2.5 relationship.Despite promising results, more data need to be processedand analyzed to understand the full potential and lim-itations of the high resolution MAIAC AOD product forimproving the accuracy in PM2.5 estimations. Next, addi-tional parameters can be considered in the model thereby
8
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improving the accuracy of PM2.5 estimates. Furthermore,in order to further investigate the strengths and limita-tions of using high resolution satellite AOD data for theroutine modeling of PM2.5 concentrations during high andlow pollution days we are planning to conduct a compre-hensive multi-year study based on the full set of MODISmeasurements. Next, further improvements to the MAIACAOD retrieval algorithm would improve accuracy in PM2.5estimation. It is important to emphasize though, that theinformation content of AOD data alone is limited, and thebest results may be achieved by combining different datasources including, for example, the aerosol vertical profileinformation from satellite or ground-based lidars.
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