
Yuichi Tsuda- PhD
- Professor at Japan Aerospace Exploration Agency
Yuichi Tsuda
- PhD
- Professor at Japan Aerospace Exploration Agency
Deputy Director General, Institute of Space and Astronautical Science, JAXA
About
433
Publications
49,519
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,220
Citations
Introduction
Field of Interests: Astrodynamics, Orbital Mechanics, Spacecraft System, Spacecraft Guidance Navigation Control, Solar Sail, Small Satellite Technology, Formation Flying, Solar System Explorations, Small Body Explorations, Sample Return Mission
Current institution
Publications
Publications (433)
Context. Samples from the asteroid Ryugu provide key information on the initial composition and evolutionary processes of primitive bodies.
Aims. This study aims to detect H 2 O spectral features associated with inter-layer water in a statistically significant number of Ryugu grains protected from terrestrial contamination.
Methods. We analysed hyp...
JAXA's Hayabusa2 sample return mission visited the volatile‐rich carbonaceous (C‐type) asteroid (162173) Ryugu with the aim of ground‐truthing remote observations, returning a pristine sample from a C‐type asteroid, and strengthening links between asteroids and the meteorite collection. Here, we have conducted a systematic study of coarse (>10 μm)...
Understanding the processes of aqueous alteration within primitive bodies is crucial for unraveling the complex history of early planetesimals. To better identify the signs of this process and its consequences, we have studied the heterogeneity at a micrometric scale of the structure of the aliphatic organic compounds and its relationship to its mi...
Nucleosynthetic isotope variations are powerful tracers to determine genetic relationships between meteorites and planetary bodies. They can help to link material collected by space missions to known meteorite groups. The Hayabusa 2 mission returned samples from the Cb‐type asteroid (162173) Ryugu. The mineralogical, chemical, and isotopic characte...
This paper outlines the operation result of the reentry terminal guidance phase of the asteroid explorer Hayabusa2. Hayabusa2 successfully returned to Earth after 12 months of the return interplanetary cruise using the ion engine. The last 2 months of the return cruise required accurate trajectory control. In this phase, called the reentry terminal...
The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu and CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu...
The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and...
The surface morphology of regolith grains from the C‐type asteroid Ryugu was studied in search of evidence of impact events on the asteroid. Scanning electron microscopy revealed that ~8% of C0105‐042 Ryugu grains have a smooth surface on one side of the grains. One of these grains has striated linear grooves (striations) on its smooth surface. Tra...
Parent bodies of C-type asteroids may have brought key volatile and organic-rich compounds to the terrestrial planets in the early stages of the Solar System. At the end of 2020, the JAXA Hayabusa2 mission successfully returned samples from Ryugu, providing access to a primitive matter that has not suffered terrestrial alteration. Here we report th...
Ryugu is the C-type asteroid from which material was brought to Earth by the Hayabusa2 mission. A number of individual grains and fine-grained samples analysed so far for noble gases have indicated that solar wind and planetary (known as P1) noble gases are present in Ryugu samples with concentrations higher than those observed in CIs, suggesting t...
Returned samples from the carbonaceous asteroid (162173) Ryugu provide pristine information on the original aqueous alteration history of the Solar System. Secondary precipitates, such as carbonates and phyllosilicates, reveal elemental partitioning of the major component ions linked to the primordial brine composition of the asteroid. Here, we rep...
Primordial carbon delivered to the early earth by asteroids and meteorites provided a diverse source of extraterrestrial organics from pre-existing simple organic compounds, complex solar-irradiated macromolecules, and macromolecules from extended hydrothermal processing. Surface regolith collected by the Hayabusa2 spacecraft from the carbon-rich a...
We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic ac...
We present here an investigation of Ryugu particles recovered by the Hayabusa2 space mission and their extracted carbonaceous acid residues using Raman spectroscopy. Raman parameters of Ryugu intact grains and their acid residues are characterized by broad D (defect induced) and G (graphite) band widths, indicating the presence of polyaromatic carb...
The dynamical environment around the asteroid (162173) Ryugu is analyzed in detail using a constant-density polyhedron model based on the measurements from the Hayabusa2 mission. Six exterior equilibrium points (EPs) are identified along the ridge line of Ryugu, and their topological classifications fall into two distinctive categories. The initial...
Regolith samples returned from asteroid 162173 Ryugu by the Hayabusa2 mission provide direct means to study how space weathering operates on the surfaces of hydrous asteroids. The mechanisms of space weathering, its effects on mineral surfaces, and the characteristic time scales on which alteration occurs are central to understanding the spectrosco...
Apatite is present as an accessory phase in many meteorites and is often formed as a secondary product of aqueous alteration. Its propensity to incorporate rare earth elements (REE) results in apatite usually being the main REE‐bearing phase in hydrously altered meteorites. Asteroid Ryugu is thought to have experienced pervasive aqueous alteration...
The nitrogen isotope compositions of two samples returned from the asteroid Ryugu were determined using a stepwise combustion method, along with Ivuna (CI) and Y‐980115, a CI‐like Antarctic meteorite, as references. The two Ryugu samples A0105‐07 and C0106‐07 showed bulk δ ¹⁵ N values of +1.7 ± 0.5‰ and +0.2 ± 0.6‰, respectively, significantly lowe...
Extraterrestrial minerals on the surface of airless Solar System bodies undergo gradual alteration processes known as space weathering over long periods of time. The signatures of space weathering help us understand the phenomena occurring in the Solar System. However, meteorites rarely retain the signatures, making it impossible to study the space...
We analyzed an asteroid Ryugu sample returned to Earth by JAXA's Hayabusa2 mission using nanoIR, SEM, and TEM microscopy. We identified multiple distinct carbon reservoirs within the phyllosilicate matrix and demonstrate infrared spectral affinities for some of the carbon to insoluble organic matter (IOM). TEM studies of Ryugu samples have allowed...
The analysis of samples returned from the C-type asteroid Ryugu has drastically advanced our knowledge of the evolution of early solar system materials. However, no consensus has been obtained on the chronological data, which is important for understanding the evolution of the asteroid Ryugu. Here, the aqueous alteration age of Ryugu particles was...
Oxygen 3‐isotope ratios of magnetite and carbonates in aqueously altered carbonaceous chondrites provide important clues to understanding the evolution of the fluid in the asteroidal parent bodies. We conducted oxygen 3‐isotope analyses of magnetite, dolomite, and breunnerite in two sections of asteroid Ryugu returned samples, A0058 and C0002, usin...
Solar system abundances of the elements, which are determined by spectroscopic measurements of the solar photosphere and laboratory analyses of CI (Ivuna-type) carbonaceous chondrites, are a cornerstone to understand the origin and evolution of planets and other constituents, such as asteroids and comets. Mercury (Hg) is one of the elements whose s...
Context . The JAXA Hayabusa2 mission returned well-preserved samples collected from the carbonaceous asteroid Ryugu, providing unique non-terrestrially weathered samples from a known parent body.
Aims . This work aims to provide a better understanding of the formation and evolution of primitive asteroidal matter by studying the fine scale associati...
Autonomous navigation is an essential technique for distant small-body exploration to update the spacecraft state and control the spacecraft position relative to the asteroid. This paper describes a point cloud-based navigation method for self-localization estimation by matching asteroid point cloud data and asteroid images using Hough transformati...
Samples from asteroid Ryugu, brought back by asteroid explorer Hayabusa2, are important for investigating the origin and evolution of the solar system. Here, we report the elemental compositions of a 123‐mg Ryugu sample determined with a nondestructive muon elemental analysis method. This method is a powerful tool for determining bulk chemical comp...
In order to gain insights on the conditions of aqueous alteration on asteroid Ryugu and the origin of water in the outer solar system, we developed the measurement of water content in magnetite at the micrometer scale by secondary ion mass spectrometry (NanoSIMS) and determined the H and Si content of coarse‐grained euhedral magnetite grains (polyh...
Transmission electron microscopy analyses of Hayabusa2 samples show that Ryugu organic matter exhibits a range of morphologies, elemental compositions, and carbon functional chemistries consistent with those of carbonaceous chondrites that have experienced low‐temperature aqueous alteration. Both nanoglobules and diffuse organic matter are abundant...
The Hayabusa2 spacecraft delivered samples of the carbonaceous asteroid Ryugu to Earth. Some of the sample particles show evidence of micrometeoroid impacts, which occurred on the asteroid surface. Among those, particles A0067 and A0094 have flat surfaces on which a large number of microcraters and impact melt splashes are observed. Two impact melt...
The Hayabusa2 mission from the Japan Aerospace Exploration Agency (JAXA) returned to the Earth samples of carbonaceous asteroid (162173) Ryugu. This mission offers a unique opportunity to investigate in the laboratory samples from a C‐type asteroid, without physical or chemical alteration by the terrestrial atmosphere. Here, we report on an investi...
Ryugu asteroid grains brought back to the Earth by the Hayabusa2 space mission are pristine samples containing hydrated minerals and organic compounds. Here, we investigate the mineralogy of their phyllosilicate‐rich matrix with four‐dimensional scanning transmission electron microscopy (4D‐STEM). We have identified and mapped the mineral phases at...
Characterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing trea...
Polycyclic aromatic hydrocarbons (PAHs) contain ≲20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures ≳1000 kelvin), by (~10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryug...
We report Nd and Sm isotopic compositions of four samples of Ryugu returned by the Hayabusa2 mission, including “A” (first touchdown) and “C” (second touchdown) samples, and several carbonaceous chondrites to evaluate potential genetic relationships between Ryugu and known chondrite groups and track the cosmic ray exposure history of Ryugu. We reso...
Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting...
The nucleosynthetic isotope composition of planetary materials provides a record of the heterogeneous distribution of stardust within the early solar system. In 2020 December, the Japan Aerospace Exploration Agency Hayabusa2 spacecraft returned to Earth the first samples of a primitive asteroid, namely, the Cb-type asteroid Ryugu. This provides a u...
Samples returned from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 mission revealed that Ryugu is composed of materials consistent with CI chondrites and some types of space weathering. We report detailed mineralogy of the fine‐grained Ryugu samples allocated to our “Sand” team and report additional space weathering features found on t...
The Hayabusa2 mission sampled Ryugu, an asteroid that did not suffer extensive thermal metamorphism, and returned rocks to the Earth with no significant air exposure. It therefore offers a unique opportunity to study the redox state of carbonaceous Cb‐type asteroids and evaluate the overall redox state of the most primitive rocks of the solar syste...
Samples were recently collected from the carbonaceous asteroid (162173) Ryugu, by the Japan Aerospace Exploration Agency (JAXA) Hayabusa2 mission. They resemble CI chondrites material, thus showing clear evidence of extensive aqueous alteration attested by the widespread presence of a mixture of serpentine and saponite. We present here a scanning t...
We report a Fourier transform infrared analysis of functional groups in insoluble organic matter (IOM) extracted from a series of 100–500 μm Ryugu grains collected during the two touchdowns of February 22 and July 11, 2019. IOM extracted from most of the samples is very similar to IOM in primitive CI, CM, and CR chondrites, and shows that the exten...
Studies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for...
The sample from the near-Earth carbonaceous asteroid (162173) Ryugu is analyzed in the context of carbonaceous meteorites soluble organic matter. The analysis of soluble molecules of samples collected by the Hayabusa2 spacecraft shines light on an extremely high molecular diversity on the C-type asteroid. Sequential solvent extracts of increasing p...
Ryugu is the C-type asteroid from which material was brought to Earth by the Hayabusa2 mission. A number of individual grains and fine-grained samples analysed so far for noble gases have indicated that solar wind and planetary (P1=Q) noble gases are present in Ryugu samples with concentrations higher than those observed in CIs, suggesting the form...
In recent years, missions such as JAXA's Hayabusa2 and NASA's OSIRIS-Rex have visited Near Earth Asteroids, explored their environments, and collected samples from these primordial Solar System bodies. Their physical composition is largely unknown and challenging to predict from ground observations. That is why sample collection from such bodies is...
The samples returned from asteroid Ryugu were collected both at its surface and at its subsurface by Hayabusa2 and can, thus, provide information on the space weathering of C-type asteroids at different depths without terrestrial contamination. The near-infrared hyperspectral microscope MicrOmega gathered data on the –OH feature at ~2.7 μm for 177...
Returned samples from Cb-type asteroid (162173) Ryugu exhibit very dark spectra in visible and near-infrared ranges, generally consistent with the Hayabusa2 observations. A critical difference is that a structural water absorption of hydrous silicates is around twice as deep in the returned samples compared with those of Ryugu’s surface, suggesting...
In sample return missions, particularly those to small bodies, landing operations have been performed by a single spacecraft. However, there is a potential risk of spacecraft breakdown in this approach. This paper proposes a new framework for sample return missions, in which a touch-and-go sampling probe (TAG probe) equipped with solid rocket motor...
Samples from the carbonaceous asteroid (162173) Ryugu provide information on the chemical evolution of organic molecules in the early solar system. Here we show the element partitioning of the major component ions by sequential extractions of salts, carbonates, and phyllosilicate-bearing fractions to reveal primordial brine composition of the primi...
We report μm‐scale nondestructive infrared (IR) hyperspectral results (IR computed tomography, IR‐CT) in 3‐D and IR surface imaging, IR‐S) in 2‐D, at SOLEIL) combined with X‐ray nano‐computed tomography analyses (at SPring‐8) performed on eight small Ryugu fragments extracted from mm‐sized grains coming both from touchdown first and second sites. W...
In the samples collected from the asteroid Ryugu, magnetite displays natural remanent magnetization due to nebular magnetic field, whereas contemporaneously grown iron sulfide does not display stable remanent magnetization. To clarify this counterintuitive feature, we observed their nanoscale magnetic domain structures using electron holography and...
We present oxygen isotopic analyses of fragments of the near-Earth C b -type asteroid Ryugu returned by the Hayabusa2 spacecraft that reinforce the close correspondence between Ryugu and CI chondrites. Small differences between Ryugu samples and CI chondrites in Δ ′ 17 O can be explained at least in part by contamination of the latter by terrestria...
The infrared spectral characteristics of organic‐rich acid residues prepared from Ryugu samples returned by the JAXA Hayabusa2 mission generally match those from unheated carbonaceous chondrite meteorites, but the residues from Ryugu are richer in methyl and methylene functional groups and have higher CH 2 /CH 3 ratios. Moreover, two distinct outli...
This work presents the preliminary analysis of the projectile deployment by the Hayabusa2 extended mission (Hayabusa2#) after its planned rendezvous with asteroid 1998 KY26. Hayabusa2# will be the first ever mission to rendezvous with such a rapidly rotating small asteroid, posing significant engineering challenges because of its distinctive dynami...
Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matt...
The Hayabusa2 spacecraft explored asteroid Ryugu and brought its surface materials to Earth. Ryugu samples resemble Ivuna-type (CI) chondrites—the most chemically primitive meteorites—and contain secondary phyllosilicates and carbonates, which are indicative of aqueous alteration. Understanding the conditions (such as temperature, redox state and f...
Ryugu is a second-generation C-type asteroid formed by the reassembly of fragments of a previous larger body in the main asteroid belt. While the majority of Ryugu samples returned by Hayabusa2 are composed of a lithology dominated by aqueously altered minerals, clasts of pristine olivine and pyroxene remain in the least-altered lithologies. These...
On July 11th, 2019, the Hayabusa2 spacecraft achieved its second touchdown on the asteroid Ryugu with a 0.6 m accuracy. The landing was accomplished based on the newly implemented PinPoint Touchdown (PPTD) method. It was extended from the former Touchdown (TD) method established by the Hayabusa spacecraft. When changing the point of view, two TDs o...
The Hayabusa2 extended mission is planned to rendezvous with the fast-rotating asteroid 1998 KY26 in 2031. Hayabusa2# will be the first ever mission to rendezvous with such a rapidly rotating small asteroid, posing significant challenges because of its distinctive dynamical environment. In this paper we investigate potential target marker deploymen...
The elastic property of asteroids is one of the paramount parameters for understanding their physical nature. For example, the rigidity enables us to discuss the asteroid’s shape and surface features such as craters and boulders, leading to a better understanding of geomorphological and geological features on small celestial bodies. The sound veloc...
When a spacecraft fires its thrusters near the surface of a celestial body, objects on the surface of the body are scattered in the vertical direction and adhere to the cameras and ranging instruments mounted on the spacecraft, degrading their performance. In order to establish a future spacecraft design theory that is less sensitive to the scatter...
We performed in-situ analysis on a ~ 1 mm-sized grain A0080 returned by the Hayabusa2 spacecraft from near-Earth asteroid (162173) Ryugu to investigate the relationship of soluble organic matter (SOM) to minerals. Desorption electrospray ionization-high resolution mass spectrometry (DESI-HRMS) imaging mapped more than 200 CHN, CHO, CHO–Na (sodium a...
Micrometeorites, a possible major source of Earth’s water, are thought to form from explosive dispersal of hydrated chondritic materials during impact events on their parental asteroids. However, this provenance and formation mechanism have yet to be directly confirmed using asteroid returned samples. Here, we report evidence of mild shock metamorp...
Rock fragments of the Cb-type asteroid Ryugu returned to Earth by the JAXA Hayabusa2 mission share mineralogical, chemical, and isotopic properties with the Ivuna-type (CI) carbonaceous chondrites. Similar to CI chondrites, these fragments underwent extensive aqueous alteration and consist predominantly of hydrous minerals likely formed in the pres...
This work presents the model of an ejecta cloud distribution to characterise the plume generated by the impact of a projectile onto asteroids surfaces. A continuum distribution based on the combination of probability density functions is developed to describe the size, ejection speed, and ejection angles of the fragments. The ejecta distribution is...
Hayabusa2 spacecraft successfully collected rock samples from the surface of C-type near-Earth asteroid 162173 Ryugu through two touchdowns and brought them back to Earth in 2020. At the Extraterrestrial Sample Curation Center in JAXA, we performed initial description of all samples to obtain fundamental information and prepare the database for sam...
The pristine sample from the near-Earth carbonaceous asteroid (162173) Ryugu collected by the Hayabusa2 spacecraft enabled us to analyze the pristine extraterrestrial material without uncontrolled exposure to the Earth’s atmosphere and biosphere. The initial analysis team for the soluble organic matter reported the detection of wide variety of orga...
C-type asteroids are the source of the carbonaceous chondrite meteorites and represent remnants of primitive planetesimals that formed at the outer margins of the early Solar System and may have delivered volatiles to the inner Solar System, in particular the early Earth. However, the nature of carbonaceous chondrites is not well understood owing t...
All life on Earth contains amino acids and carbonaceous chondrite meteorites have been suggested as their source at the origin of life on Earth. While many meteoritic amino acids are considered indigenous, deciphering the extent of terrestrial contamination remains an issue. The Ryugu asteroid fragments (JAXA Hayabusa2 mission), represent the most...
Evaluating the molecular distribution of organic compounds in pristine extraterrestrial materials is cornerstone to understanding the abiotic synthesis of organics and allows us to better understand the molecular diversity available during the formation of our solar system and before the origins of life on Earth. In this work, we identify multiple...
Context. The current period is conducive to exploring our Solar System's origins with recent and future space sample return missions, which provide invaluable information from known Solar System asteroids and comets The Hayabusa2 mission of the Japan Aerospace Exploration Agency (JAXA) recently brought back samples from the surface of the Ryugu car...
Chondrule-like objects and Ca-Al-rich inclusions (CAIs) are discovered in the retuned samples from asteroid Ryugu. Here we report results of oxygen isotope, mineralogical, and compositional analysis of the chondrule-like objects and CAIs. Three chondrule-like objects dominated by Mg-rich olivine are ¹⁶O-rich and -poor with Δ¹⁷O (=δ¹⁷O – 0.52 × δ¹⁸O...
The samples returned from a C-type asteroid (Ryugu) by the Hayabusa2 mission constitute unprecedented access to carbonaceous material never exposed to Earth’s atmosphere that may still contain phases formed in the earliest stages of the Solar System. We present an extensive analysis of a large set of grains and bulks of the Ryugu samples, performed...
Samples from asteroid Ryugu returned by the Hayabusa2 mission contain evidence of extensive alteration by aqueous fluids and appear related to the CI chondrites. To understand the sources of the fluid and the timing of chemical reactions occurring during the alteration processes, we investigated the oxygen, carbon and ⁵³Mn–⁵³Cr systematics of carbo...
This work presents the model of an ejecta cloud distribution to characterise the plume generated by the impact of a projectile onto asteroids surfaces. A continuum distribution based on the combination of probability density functions is developed to describe the size, ejection speed, and ejection angles of the fragments. The ejecta distribution is...