About
274
Publications
42,441
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,848
Citations
Introduction
Current institution
Publications
Publications (274)
Ozone is an important atmospheric constituent, exerting a pivotal influence on atmospheric chemistry, air quality, and climate change. The monitoring of its distribution and variation is crucial for advancing our understanding of ozone development and related processes. This study presents the first spatial and temporal distributions of total ozone...
The TROPOspheric Monitoring Instrument (TROPOMI), aboard the Sentinel-5 Precursor (S5P) satellite launched in October 2017, is dedicated to monitoring the atmospheric composition associated with air quality and climate change. This paper presents the global retrieval of TROPOMI tropospheric formaldehyde (HCHO) and nitrogen dioxide (NO2) vertical co...
Studying tropospheric ozone over the remote areas of the planet, such as the open oceans and the polar regions, is crucial to understand the role of ozone as a global climate forcer and regulator of atmospheric oxidative capacity. A focus on the pristine oceanic and polar regions complements the available land-based data sets and provides insights...
Ice-nucleating particles (INPs) significantly influence aerosol–cloud precipitation interactions at regional and global scales. However, information regarding the concentrations and origins of INPs over the open ocean, particularly at high latitudes, remains insufficient due to access difficulties. In this study, we investigated the concentrations...
The Japanese Global Observing SATellite for Greenhouse gases and Water cycle (GOSAT-GW) will be an Earth-observing satellite to conduct global observations of atmospheric carbon dioxide (CO 2 ), methane (CH 4 ), and nitrogen dioxide (NO 2 ) simultaneously from a single platform. GOSAT-GW is the third satellite in the series of the currently operati...
Previous assessments on modelling Arctic tropospheric ozone (O3) have shown that most atmospheric models continue to experience difficulties in simulating tropospheric O3 in the Arctic, particularly in capturing the seasonal variations at coastal sites, primarily attributed to the lack of representation of surface bromine chemistry in the Arctic. I...
Forest wildfires in interior Alaska represent an important black carbon (BC) source for the Arctic and sub-Arctic. However, BC observations in interior Alaska have not been sufficient to constrain the range of existing emissions. Here, we show our observations of BC mass concentrations and carbon monoxide (CO) mixing ratios in the Poker Flat Resear...
Accurate estimates of short-lived climate forcers (SLCFs) emissions are required to allow efficient strategies that mitigate climate change to be developed. However, there remain large uncertainties about emissions of SLCFs from Asia. We identified and improved the constraints of combustion-related emissions of black carbon (BC) and CO using the WR...
The TROPOspheric Monitoring Instrument (TROPOMI), onboard the Sentinel-5 Precursor (S5P) satellite launched in October 2017, is dedicated to monitoring the atmospheric composition associated with air quality and climate change. This paper presents the global retrieval of TROPOMI tropospheric formaldehyde (HCHO) and nitrogen dioxide (NO2) vertical c...
This study simulated carbon dioxide (CO2) using regional Weather Research and Forecasting coupled with greenhouse gas modules (WRF-GHG) based on a central grid over Japan and at 27 km spatial resolution for the year 2019. We analyzed the Total Carbon Column Observing Network (TCCON) total column of CO2 dry air mole fraction (XCO2) using both global...
The Japanese Global Observing SATellite for Greenhouse gases and Water cycle (GOSAT-GW) will be an Earth-observing satellite to conduct global observations of atmospheric carbon dioxide (CO 2 ), methane (CH 4 ), and nitrogen dioxide (NO 2 ) simultaneously from a single platform. GOSAT-GW is the third satellite in the series of the currently operati...
We investigated the association of marine biological indicators (polysaccharides, protein-like gel particles, and chl a) with the formation of fluorescent aerosol particles, cloud condensation nuclei (CCNs), and ice-nucleating particles (INPs) over the North Pacific Ocean, Bering Sea, and Arctic Ocean during September–November 2019. The abundance o...
Forest wildfires in interior Alaska represent an important black carbon (BC) source for the Arctic and sub-Arctic. However, BC observations in interior Alaska have not been sufficient to constrain the range of existing emissions. Here, we show our observations of BC mass concentrations and carbon monoxide (CO) mixing ratios in the Poker Flat Resear...
Trace metals in aerosol particles impact Earth's radiative budget, human health, and ocean biogeochemistry. Semi-continuous measurements of the elemental composition of fine-mode (PM2.5) aerosols were conducted using an automated X-ray fluorescence analyzer on a remote island of Japan during the spring of 2018. Temporal variations in mass concentra...
Tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO2) retrieved from sun-synchronous satellite instruments have provided abundant NO2 data for environmental studies, but such data are limited by retrieval uncertainties and insufficient temporal sampling (e.g., once a day). The Geostationary Environment Monitoring Spectrometer (GEM...
Interference from water in the reflectance spectra of plastics is a major obstacle to optical sensing of plastics in aquatic environments. Here we present evidence of the feasibility of sensing plastics in water using hyperspectral near-infrared to shortwave-infrared imaging techniques. We captured hyperspectral images of nine polymers submerged to...
We evaluated the mass concentration levels and long-term trends of black carbon (BC) in the historical and future scenario simulations using 12 climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) for East Asia, the region with the largest anthropogenic emissions. By comparing them with surface observations at two regionall...
Global lockdown measures to prevent the spread of the coronavirus disease 2019 (COVID-19) led to air pollutant emission reductions. While the COVID-19 lockdown impacts on both trace gas and total particulate pollutants have been widely investigated, secondary aerosol formation from trace gases remains unclear. To that end, we quantify the COVID-19...
Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution de...
Trace metals in aerosol particles impact ocean biogeochemistry. Therefore, semi-continuous measurements of the elemental composition of fine mode (PM2.5) aerosols were conducted using an automated X-ray fluorescence analyzer on a remote island of Japan during the spring of 2018. The temporal variations of mass concentrations of geochemically import...
A high-resolution simulation of CO2 at 1×1 km horizontal resolution using the Weather Research and Forecasting Greenhouse gas (WRF-GHG) model was conducted, focusing on the Kanto region in Japan. The WRF-GHG simulations were performed using different anthropogenic emission inventories: EAGrid (Japan, 1 km), EDGAR (0.1o), and EDGAR-downscaled (0.01o...
We introduce the new Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 product of total column ozone (O3), total and tropospheric column nitrogen dioxide (NO2), total column water vapour, total column bromine oxide (BrO), total column formaldehyde (HCHO), and total column sulfur dioxide (SO2) (daily products 10.15770/EUM_SAF_A...
Human activities have profoundly altered the air quality and the climate on a global scale in the Anthropocene. It is our task to quantitatively evaluate the impact of human activities on marine ecosystems and the climate through various feedbacks in biogeochemical cycles. Atmospheric aerosols over the Pacific Ocean are largely influenced by anthro...
Methane (CH4) is the second major greenhouse gas after carbon dioxide (CO2) which has substantially increased during recent decades in the atmosphere, raising serious sustainability and climate change issues. Here, we develop a data assimilation system for in situ and column-averaged concentrations using a local ensemble transform Kalman filter (LE...
Abstract The Southern Ocean (SO) is a unique region with rich ecosystems and minimal anthropogenic and terrestrial natural impacts especially during austral summer. We conducted measurements and sampling of aerosol particles to investigate the characteristics and role of aerosol particles in cloud formation on Japanese research vessel Mirai over th...
Nitrogen dioxide (NO2) is a major air pollutant. Tropospheric NO2 vertical column densities (VCDs) retrieved from sun-synchronous satellite instruments have provided abundant NO2 data for environmental studies, but such data are limited by insufficient temporal sampling (e.g., once a day). The Geostationary Environment Monitoring Spectrometer (GEMS...
Nitrous acid (HONO) is an important atmospheric gas given its contribution to the cycles of NOx and HOx, but its role in global atmospheric photochemistry is not fully understood. This study implemented three pathways of HONO formation in the chemistry–climate model CHASER (MIROC-ESM) to explore three physical phenomena: gas-phase kinetic reactions...
We investigated the association of marine biological indicators (polysaccharides and protein-like gel particles, Chl-a) with the formation of fluorescent aerosol particles, cloud condensation nuclei (CCN), and ice-nucleating particles (INPs) over the North Pacific Ocean, Bering Sea, and Arctic Ocean during September–November 2019. The abundance of...
We introduce the new GOME-2 daily and monthly level 3 product of total column ozone (O3), total and tropospheric column nitrogen dioxide (NO2), total column water vapour, total column bromine oxide (BrO), total column formaldehyde (HCHO) and total column sulphur dioxide (SO2). The GOME-2 level 3 products are aimed to provide easily translatable and...
Methane (CH4) is the second major greenhouse gas after carbon dioxide (CO2) which is substantially increased during last decades in the atmosphere, raising serious sustainability and climate change issues. Here, we develop a data assimilation system for in situ and column averaged concentrations using Local ensemble transform Kalman filter (LETKF)...
We conducted ship-based measurements of marine aerosol particles (number concentration, size distribution, black carbon (BC), autofluorescence property, and PM2.5 composition) and trace gases (ozone (O3) and carbon monoxide (CO)) during a cruise of the R/V Mirai (23 August to 4 October 2016) over the Arctic Ocean, Northwest Pacific Ocean, and Berin...
While carbon dioxide is the main cause for global warming, modeling short-lived climate forcers (SLCFs) such as methane, ozone, and particles in the Arctic allows us to simulate near-term climate and health impacts for a sensitive, pristine region that is warming at 3 times the global rate. Atmospheric modeling is critical for understanding the lon...
Iodine compounds destroy ozone (O3) in the global troposphere and form new aerosols, thereby affecting the global radiative balance. However, few reports have described the latitudinal distribution of atmospheric iodine compounds. This work reports iodine monoxide (IO) measurements taken over unprecedented sampling areas from the Arctic to the Sout...
This study gives a systematic comparison of the Tropospheric Monitoring Instrument (TROPOMI) version 1.2 and Ozone Monitoring Instrument (OMI) QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for the period April–May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and cover...
Bottom-up emission inventories of black carbon (BC) are used to assess its impact on the climate and air quality using climate models and chemical transport models. However, the estimates of BC emissions from East Asia, the region with the largest anthropogenic emissions, are still uncertain. We evaluated anthropogenic BC emissions from East Asia f...
Emissions of black carbon (BC) particles from anthropogenic and natural sources contribute to climate change and human health impacts. Therefore, they need to be accurately quantified to develop an effective mitigation strategy. Although the spread of the emission flux estimates for China have recently narrowed under the constraints of atmospheric...
Nitrous acid (HONO) is an important atmospheric gas given its contribution to the cycles of NOx and HOx, but its role in global atmospheric photochemistry is not fully understood. This study, for the first time, implemented three pathways of HONO formation in the chemistry-climate model CHASER (MIROC-ESM) to explore three physical phenomena: gas-ph...
This study gives a systematic comparison of the Tropospheric Monitoring Instrument (TROPOMI) version 1.2 and Ozone Monitoring Instrument (OMI) QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for the period April−May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and cover...
The Arctic atmosphere is warming rapidly and its relatively pristine environment is sensitive to the long-range transport of atmospheric pollutants. While carbon dioxide is the main cause for global warming, short-lived climate forcers (SLCFs) such as methane, ozone, and particles also play a role in Arctic climate on near-term time scales. Atmosph...
Combining wideband integrated bioaerosol sensors and DNA-staining techniques, online and offline shipboard observations of fluorescent aerosol particles in the atmosphere were carried out over the central Pacific Ocean during March 2019 to identify bioaerosols and determine their spatiotemporal distribution. To understand the origins of and process...
Long-term measurements of atmospheric mass concentrations of black carbon (BC) are needed to investigate changes in its emission, transport, and deposition. However, depending on instrumentation, parameters related to BC such as aerosol absorption coefficient (babs) have been measured instead. Most ground-based measurements of babs in the Arctic ha...
Iodine compounds destroy ozone (O3) in the global troposphere and form new aerosols, thereby affecting the global radiative balance. However, few reports have described the latitudinal distribution of atmospheric iodine compounds. This work reports iodine monoxide (IO) measurements over unprecedented sampling areas from Arctic to the Southern Hemis...
Plain Language Summary
Burning of fossil fuels at high temperatures constitutes a major anthropogenic source of nitrogen oxides (NOx) and carbon dioxide (CO2). While CO2 stays in the atmosphere for hundreds of years, thereby being a well‐mixed gas, NO2 has a much shorter lifetime of only a few hours. This substantial difference in lifetime between...
Brown carbon (BrC) aerosols have important warming effects on Earth's radiative forcing. However, information on the evolution of the light-absorption properties of BrC aerosols in the Asian outflow region is limited. In this study, we evaluated the light-absorption properties of BrC using in-situ filter measurements and sky radiometer observations...
Long-term measurements of atmospheric mass concentrations of black carbon (BC) are needed to investigate changes in its emission, transport, and deposition. However, depending on instrumentation, parameters related to BC such as aerosol absorption coefficient (babs) have been measured instead. Most ground-based measurements of babs in the Arctic ha...
This study uses a chemistry–climate model CHASER (MIROC) to explore the roles of heterogeneous reactions (HRs) in global tropospheric chemistry. Three distinct HRs of N2O5, HO2, and RO2 are considered for surfaces of aerosols and cloud particles. The model simulation is verified with EANET and EMEP stationary observations; R/V Mirai ship-based data...
We investigated long-term observations of the tropospheric nitrogen dioxide vertical column density (NO2 TropVCD) from the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) network in Russia and ASia (MADRAS) from 2007 to 2017 at urban (Yokosuka and Gwangju) and remote (Fukue and Cape Hedo) sites in East Asia. The monthly mean in t...
Hyperspectral data in the near infrared range were examined for nine common types of plastic particles of 1 mm and 100-500 μm sizes on dry and wet glass fiber filters. Weaker peak intensities were detected for small particles compared to large particles, and the reflectances were weaker at longer wavelengths when the particles were measured on a we...
Atmospheric transport of aerosols such as black carbon (BC) affects the absorption/scattering of solar radiation, precipitation, and snow/ice cover, especially in areas of low human activity such as the Arctic. The resolution dependency of simulated BC transport from Siberia to the Arctic, related to the well-developed low-pressure systems in Septe...
Sugar compounds (SCs) are major water-soluble constituents in atmospheric aerosols. In this study, we investigated their molecular compositions and abundances in the northern receptor site (Mangshan) of Beijing, China, to better understand the contributions from biogenic and anthropogenic sources using a gas chromatography–mass spectrometry techniq...
Combining Waveband Integrated Bioaerosol Sensors and DNA staining techniques, online and offline shipboard observations of fluorescent aerosol particles in the atmosphere were carried out over the central Pacific Ocean during March 2019 to identify bioaerosols and determine their spatio-temporal distribution. To understand the origins of and proces...
This paper reports on consolidated ground-based validation results of the atmospheric NO2 data produced operationally since April 2018 by the TROPOspheric Monitoring Instrument (TROPOMI) on board of the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite. Tropospheric, stratospheric, and total NO2 column data from S5P are compared to correlative...
Plastic pollution has become one of the most emergent issues threating aquatic and terrestrial ecosystems. However, it is still challenging to rapidly detect small microplastics. Here, we present a method to rapidly detect microplastics using hyperspectral imaging in which we optimized a commercially available hyperspectral imaging system (Pika NIR...
Long-term measurements of black carbon (BC) are warranted for investigating changes in its emission, transport, and deposition. However, depending on instrumentation, parameters related to BC such as aerosol absorption coefficient (babs) have been measured instead. Most ground-based measurements of babs in the Arctic have been made by filter-based...
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) and direct sun NO2 vertical column network data are used to investigate the accuracy of tropospheric NO2 column measurements of the GOME-2 instrument on the MetOp-A satellite platform and the OMI instrument on Aura. The study is based on 23 MAX-DOAS and 16 direct sun instruments at...
Understanding the global distribution of atmospheric black carbon (BC) is essential for unveiling its climatic effect. However, there are still large uncertainties regarding the simulation of BC transport due to inadequate information about the removal process. We accessed the wet removal rate of BC in East Asia based on long-term measurements over...
This study uses a chemistry-climate model CHASER (MIROC) to explore the roles of heterogeneous reactions (HRs) in global tropospheric chemistry. Three distinct HRs of N2O5, HO2, and RO2 are considered for surfaces of aerosols and cloud particles. The model simulation is verified with EANET and EMEP stationary observations, R/V MIRAI ship-based data...
We quantified the global bromine- and iodine-mediated tropospheric ozone loss using global chemical transport model simulations. We tested three datasets of very short-lived substances (VSLS) emissions, three datasets of sea surface iodide concentrations, and an explicit representation of the effects of multi-phase reactions at the air-sea boundary...
This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for the period 2005–2018 at 1.1∘ horizontal resolution obtained from the assimilation of multiple updated satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPITT satellite instruments. The reanalysis cal...
Sugar compounds (SCs) are major water-soluble constituents in atmospheric aerosols. In this study, we investigated their molecular compositions and abundances in the northern receptor site (Mangshan) of Beijing, China, to better understand the contributions from biogenic and anthropogenic sources using a gas chromatography–mass spectrometry techniq...
We present a new product with explicit aerosol corrections, POMINO-TROPOMI, for tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) over East Asia, based on the newly launched TROPOspheric Monitoring Instrument with an unprecedented high horizontal resolution. Compared to the official TM5-MP-DOMINO (OFFLINE) product, POMINO-TROPOMI...
A long-term, robust observational record of atmospheric black carbon (BC) concentrations at Fukue Island for 2009–2019 was produced by unifying the data from a continuous soot monitoring system (COSMOS) and a Multi-Angle Absorption Photometer (MAAP). This record was then used to analyze emission trends from China. We identified a rapid reduction in...
Abstract. This paper reports on consolidated ground-based validation results of the atmospheric NO<sub>2</sub> data produced operationally since April 2018 by the TROPOMI instrument on board of the ESA/EU Copernicus Sentinel-5 Precursor (S5p) satellite. Tropospheric, stratospheric, and total NO<sub>2</sub> column data from S5p are compared to corre...
Abstract. Understanding the global distribution of atmospheric black carbon (BC) is essential to unveil its climatic effect. However, there are still large uncertainties regarding the simulation of BC transport due to inadequate information about the removal process. We accessed the wet removal rate of BC in East Asia based on long-term measurement...
Abstract. This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for the period 2005–2018 at 1.1° horizontal resolution obtained from the assimilation of multiple updated satellite measurements of ozone, CO, NO<sub>2</sub>, HNO<sub>3</sub>, and SO<sub>2</sub> from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPIT...
Abstract. MAX-DOAS and direct sun NO<sub>2</sub> vertical column network data are used to investigate the accuracy of tropospheric NO<sub>2</sub> column measurements of the GOME-2 instrument on the MetOP-A satellite platform and the OMI instrument on Aura. The study is based on 23 MAX-DOAS and 16 direct sun instruments at stations distributed world...
The Arctic environment is undergoing rapid changes such as faster warming than the global average and exceptional melting of glaciers in Greenland. Black carbon (BC) particles, which are a short-lived climate pollutant, are one cause of Arctic warming and glacier melting. However, the sources of BC particles are still uncertain. We simulated the po...
Ground-based observations of black carbon (BC) aerosols were conducted in spring 2017 in Yokosuka City, south of Tokyo, Japan. Equivalent BC (EBC) mass concentrations were measured using a miniaturized, palm-sized filter-photometer (MicroAeth AE51, EBCAE51) and evaluated against those obtained using a continuous soot monitoring system (COSMOS, EBCC...
Microplastic pollution has become an urgent issue because it adversely affects ecosystems. However, efficient methods to detect and characterize microplastic particles are still in development. By conducting a series of laboratory assessments based on near-infrared hyperspectral imaging in the wavelength range of 900–1700 nm, we report the fundamen...
Abstract. We present a new product with explicit aerosol corrections, POMINO-TROPOMI, for tropospheric nitrogen dioxide (NO<sub>2</sub>) vertical column densities (VCDs) over East Asia, based on the newly launched TROPOspheric Monitoring Instrument with an unprecedented high horizontal resolution. Compared to the official TM5-MP-DOMINO (OFFLINE) pr...
The black carbon (BC) and carbon monoxide (CO) emission ratios were estimated and compiled from long-term, harmonized observations of the ΔBC/ΔCO ratios under conditions unaffected by wet deposition at four sites in East Asia, including two sites in South Korea (Baengnyeong and Gosan) and two sites in Japan (Noto and Fukuoka). Extended spatio-tempo...
Abstract. A long-term, robust observational record of atmospheric black carbon (BC) concentrations at Fukue Island for 2009–2019 was produced by unifying data from a continuous soot-monitoring system and a multi-angle absorption photometer. This record was then used to analyze emission trends from China. We identified a rapid reduction in BC concen...
The Arctic environment is undergoing rapid changes such as faster warming than the global average and exceptional melting of glaciers in Greenland. Black carbon (BC) particles, which are a short-lived climate pollutant, are one cause of Arctic warming and glacier melting. However, the sources of BC particles are still uncertain. We simulated the po...
The BC/CO emission ratios were estimated and compiled from long-term, harmonized observations of the ΔBC/ΔCO ratios under conditions unaffected by wet deposition at four sites in East Asia, including two sites in Korea (Baengnyeong and Gosan) and two sites in Japan (Noto and Fukuoka). Extended spatio-temporal coverage enabled estimation of full sea...
Constraints from ozone (O3) observations over oceans are needed in addition to those from terrestrial regions to fully understand global tropospheric chemistry and its impact on the climate. Here, we provide a large data set of ozone and carbon monoxide (CO) levels observed (for 11 666 and 10 681 h, respectively) over oceans. The data set is derive...
Regular measurements of the integral formaldehyde content (IFC) in the lower troposphere have been carried out in the impact area of the Moscow urban agglomeration (Zvenigorod Scientific Station, ZSS) and in the southeastern part of Tomsk (Siberian Lidar Station, SLS) since 2009. The paper briefly describes the instrumentation and measurement techn...
We investigate regional sources contributing to CO during the Korea United States Air Quality (KORUS‐AQ) campaign conducted over Korea (1 May to 10 June 2016) using 17 tagged CO simulations from the Community Atmosphere Model with chemistry (CAM‐chem). The simulations use three spatial resolutions, three anthropogenic emission inventories, two mete...
Constraints from ozone (O3) observations over oceans are needed in addition to those from terrestrial regions to fully understand global tropospheric chemistry and its impact on the climate. Here, we provide a large data set of ozone and carbon monoxide (CO) levels observed (for 11666 and 10681h, respectively) over oceans. The data set is derived f...
A field study was conducted to clarify sources of atmospheric black carbon and related carbonaceous components at Rishiri Island, Japan. We quantified equivalent black carbon (eBC) particle mass and the absorption Ångström exponent (AAE), atmospheric CO and CH4, in addition to levoglucosan in total suspended particles, a typical tracer of biomass b...
A.M. Obukhov IAP of RAS performs regular measurements of the integral content of tropospheric nitrogen dioxide (NO2) by the MAX-DOAS method at the Zvenigorod Scientific Station (ZSS) since 2009. ZSS is located to the West from Moscow and is in background air mass of Central Russian about 80% of time, while polluted air of Moscow megacity cover it i...
A.M. Obukhov Institute of Atmospheric Physics (OIAP) of Russian Academy of Sciences (RAS) performs regular measurements of the integral tropospheric content of such reactive gases as nitrogen dioxide (NO2) and formaldehyde (HCHO) by the MAX-DOAS method at the Zvenigorod Scientific Station (ZSS) since 2009. For each average hourly gas contents in th...
Accurate and consistent monitoring of anthropogenic combustion is imperative because of its significant health and environmental impacts, especially at city-to-regional scale. Here, we assess the performance of the Copernicus Atmosphere Monitoring Service (CAMS) global prediction system using measurements from aircraft, ground sites, and ships duri...
We characterise a transboundary ozone pollution outbreak transported across East Asia in early May 2009 using new multispectral satellite observations of lowermost tropospheric ozone (located below 3 km altitude) in synergy with other satellite data and models. Our analysis is focused on the daily evolution of ozone pollution plumes initially forme...
The contribution of the atmospheric deposition of inorganic nitrogen compounds produced in East Asia to the marine ecosystems of the North Western Pacific Ocean (NWPO) was investigated in this study using a 3-D lower trophic-marine ecosystem model (NEMURO) combined with an atmospheric regional chemical transport model (WRF-CMAQ). The monthly mean v...
Pollutants emitted from wildfires in boreal Eurasia can be transported to the Arctic, and their subsequent deposition could accelerate global warming. The Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned area product is the basis of fire emission products. However, uncertainties due to the “moderate resolution” (500 m) character...
Severe PM2.5 air pollution over the Asian continent is occasionally transported across the East China Sea by the westerly winds to Japan, continuing for long distances over the Pacific Ocean. Despite such polluted air masses causing health issues, conventional models tend to underestimate levels of organic aerosols (OA) and PM2.5. Here, PM2.5 and i...
We analyzed long-term fine- and coarse-mode synergetic observations of nitrate and related aerosols (SO42-, NO3-, NH4+, Na+, Ca2+) at Fukuoka (33.52∘ N, 130.47∘ E) from August 2014 to October 2015. A Goddard Earth Observing System chemical transport model (GEOS-Chem) including dust and sea salt acid uptake processes was used to assess the observed...
The emission characteristics of refractory black carbon (rBC) from biomass burning are essential information for numerical simulations of regional pollution and climate effects. We conducted combustion experiments in the laboratory to investigate the emission ratio and mixing state of rBC from the burning of wheat straw and rapeseed plants, which a...
We characterize a transboundary ozone pollution outbreak transported across East Asia in early May 2009 using new multispectral satellite observations of lowermost tropospheric ozone in synergy with other satellite data and models. Our analysis is focused on the daily evolution of ozone pollution plumes initially formed over the North China Plain (...
To understand the source and atmospheric behaviour of low molecular weight monocarboxylic acids (monoacids), gaseous (G) and particulate (P) organic acids were collected at the summit of Mt. Tai in the North China Plain (NCP) during field burning of agricultural waste (wheat straw). Particulate organic acids were collected with neutral quartz filte...