
A First Step Towards Security Extension for NFV
Orchestrator

Montida Pattaranantakul1,2, Yuchia Tseng3, Ruan He4, Zonghua Zhang1, Ahmed Meddahi1

1IMT Lille Douai, Institut Mines-Télécom, Lille, France
2Institut Mines-Télécom/TELECOM SudParis, Évry, France

3Paris Descartes University, Paris, France
4Orange Labs, Châtillon, France

ABSTRACT
Network Functions Virtualization (NFV) has recently emerged
as one of the new networking paradigms to significantly
change the way that the networks and services are deployed,
managed, and operated. One of the major advantages of
NFV is to reduce hardware cost, meanwhile increasing ser-
vice agility and scalability. Recently, there are many plat-
forms for NFV management and orchestration (MANO) are
available, however few of them contains dedicated modules
or components for security management. This paper is in-
tended to study the feasibility of extending the current NFV
orchestrator to have the capability of managing security
mechanisms. To do that, we propose a security extension
module based on TOSCA data model which is commonly
used by NFV MANO architecture. We then develop an ac-
cess control use case to illustrate the usage of our proposed
security extension. Specifically, we integrate the security
extension into the Moon framework, which can automati-
cally verify security attributes, generate access control poli-
cies, and further enforce the policies through the underlying
infrastructure according to the high-level security policies.
The preliminary results show that our security extension
can work together with the NFV orchestrator to enable fine-
grained access control to protect resources and services.

Keywords
Network Functions Virtualization (NFV), data model, ser-
vice orchestration, security management

1. INTRODUCTION
NFV has recently emerged as one of the novel network-

ing paradigms that offers a variety of network functions to
be rapidly and dynamically deployed in agile, scalable, and
adaptive ways [9, 14, 17]. Also, the Capital Expenditure
(CapEx) and Operational Expenditure (OpEX) are signif-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SDN-NFV Sec’17, March 22-24, 2017, Scottsdale, AZ, USA
Copyright 2017 ACM 978-1-4503-4908-6/17/03 ...$15.00
http://dx.doi.org/10.1145/3040992.3040995.

icantly reduced by using NFV. The nature of NFV able
to create and deploy new service more quickly, by decou-
pling network functions from proprietary hardware appli-
ances. Thus their implementation and execution are made
as software based approach. This capability requires or-
chestration module to help coordinate the underlying in-
frastructure resources needed to create end-to-end network
services. In fact, NFV orchestration plays an important role
to maintain full lifecylce management of Virtuali Network
Functions (VNFs) and network services, such as instantia-
tion, configuration, termination, scale-in/out, resource and
policy management, performance measurement, event cor-
relation, validation and authorization of resource requests.

Although NFV has generated significant interests in the
market place and academia, security concerns remain to be
significant barrier to the wide adoption of NFV [20, 8]. In
addition to the fact that the operators have to deal with
non-trivial service complexities, spanning from configura-
tion and maintenance to management and orchestration, in
order to achieve NFV goals [13, 7, 18, 6]. While the Eu-
ropean Telecommunications Standard Institute (ETSI) has
published a document about NFV Management and Orches-
tration (NFV MANO) [10], a detailed description about
NFV specification, service deployment, and security man-
agement is still missing. In particular, two critical issues are
highlighted.

First, from the fact that the current research activities
are mainly focused on how to migrate network functions
from dedicated hardware to virtualization environment, and
how to manage and orchestrate the virtualized network func-
tions on demand. The core concept of deploying and oper-
ating network services in NFV is based on service templates.
These templates define the attributes and requirements nec-
essary to allocate resources and initiate network services, so
that NFV orchestrator can use these templates as reference
for further deployment. Nevertheless, the service templates
must be modeled clearly. It should be defined based on
model-driven approach, helping operators to obtain a clear
view about the structure of network services, nodes, and
links to be deployed. An appropriate data model can also
facilitate the operators to gain visibility and controllability
over the workloads, the deployed VNFs, and the underlying
infrastructure resources. As a result, a data model espe-
cially dedicated to NFV orchestration becomes very critical.
It is worth noting, however, many existing NFV frameworks
from industrial sectors like [2, 5] do not support model-

driven NFV orchestration, neither TOSCA data model stan-
dard [22].

Second, along with the orchestration of network functions
and services, appropriate security mechanisms are expected
to be put in place, which however is believed to be a ma-
jor challenge considering the complexity of the processes of
NFV management and orchestration. Moreover, the current
NFV orchestrator is mainly based on ETSI NFV reference
architecture, which aims at managing VNF lifecycle and or-
chestrate infrastructure resources for supporting end-to-end
network services. That says, a typical NFV orchestrator
does not necessarily contain the capability of managing se-
curity mechanisms, even though some of them reserve spe-
cific fields for specifying security attributes. To date, a best
practice recommendation for implementing NFV based se-
curity management and orchestration has not yet appeared.
Nevertheless, many existing NFV orchestration platforms
especially the open source ones are based on TOSCA data
model, none of them has been defined from security perspec-
tive.

To address the aforementioned issues, our contribution in
this paper is three-fold.

• First, we conduct a comprehensive study on the exist-
ing NFV orchestration platforms, especially the open
source ones, with a purpose to abstract their data
models, analyze their operations and workflows, and
eventually identify the capability of managing security
mechanisms.

• Second, based on the understanding of NFV orchestra-
tion data models, we extend the ones using standard
TOSCA data model with security aspect, by incorpo-
rating security attributes, enabling administrators to
define security policy and allowing users to specify se-
curity attributes for each VM/VNF.

• Third, we develop a TOSCA based security extension
by employing a well-developed security policy engine
(Moon framework that is developed for access control)
to achieve the capability of managing security mech-
anisms. Our extension can automatically verify secu-
rity attributes specified in the extended TOSCA data
model, generate corresponding access control policies,
and enforce them to protect the NFV infrastructure.

The rest of paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents the architecture of
our security extension for NFV orchestrator. In Section 4,
we develop a use case for illustrating the role of our se-
curity extension for access control, as a first step towards
extending security capability in NFV orchestrator. Section
5 reports our implementation, along with the preliminary
results. This paper is concluded in Section 6.

2. RELATED WORK
Nowadays, there are some available platforms for NFV

management and orchestration, most of which are built and
aligned with ETSI NFV MANO specification [10] for manag-
ing and orchestrating end-to-end network services and cloud
infrastructure resources. Some existing platforms have been
developed by industrial sectors like [2, 5], which are imple-
mented as non-model driven based approach. Meanwhile,
some of them are developed under open source platforms

as model-driven NFV orchestration using TOSCA standard.
This paper is specially focused based on this matter. For ex-
amples, OpenMANO [3] is a framework that provides prac-
tical implementation of management and orchestration us-
ing ETSI standard, enabling the creation of complex vir-
tual network scenarios. Also, Tacker [21], a TOSCA-based
NFV orchestrator, has emerged as official OpenStack project
to build NFV orchestration software supporting both VNF
Manager (VNFM) and NFV Orchestrator (NFVO). Heat [15],
the most popular orchestrator in OpenStack, which func-
tioned as Tacker. It launches multiple services based on Heat
Orchestration Template (HOT). OpenBaton [4] is another
open source platform which provides a complete environ-
ment for NFV orchestration, focusing on the basic orches-
tration of NFVO and VNFM that enables VNF deployment
on the top of multiple cloud infrastructures.

After a careful study of the data models of these orchestra-
tion frameworks with respect to several core functions, e.g.,
network topology, node specifications, service deployment,
we found that they lack a dedicated module or component
which can provide holistic security management, especially
in the NFV orchestrator. For example, the service templates
defined in OpenMANO, Tacker, and OpenBaton generally
describe network topology, node specifications, and link re-
lationships between the nodes. One of the key observations
is that these typical TOSCA based service templates do not
well-define their data model from security perspective, nor
clearly specify security attributes for each VM/VNF. This
allows unauthorized requests to gain access to the resources
and is eligible to use the services. As a result, the operators
may lose control over the deployed VMs/VNFs. More se-
riously, it may allow attackers to control the infrastructure
resources and compromised VNFs, leading to unauthorized
configuration and theft of services. In addition, despite it is
possible to define security groups in Heat, it still lacks dy-
namic and centralized control with high level security policy
specification. It is therefore extremely important to develop
a dedicated module of security extension based on the ex-
isting NFV orchestrator that allows security functions to be
dynamically, centrally, and holistically managed and orches-
trated, providing seamless integration for protecting the un-
derlying network assets. To the best of our knowledge, none
of the available NFV orchestration platforms provide such
this security capability.

3. EXTENDING NFV ORCHESTRATOR FOR
SECURITY MANAGEMENT

As aforementioned, in the current ETSI documents about
NFV security [11, 12], specific implementations of security
management based on NFV orchestration are not yet avail-
able. Although the author of [16], pointed out security con-
cerns in NFV orchestration, a detailed data model about
security management and related use cases are missing. In
this Section, based on TOSCA data model, we propose a se-
curity orchestrator as an extension to the NFV orchestrator.

3.1 Design Architecture
As our purpose is to extend the current NFV orchestrator

to enable dynamic security management and orchestration,
the first yet essential step is to examine the data models
that are commonly used for NFV service management and
orchestration. We finally select TOSCA as the basic data

Figure 1: High level architecture of security extension

for NFV orchestrator aligned with ETSI NFV MANO

specification

Figure 2: The detailed model of security extension for

NFV orchestrator

model considering its popularity in today’s NFV orchestra-
tors, and extend it for our security purpose. The TOSCA
based security extension integrates Moon framework [19], a
security policy engine, to enforce the security policies over
the deployed infrastructure resources and network services.
Fig. 1 presents a high level view of our security extension,
which complies with ETSI NFV MANO architecture and
works along with NFV orchestrator to provide automatic
security control, verify security attributes, and enforce secu-
rity policies.

3.2 Design Principle
The development of security extension contains two major

steps. First, we extend TOSCA data model (simply known
as service template) to use it for specifying high-level se-
curity policy and achieving fine-grained access control. For
example, network nodes can be specified with certain secu-
rity attributes and a group of security policies, so that only
authorized requests that belong to the same group of secu-
rity policy can gain access. Second, security functions such
as access control are provided on demand, ensuring that the
deployed resources/services are protected from unauthorized
access based on the specified security policy.

For better illustration, Fig. 2 shows the detailed model of
security extension, which contains three main components,

• TOSCA data model (or service template): which de-

fines data structures for NFV orchestration by using
YAML [1]. It describes the deployment, operational
behavior requirement, and link connection for each
network service in NFV. Its structure contains nodes
(e.g, VNFs) and relationships (e.g, Virtual Links (VLs))
defined together to deliver end-to-end lifecycle opera-
tions of network services. This template is treated as
a YAML file, and stored in a catalog during the ser-
vice on-boarding process for service instantiation. An
example TOSCA data model is shown in Fig 4: the
left side of the figure represents a general structure,
and the right side is about deploying VNFs. Our con-
tribution here is to extend the typical TOSCA data
model with security policy specification, in which all
nodes presented in the template are defined with their
security attributes or a group of security policies (high-
lighted in grey).

• NFV orchestrator: which maintains the lifecycle man-
agement of infrastructure resources and network ser-
vices. NFV orchestrator uses the extended TOSCA
data model (service template together with security
policy and attribute specification) to allocate infras-
tructure resources (e.g, VMs, VLs), and instantiate
virtual components (e.g, VNFs) at runtime based on
the predefined relationship between these components.
As indicated in Fig. 2, the NFV orchestrator inter-
acts with Virtualized Infrastructure Manager (VIM)
to allocate VMs, and interacts with VNF Manager
(VNFM) to instantiate the VNFs. In particular, the
extended TOSCA data model provides a complete en-
vironment to startup the service, such as the proper-
ties and parameters with respect to resource allocation,
software installation, service deployment, and network
configuration. According to the data model, NFV or-
chestrator allocates infrastructure resources, orches-
trates the services, and deals with several processes
during their lifecycle.

• Security extension: which works together with NFV
orchestrator to provide monitoring, control resource
access, and enforce security policy to the deployed
VMs/VNFs. Specifically, it uses the extended TOSCA
data model to obtain security attributes of each VM/VNF,
creates security policy, and enforces access control.
To enforce the security policies, security orchestrator
works with Moon framework - a security policy en-
gine with attribute-based policy specification. If an
authorized entity (subject) meets with the policy rules
defined in a security policy, it is then allowed to ac-
cess (action) the requested entity (object). Otherwise,
the request is rejected. For example, if the deployed
VNF is specified with a group of security policy, then
only legitimate requests in the same security group
are allowed to access to it. Other requests that are
not from the same security group will be rejected. In
doing so, the access can be dynamically controlled in
a fine-grained way, and the deployed VMs/VNFs are
therefore well protected.

3.3 Moon framework
Our security orchestrator is based on Moon framework [19],

which is designed to monitor, control, and manage VMs/VNFs
over the OpenStack infrastructure. The core part of current

version Moon framework relies on an access control model,
which specifies high-level security policies to determine au-
thorization requests. As shown in Fig. 2, Moon framework
based security orchestrator contains four major components,

• Policy Administration Point (PAP): which allows ad-
ministrators to create or update authorization policies.

• Authorization policy: defines the template of access
control model. It contains a set of rules that are used
to determine whether a request is authorized.

• Policy Information Point (PIP): holds policy and entity-
data assignment table that defines a many-to-many re-
lationship between attributes and entities, based on
subject, object, and action.

• Policy Decision Point (PDP): which receives autho-
rization requests from Moon Reference Monitor (MRM),
validates the requests based on information gathering
from the PIP and the authorization policy, and finally
enforces security policy.

4. USE CASE: ACCESS CONTROL
As the ultimate goal of security extension aims to have

the capability of managing various security mechanisms and
provide security as a service, e.g., access control, security
monitoring, network isolation, and data protection, to help
improve security in NFV environment. In this Section we
develop a realistic use case of access control, as one of basic
security functions, to illustrate the application of our secu-
rity extension.

4.1 General description
As shown in Fig. 2, the orchestration processes starts with

NFV orchestrator, which parses the extended TOSCA data
model from service on-boarding catalog, and launches in-
frastructure resources (e.g, VMs) and services (e.g, VNFs)
accordingly. In the meantime, the extended TOSCA data
model is passed to security extension, which performs two
main functions: (1) generates access control policy based on
the security attributes of each VNF defined in the extended
TOSCA data model; (2) implement the access control poli-
cies.

Specifically, in order to generate access control policy, the
security extension needs to parse the node-template part of
the extended TOSCA data model to get security attributes
of each VM/VNF, and invokes the API of Moon to assign
these security attributes to each subject and object. Dur-
ing the execution phase, access requests to the VM/VNF in
OpenStack infrastructure will be redirected to the security
extension, which verifies whether the VM/VNF of concern
has been specified with certain security attributes or a group
of security policy. If so, the security extension uses the spec-
ified security policy to control the access. Otherwise, no se-
curity control will be enforced for the deployed VM/VNF. In
the rest of this Section, we give a more detailed description
and comparison between the two cases.

4.2 Scenario 1: Data model without security
policy specification

In this scenario, we define TOSCA data model without
any security policy specification. Thus, NFV orchestrator
simply reads the descriptions of VNFs and deploys them

Figure 3: Data model of security extension for NFV or-

chestrator, with ”security policy specification” and with

”no security policy specification” scenarios, respectively

represented as dotted and solid lines

accordingly. That says, security extension will not perform
any access control, hence the predefined TOSCA data model
does not specify any security policy for each VM/VNF. As
a result, any access requests will be granted to access the
infrastructure resources. An example scenario is given in
Fig. 3 with dotted line. Clearly, this scenario does not en-
sure a trustworthy environment, and the fine-grained access
control to the deployed resources/services is not available.

4.3 Scenario 2: Data model with security pol-
icy specification

In this scenario, TOSCA data model is extended to in-
clude security policy specification. Like the first scenario,
NFV orchestrator deploys VM/VNF according to the tem-
plate description of the extended TOSCA data model. More-
over, the security extension invokes the API of Moon to gen-
erate an access control policy based on security attributes
extracted from the extended TOSCA data model. The pre-
defined security attributes of each VM/VNF are assigned
to the subject and object according to the specification of
attribute-based access control policy. When a VM/VNF in-
stance is executed, access request will be redirected to the
security extension, which then enforce the corresponding ac-
cess control policies.

This scenario is illustrated in Fig. 4, in which the data
model defines six different types of services, respectively
running on VNF1 – VNF6. In particular, each VNF con-
sists of multiple VNF Components (VNFCs), provided by
two service providers. Thus, two groups of security pol-
icy (highlighted in grey) are specified as follows, (1) SP1
provides VNF1, VNF2, and VNF3, and, (2) SP2 provides
VNF4, VNF5, and VNF6. With such security policy en-
forced, VNF1 can gain access to VNF2 or VNF3, and vice
versa, while none of the VNFs provided by SP1 can ac-
cess to VNF4/VNF5/VNF6. Similarly, VNF4 can access
the VNF5 or VNF6 and vice versa, while it can not access
to VNF1/VNF2/VNF3.

When the extended TOSCA data model is passed to the
security extension, a verification process is initiated to check
whether the deployed VNFs have been specified any security

Figure 4: The extended TOSCA data model with secu-

rity policy specification (highlighted in grey)

attributes. Then the security extension invokes the API of
Moon framework to generate appropriate access control pol-
icy by assigning security attributes of each VNF with subject,
object, and action. The results are shown in Fig. 3 with solid
line, which indicate that the deployed VNFs are permitted
to access to each other if they have the same group of secu-
rity policy, while the cross group requests are denied. The
example clearly demonstrates that thanks to the security ex-
tension, the operators are able to enforce fine-grained access
control to their assets by simply defining security attributes
in the VNFs.

5. IMPLEMENTATION
In our implementation, we use Heat [15], a core part of

OpenStack platform, as a service orchestrator to deploy in-
frastructure resources, and launch multiple applications and
services over OpenStack infrastructure. Although Heat itself
provides an option to define security attributes, it does not
support dynamic and centralized access control. In addition,
we leverage Moon policy engine for centralized access con-
trol specified with high level security policies. Specifically,
three functional modules are implemented for our security
orchestration.

• MoonClient: the user interface that is used to interact
with Moon via CLI. The communication with Moon-
Client is done via Python subprocess module.

• Parameter parser: which is designed for two purposes.
First, it extracts the description of VNF nodes, trans-
lates the security policy defined in the extended TOSCA

Figure 5: The operational flow of security extension for

access control

Table 1: The extracted data based on the extended

TOSCA data model
Nodes VNF1, IP = 10.0.0.122

VNF2, IP = 10.0.0.116
VNF3, IP = 10.0.0.104
VNF4, IP = 10.0.0.123
VNF5, IP = 10.0.0.113
VNF6, IP = 10.0.0.121

Security Policy: SP1: [VNF1, VNF2, VNF3]
- Subject: VNF1, Object: VNF2, Access=OK
- Subject: VNF2, Object: VNF1, Access=OK
- Subject: VNF1, Object: VNF3, Access=OK
- Subject: VNF3, Object: VNF1, Access=OK
- Subject: VNF2, Object: VNF3, Access=OK
- Subject: VNF3, Object: VNF2, Access=OK

SP2: [VNF4, VNF5, VNF6]
- Subject: VNF4, Object: VNF5, Access=OK
- Subject: VNF5, Object: VNF4, Access=OK
- Subject: VNF4, Object: VNF6, Access=OK
- Subject: VNF6, Object: VNF4, Access=OK
- Subject: VNF5, Object: VNF6, Access=OK
- Subject: VNF6, Object: VNF5, Access=OK

data model, and parses these parameters to Moon-
Client for generating high-level security policies in Moon
policy engine. Second, it fills all the information in the
extended TOSCA data model and translates them to
HOT (Heat Orchestration Template) for being inter-
preted by Heat, because the information contains in
the TOSCA fields are not natively interpretable by
Heat. Based on the previous example shown in Fig 4,
the extracted data that is translated by the parser is
shown in Table 1.

• Network hook: which works as a lightweight proxy
server in each VNF by coordinating with Moon. It
is written in Python and maintains the connection be-
tween subject and object. By default, this network hook
disables all the accesses to the object by setting the rule
in iptables as iptables -A INPUT -j DROP. The net-
work hook continues listening to an assigned port, and
it checks the permission based on the source IP with
Moon as soon as it receives the request. If the request
is authorized, this network hook inserts a temporary
rule with specific source IP in the iptables, e.g, ipta-
bles -I INPUT 1 -s 10.0.0.116 -j ACCEPT, so that
the subject whose IP address is 10.0.0.116 can start
to communicate with the requested object.

Fig 5 illustrates the operational flows of security exten-
sion for NFV orchestrator based access control. Once the
VNF/VNFC receives a request, the corresponding network
hook sends an authorization request to Moon for validation.

Figure 6: A result of testing network connection with

Telnet

The network hook will add a new rule into its iptables to
allow this connection. If the network hook does not receive
any request during a predefined period of time, the corre-
sponding rule will be removed from its iptables, while the
connection between subject and object will be disconnected.
The testing result from implementation is presented in Fig 6.
As shown in the two telnet consoles, VNF2 successfully es-
tablishes network connection with VNF1, while the connec-
tion requests from VNF4 to VNF1 are denied. This well
illustrates the security policy that the network connections
can be established only if the subject and object belong to
the same group of security policy.

6. CONCLUSION AND FUTURE WORK
Despite the advantages of NFV based management and

orchestration that enable network resources and services to
be managed and provided in agile, dynamic, scalable, and
adaptive ways, the benefits to security management remain
unclear. We have examined a set of available NFV orchestra-
tors and found that none of them provides dedicated mod-
ules or components for security management purpose. This
observation motivates us to propose and develop a security
extension for NFV orchestrator which are based on TOSCA
data model. We implemented the security extension based
on our Moon framework, which is an available platform for
dynamic access control to cloud resources. As a result, the
high-level access policies can be automatically enforced to
protect underlying NFV infrastructure. To illustrate the
usage of our proposed security extension model, we devel-
oped a realistic use case of access control with two different
scenarios: one data model without security policy specifica-
tion, and another one with predefined security policy spec-
ification. The preliminary result shows that it is feasible
and effective to create fine-grained access control rules, e.g.,
blocking illegal access, grouping or isolating the protected
resources, thanks to our security extension. For our future
work, we will specially evaluate the performance impact of
our proposed model, towards analyze key factors which in-
fluence communication overhead and latency. Also, we will
extend the capability of our security orchestration, which
not only provide access control, but other security functions
(e.g., security monitoring, network isolation, and data pro-
tection) will be taken into account for achieving a holistic
security management supported NFV orchestrator.

7. REFERENCES
[1] YAML Ain’t Markup Langauge. http://yaml.org/,

May 2001.

[2] Cloudnfv. http://www.cloudnfv.com/, Jan 2014.

[3] OpenMANO.
https://github.com/nfvlabs/openmano, Mar 2015.

[4] OpenBaton. https://openbaton.github.io/, Jan
2016.

[5] Alcatel-Lucent. Cloudband.
http://www.tmcnet.com/redir/?u=1010632, 2014.

[6] Z. Bronstein and E. Shraga. NFV Virtualisation of the
Home Environment. In CCNC’ 14, pages 899–904, Jan
2014.

[7] J. Carapinha et al. Network Virtualization -
Opportunities and Challenges for Operators. In
FIS’10, pages 138–147, 2010.

[8] A. Dutta. Security Challenges and Opportunities in
SDN/NFV Networks. http://www.isr.umd.edu/
sites/default/files/Dutta.pdf, Nov 2016.

[9] ETSI. Network Functions Virtualization: An
Introduction, Benefits, Enablers, Challenges & Call for
Action, Oct 2012.

[10] ETSI. Network Functions Virtualization (NFV);
Management and Orchestration, Dec 2014.

[11] ETSI. Network Functions Virtualization (NFV): NFV
Security, Security and Trust Guidance, Dec 2014.

[12] ETSI. Network Functions Virtualization (NFV):
Security Report, Security Management and
Monitoring for NFV, Nov 2015.

[13] B. Han et al. Network Function Virtualization:
Challenges and Opportunities for Innovations. IEEE
Communications Magazine, 53(2):90–97, Feb 2015.

[14] H. Hawilo et al. NFV: State of the Art, Challenges,
and Implementation in Next Generation Mobile
Networks (vEPC). IEEE Network, 28(6):18–26, Nov
2014.

[15] Heat. Heat - Openstack Orchestration.
https://wiki.openstack.org/wiki/Heat, May 2014.

[16] B. Jaeger. Security Orchestrator: Introducing a
Security Orchestrator in the Context of the ETSI
NFV Reference Architecture. In IEEE TrustCom’ 15,
pages 1255–1260, Aug 2015.

[17] R. Jain and S. Paul. Network Virtualization and
Software Defined Networking for Cloud Computing: a
Survey. IEEE Communications Magazine,
51(11):24–31, November 2013.

[18] R. Mijumbi et al. Network Function Virtualization:
State-of-the-Art and Research Challenges. IEEE
Communications Surveys & Tutorials, 18(1):236–262,
2016.

[19] OPNFV. Moon - Security Management Module.
https://wiki.opnfv.org/display/moon/Moon, Apr
2016.

[20] M. Pattaranantakul et al. SecMANO: Towards
Network Functions Virtualization (NFV) based
Security MANagement and Orchestration. In IEEE
TrustCom’ 16, Aug 2016.

[21] Tacker. Tacker - OpenStack NFV Orchestration.
https://wiki.openstack.org/wiki/Tacker, 2013.

[22] TOSCA. TOSCA Simple Profile for Network
Functions Virtualization (NFV version 1.0), Mar 2016.

