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Abstract—Recently, many exciting usage scenarios and ground-
breaking technologies for sixth generation (6G) networks have
drawn more and more attention. The revolution of 6G mainly
lies in ubiquitous intelligence, which promotes the development
of edge intelligence (EI) by running artificial intelligence (AI) al-
gorithms at the network edge. By embedding training capabilities
across the network nodes, federated learning (FL) can achieve
high security and alleviate network traffic congestion, which
provides a promising way to realize the ubiquitous EI. While tra-
ditional FL usually relies static terrestrial base stations (BSs) for
the global model aggregation, unmanned aerial vehicles (UAVs)
could effectively supplement the terrestrial BSs because of their
high maneuverability, thereby building the air-ground integrated
FL (AGIFL). Nevertheless, how to effectively deploy the UAV and
allocate resources to boost the learning performance and achieve
high energy efficiency in the AGIFL remains largely unexplored.
In this paper, we study how to jointly optimize the UAV
location and resource allocation to minimize the incurred cost in
terms of two objectives: i) the minimization of terrestrial users’
energy consumption; ii) the minimization of tradeoff between
energy consumption and training latency. The formulated non-
convex problems are efficiently solved by alternating optimization
techniques based on successive convex approximation (SCA)
approaches after appropriate problem decomposition. Extensive
simulation results show that our proposed algorithms can reduce
more cost than three benchmarks while guaranteeing the learning
accuracy. Furthermore, we construct a real-world AGIFL system,
implement the proposed algorithms in the system, and carry out
field experiments to verify the superiority of our algorithms.

Index Terms—UAV location, resource allocation, air-
ground integrated federated learning
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W ITH the commercialization and global deployment
of fifth generation (5G) networks from 2020, both

academy and industry have come up with visions and ground-
breaking technologies for sixth generation (6G). To develop
the ambitious use cases of 6G in the future, artificial intelli-
gence (AI) is deemed to be one of the revolutionary approaches
to design and optimize 6G networks. It is expected that 6G will
support ubiquitous AI services, promoting the development of
intelligence from the center to the edge of networks [1], [2].
Given the requirements of burgeoning 6G, edge intelligence
(EI) is expected to become a focus of 6G [1]. EI offers a
promising paradigm for delivering intelligence by collecting,
processing, and analyzing the huge amount of data traffic
generated at the edge of the network [3], [4].

Creating a reliable and efficient EI system is critical to
infusing intelligence for 6G. To be specific, credibility in
terms of privacy and efficiency in data exchange is one of the
key requirements for 6G smart services, which needs to meet
general data protection regulations (GDPR) that prohibit users
from directly transmitting or collecting raw data [5]. Recently,
federated learning (FL), emerges as a promising distributed
ML paradigm that can enable multiple users to collaboratively
train machine learning (ML) models without sharing raw data
[1]. In FL, each user trains a local model based on its own
data and sends the recent model parameter to a parameter
server node for global model aggregation [6], [7]. FL can
achieve high security and reduce network traffic congestion
and energy consumption, by embedding training capabilities
across the network nodes [5]. Therefore, from that point of
view, FL at the edge is a potential paradigm to realize the
much-needed ubiquitous EI.

Traditional edge FL usually relies on terrestrial communica-
tion infrastructure. However, in some areas far from hot spots
(e.g., rural and mountains) or under some emergencies (e.g.,
large gatherings and military exercises), the restricted terres-
trial communication infrastructures may have a huge influence
on communication of edge FL. Fortunately, unmanned aerial
vehicle (UAV) equipped with edge computing server may be
a prevailing trend due to its flexibility, mobility, and agility
in the air-ground integrated network (AGIN) [8]. UAVs could
replace traditional base stations (BSs) as parameter servers to
provide communication and computing services for terrestrial
users, thereby building the air-ground integrated federated
learning (AGIFL) [2], [9]. Employing the UAV as edge server
in the AGIFL has two prominent advantages. On one hand,
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when terrestrial users or network status change, the UAV can
quickly adjust at low cost for flexible deployment. On the
other hand, the effective line-of-sight (LoS) channel avoids
signal attenuation and penetration loss caused by encountering
obstacles [10].

However, in order to realize the aforementioned
potential benefits of the AGIFL with the help of the
UAV, we are faced with the following challenges.
i) Where to place the UAV to boost the learning performance
of the AGIFL? Improving FL performance through the
deployment of the UAV is a top priority in the AGIFL.
In traditional UAV-assisted networks, the deployment
of UAV is usually only concerned with communication
coverage. Nevertheless, model upload and download
are the two most important links of FL, so that the
impact of air-ground wireless channel should be strictly
considered, because of the maneuverability of the UAV.
ii) How to satisfy the differentiated needs of FL applications?
Facing the diverse requirements, such as energy-saving,
training acceleration or both, traditional FL which normally
considers training to be completed in a predefined latency
budget may not be suitable. It is necessary and non-trivial
to study how to optimize the AGIN to efficiently satisfy the
diverse requirements of different FL applications.

To address the aforementioned challenges, we focus on how
to jointly optimize the UAV location and network resources to
simultaneously meet the diverse requirements and minimize
the incurred cost in the AGIFL. Specifically, we formulate
two optimization problems: one is the minimization of all
terrestrial users’ energy consumption in the FL under prede-
fined learning accuracy and latency constraints, the other is
the minimization of the weighted sum of energy consumption
and learning latency under the same constraints, which are
both non-convex and difficult to solve. Leveraging convex
and successive convex approximation techniques, we propose
efficient convergence-guaranteed algorithms to them after ap-
propriate problem decomposition. Furthermore, besides exten-
sive simulations, we carry out field experiments to verify the
effectiveness of the proposed algorithms.

II. RELATED WORKS

The related works fall into three main categories: FL in
wireless network, UAV-assisted FL, and UAV placement.

1) FL in wireless network: There exist many researches
on how to reduce energy consumption or latency and improve
convergence performance of FL in wireless network.

Reduce energy consumption or latency: Tran et al. [11]
constructed FL as an optimization problem that captures the
tradeoff between the FL latency and UE energy consumption
in the terrestrial network. Furthermore, Luo et al. [12] intro-
duced a novel Hierarchical Federated Edge Learning (HFEL)
framework. They formulated a joint computation and com-
munication resource allocation and edge association problem
for terrestrial users under HFEL framework to achieve global
cost minimization. Rakpong et al. [13] proposed a hierarchy
of quantum key distribution-secured FL (QKD-FL) systems in
which QKD resources and routing are jointly optimized for FL

applications to minimize the deployment cost of QKD nodes
under various uncertainties, including security requirements.
Besides, Xu et al. [14] used the coordinated multiple base
station access mechanism to achieve wireless FL acceleration
with the fully decoupled uplink and downlink Wireless Access
Network (FD-RAN) architecture. In order to reduce the total
energy consumption and ensure the learning performance, an
energy-saving strategy for bandwidth allocation and schedul-
ing was proposed based on the state of ground channel and
users’ computing power [15].

Improve convergence performance: Restricted by spectrum
bandwidth, participation of all mobile devices in iterative
aggregation presents challenges in practical FL applications.
Hence, existing work [16]–[18] studied different scheduling
strategies to improve the convergence performance of FL
in terrestrial wireless network. Yang et al. [16] derived the
convergence rate of FL in terrestrial wireless environment, and
considerd the effect of scheduling scheme and intercell inter-
ference. Moreover, Nishio et al. [17] proposed a new FL pro-
tocol called FedCS, which alleviates the problem of training
inefficiency caused by limited computing and communication
resources, effectively executes FL, actively manages terrestrial
client resource conditions, and speeds up the performance
improvement of ML model. Similarly, a control algorithm was
proposed in the work [18] to determine the optimal tradeoff
between local update and global parameter aggregation and
minimize the loss for a resource budget.

To summarize, the aforementioned works [11]–[18] con-
sider the performance of FL happens in the terrestrial networks
only. Actually, the UAV is an efficient alternative to base
station in wireless network. This paper devotes to reducing
energy consumption and improving convergence to boost the
performance of FL with the help of the UAV. To be specific,
we jointly optimize the UAV location and resource allocation
to realize the reduction of energy and latency. In addition,
compared with other works [12], [15] that constrain training
by setting deadline, we introduce latency into the objective
function to achieve both fast and energy-saving AGIFL.

2) UAV-assisted FL: UAV-enabled wireless communica-
tion networks have been recognized as an important part of
5G and beyond networks to realize full converge and enhance
network performance [19], [20]. Based on that, UAV-enabled
FL has the potential to further improve the computation perfor-
mance besides communication, which significantly increases
the complexity of system design because the scheduling of
UAV movement trajectories needs to be addressed meanwhile.

FL in UAV swarms: Jer Shyuan Ng et al. [21] used UAVs
as wireless relays to facilitate communication between internet
of things (IoT) components and FL servers, thereby improving
the accuracy of FL. Furthermore, Xiao et al. [22] proposed a
FL framework in UAV swarm which provides fast convergence
and high communication efficiency for specific on-board tasks
to some extent. Besides, Zeng et al. [23] proposed a combined
power distribution and scheduling design to optimize the
convergence rate of FL, considering the energy consumption
during convergence and the delay requirements imposed by
group control systems.

Reduce energy consumption or latency: Tran et al. [11]
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constructed FL as an optimization problem that captures the
tradeoff between the FL latency and UE energy consumption
in the terrestrial network. Furthermore, Luo et al. [12] intro-
duced a novel Hierarchical Federated Edge Learning (HFEL)
framework. They formulated a joint computation and com-
munication resource allocation and edge association problem
for terrestrial users under HFEL framework to achieve global
cost minimization. Rakpong et al. [13] proposed a hierarchy
of quantum key distribution-secured FL (QKD-FL) systems in
which QKD resources and routing are jointly optimized for FL
applications to minimize the deployment cost of QKD nodes
under various uncertainties, including security requirements.
Besides, Xu et al. [14] used the coordinated multiple base
station access mechanism to achieve wireless FL acceleration
with the fully decoupled uplink and downlink Wireless Access
Network (FD-RAN) architecture. In order to reduce the total
energy consumption and ensure the learning performance, an
energy-saving strategy for bandwidth allocation and schedul-
ing was proposed based on the state of ground channel and
users’ computing power [15].

The aforementioned works [21]–[23] consider the perfor-
mance of FL happens in the aerial networks only and they
are focus on training acceleration. Unlike these existing reser-
aches, we study the tradeoff between energy consumption and
FL latency in the AGIFL. Meanwhile, there are few researches
focus on optimization simulation and practical verification
of the AGIFL. In [24], the UAVs only serve as the aerial
relay to collect local models of terrestrial equipments and
transmit them to a centralized aggregator. In [25], UAVs
and terrestrial remote radio heads jointly serve as heteroge-
neous Base Stations (BSs) of a Cloud Radio Access Network
(HCRAN), while we are considering scenarios where BSs are
not available. In [26], UAVs are used as edge nodes rather
than servers, and the final aggregation takes place in the
cloud. However, we use the UAV as the server to aggregate
the local model. Compared with [2], [27], [28], we not only
carry out optimization simulations in the AGIFL, but also
firstly complete the small-scale real-world experimental for
the AGIFL system to verify the simulation results.

3) UAV placement: There exist many researches on UAV
placement, which can be divided into two categories based on
the number of UAVs.

Placement of single UAV: Alzenad et al. [29] investigated
a new 3D placement method for the UAV that maximizes
the number of covered users with different QoS requirements
when the UAV is deployed at high and low altitude. Then,
Hayajneh et al. [30] used the UAV empowered small cel-
lular networks (DSCNs) to deploy resilient communication
networks for smart cities, studied the coexistence characteris-
tics of covered DSCN networks. They significantly improved
the coverage probability of terrestrial users in post-disaster
situations by optimizing the altitude and number of UAV.
Equally, Al-Hourani et al. [31] proposed an analytical method
to optimize the height of low-altitude aerial platforms, a key
enabler of the rapid deployment rescue network, to provide
maximum ground radio coverage.

Placement of multiple UAVs: In order to realize real-time
communication with more terrestrial users, multiple UAVs

can also be deployed in coordinated formation. Mozaffari
et al. [32] studied the optimal deployment of multiple UAVs
equipped with directional antennas as aerial BSs. They pro-
posed an efficient deployment method based on circular pack-
aging theory, which can achieve maximum coverage while us-
ing minimum transmitting power for each UAV. Furthermore,
Kalantari et al. [33] described a new UAV deployment plan to
serve users according to their traffic needs with as few UAVs
as possible. Besides, Sharma et al. [34] proposed an optimal
layout and distribution method for cooperative UAVs in het-
erogeneous networks to optimize overall network latency. In
addition, Mohammad et al. [35], proposed a new framework,
efficiently deploy UAVs for data collecting from terrestrial IoT
devices. They also studied the effective movement of UAVs
to collect data in time-varying IoT networks.

The aforementioned works [29]–[31] focus on the 3D
deployment of the UAV for UAV-assisted wireless networks,
these studies are aimed at finding the best deployment loca-
tion to maximize coverage. And the aforementioned works
[32]–[35] provide on-demand and reliable wireless access to
terrestrial users through multi-UAV in cooperative formation.
Different from the above works, considering how to boost
the FL performance by deploying the UAV is the focus
in the AGIFL. In particular, compared to traditional UAV-
assisted networks, the UAV is no longer the object of mission
offloading in the AGIFL. Plenty of computational training
happens on the client side, which requires deploying the UAV
and allocating network resources to ensure the training and
communication environment of users. Therefore, in this paper,
we study the joint optimization of the UAV location and
resources allocation.

A. Contributions and Organization
The main contributions are summarized as follows:
• Novel cost-efficient FL framework utilizing the UAV: To be

the best of our knowledge, this is the first work to study how
to jointly optimize the UAV location and resource allocation
to minimize the incurred cost in the AGIFL. Specifically, we
formulate two optimization problems with different cost ob-
jectives: one is the minimization of all terrestrial users’ energy
consumption in the FL under predefined learning accuracy
and latency constraints, the other is the minimization of the
weighted sum of energy consumption and learning latency
under the same constraints. The formulated problems are non-
convex with complicated relationships among variables and
thus difficult to solve.
• Convergence-guaranteed suboptimal algorithms: We pro-

pose the joint UAV location and resource allocation (JULRA)
algorithms to solve the aforementioned problems after appro-
priate problem decomposition. To be specific, we exploit the
special structure of objective functions and decompose them
into two subproblems: the computation resource allocation
subproblem, and joint UAV location and communication re-
source allocation subproblem. Leveraging convex and succes-
sive convex approximation techniques, we alternately optimize
the above subproblems and obtain the suboptimal solution until
converge. We also theoretically prove the convergence and the
complexity of our algorithms.



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023 4

• Extensive simulations and practical field experiments:
We conduct both extensive simulations and small-scale real-
world experiments to validate the effectiveness of the proposed
algorithms. Simulation results show that, compared to three
benchmarks, our algorithms can reduce the overall users’
energy consumption by ∼53.8% on average while maintaining
the learning accuracy. After introducing latency into objective
function, the weighted sum of energy consumption and latency
can be reduced by ∼54% on average. We are also the first to
build a practical AGIFL system and implement the proposed
algorithms for the AGIFL. Experimental results show that
the proposed algorithms reduce the energy consumption by
∼38.6% on average compared to three benchmarks.

The rest of this paper is organized as follows: Section
III provides the system model and problem formulation. In
Section IV, the problem is solved by our proposed joint
UAV location and resources allocation optimization algorithm.
The case of considering tradeoff between energy consumption
and latency is explored in Section V. Simulation results are
presented in Section VI and field experiments are conducted
in Section VII. We also discuss the optimization of learning
parameters in Section VIII. Finally, Section IX concludes the
paper.

III. MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a UAV-assisted network
consisting of one UAV equipped with an edge server hovering
in the sky and several terrestrial users, where the set of the
users is denoted by U = {1, 2..., U}. A modern intelligent
user can be thought of as a personal computer with an
integrated processor with a certain amount of computing power
for computing tasks, and plethora of sensors (e.g., cameras,
microphones, and GPS) for collecting a wealth amount of
data, which ensures the feasibility of FL to foster more
intelligent applications [36]. Note that in practical, some
terrestrial BS may be congested or unavailable due to large-
scale sport/festival events or BS malfunction, and even fails to
provide network coverage in remote areas, which necessitates
the deployment of UAV to provide essential communication
and computation services. Suppose that the coordinates of
the u-th user and the UAV are represented as [xu, yu] and
[X,Y,H], respectively. With the help of the UAV as the
parameter sever, each terrestrial user u ∈ U aims to train a FL
model based on a local dataset Du, whose size is represented
as Du. Naturally, the total data size of all users is denoted by
D =

∑U
u=1 Du. For Du, the data sample is a set of vector

pairs of input and output, expressed as
{
x

′

n, y
′

n

}Du

n=1
. The

data can be generated through the usage of terrestrial users, for
example, via interactions with mobile apps or images captured
by a camera which constitutes the diversity of user data. With
these users data, and location information, the current optimal
location of the UAV as a edge server can be calculated. In the
adopted FL, we use the publicly available MNIST dataset [37],
which has which has 10 categories of handwritten digits, from
“0” to “9”. For the non-IID, each user has a certain number
of samples, but 80% of the samples are from one dominant
category and the remaining 20% belong to other categories.

Fig. 1: An illustration of AGIFL with the help of a UAV.

For example, a “0”-dominated user has 480 data samples with
the label “0”, while the remaining 120 data samples have labels
evenly distributed among “1” to “9” [38]. Furthermore, the
same category also has different forms of expression because
the same numbers are written differently by different people.
In addition, the imbalance of data leads to the difference in
the number of user samples, which is also the reason why we
optimize the allocation of user computing resource. In fact, the
optimal location is indeed different for different applications.
We aim to design an algorithm that can calculate the optimal
location of the UAV and the resource allocation of the users
based on the current state of the terrestrial users, not limited to
a certain application. According to different applications, the
proposed algorithm can change the input to get the optimal
UAV location. To be specific, different applications will have
corresponding learning models, and different models have
different upload model parameters. In this case we need to
change the data size of upload parameters.

A. Federated Learning Model for UAV-assisted Networks

In this section, we adapt the FL model [39] to the wireless
networks in detail. First, we call the model obtained by the
terrestrial users’ calculation of their sample data as the local
model, and the model obtained by the UAV aggregation as
the global model. Referring to existing studies [11], we use
a vector w to represent the relevant parameters of the global
model, and the loss function can be defined as f (w,xui, yui).
It’s worth noting that the loss function is derived from one
sample data of u-th user. Therefore, the total loss function
can be represented by: Fu (w, xu1, yu1, · · · , xuDu , yuDu) =
1

Du

∑Du

i=1 f (w,xui, yui). In FL, the sample data is used to
train the underlying model in order to aggregate a global
FL model for all terrestrial users which shares none of the
datasets. The learning model is the minimizer of the following
global loss function minimization problem:

min
w

F (w) ≜
U∑

u=1

Du

D
Fu(w) =

1

D

U∑
u=1

Du∑
i=1

f (w,xui, yui) . (1)

In each iteration, all the terrestrial users need to download
the initial global model from the UAV, and then upload the
local model parameters to the UAV after calculating the sample
dataset at local. The UAV aggregates these models to obtain a
new global model and broadcasts it to the terrestrial users. At
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TABLE I: A list of frequently used symbols.
Symbol Description Symbol Description

U Number of terrestrial users a Size of model parameters uploaded
U Set of terrestrial users B Bandwidth
Du Local data set of u-th user pu Transmission power of the u-th user
Du Size of local data set in the u-th user α Effective capacitance coefficient
D Total data size α0 Channel gain
cu Number of CPU cycles of the u-th user θ Local accuracy
H Fixed height of the UAV ϵ0 Global accuracy
w Global model vector σ2 Background noise power
ru Uplink transfer rate of the u-th user K The weight of energy and latency

∇F (w) Global gradient ∇Fu (w) Local gradient of u-th user

u-th iteration, the UAV broadcasts the global model w(n) and
the global gradient ∇F

(
w(n−1)

)
, and the u-th user acquires

local gradient ∇Fu

(
w(n)

)
by calculating its local dataset with

received w(n) and then send it to the UAV. The user evaluates
the following minimization problem on the local side:

min
du

gu
(
w(n),du

)
≜−

(
∇Fu

(
w(n)

)
− µ∇F

(
w(n)

))T
du

+ Fu

(
w(n) + du

)
,

(2)

where µ is a parameter that can be adjusted, du records the
difference between the local and global models. This problem
is numerical difficult to solve the minimization of local loss
function gu

(
w(n),du

)
, but we can find its feasible solution

with certain accuracy. According to [11], the optimal feasible
solution needs to meet the following two conditions:

gu
(
w(n),d

(n)
u

)
− gu

(
w(n),d

(n)∗
u

)
≤ θgu

(
w(n),0

)
− θgu

(
w(n),d

(n)∗
u

)
, (3)

F
(
w(n)

)
− F (w∗) ≤ ϵ0

[
F
(
w(0)

)
− F (w∗)

]
,

(4)

where d(n)∗
u is the optimal solution of problem (2), condition

(3) means the difference between the parameter of the optimal
solution and the parameter of the n-th local model over the
difference between the parameter of the optimal solution and
the parameter of the original local model cannot beyond the
local accuracy θ. Meanwhile w∗ is the optimal solution of
problem (1) and condition (4) denotes the difference between
the parameter of the optimal solution and the parameter of the
n-th global model over the difference between the parameter
of the optimal solution and the parameter of the original global
model can not beyond the global accuracy ϵ0. According
to existing works [40], [41], the relationship between global
iteration rounds and accuracy should satisfy the following

constraints: L(θ) ≥
2l2

γ2ξ
ln 1

ϵ0

1−θ , where l, γ, and ξ are constant
values. In this paper, the global accuracy ϵ0 is considered
as a fixed value, we can normalize 2L2

γ2ξ ln 1
ϵ0

to 1, so that
L(θ) = 1

1−θ [11].
On the other hand, computation and uplink communication

time consist each global iteration. Since the downlink band-
width is larger than the uplink bandwidth, and the UAV power
is much higher than the user transmission power, compared
with the uplink time, the downlink time can be ignored
[11]. The computation time depends on the number of local

iterations 2l2

γ2ξ ln
1
θ . Meanwhile the total latency in one global

iteration can be given by:

Tglob (θ, Tcom, Tcmp) = Tcom + v log(1/θ)Tcmp, (5)

where Tcmp is the time required for all the users to calculate
the local model in an iteration and Tcom is the time required
for all the users to upload model parameters in an iteration.
v log(1/θ) denotes to the number of local computation rounds
required. v is a positive constant which depends on the local
data size. According to the above formula, θ is associated
with local and global training rounds [40], [41], and can be
used as a hyperparameter to adjust training performance. The
parameter tuning is not performed on the server, but on the
distributed nodes before local training begins.

B. Energy Consumption Model

We take the overall users’ energy consumption as the
goal, which includes two parts: computation consumption and
communication consumption.

1) Computation Energy Consumption: We use cu to denote
the number of CPU cycles to solve one sample of data for
u-th user. This is a predetermined value which is known as
a priori [42], so we can measure it offline. Since all samples
have different sizes, the number of CPU cycles required for
u-th user to run a round of local computation is cuDu.
Meanwhile the time for a round of computation of the u-th
user can be expressed as tcmp

u = cuDu

fu
, where fu means the

used CPU frequency. Naturally, the total computation energy
consumption can be given by [43]:

Ecmp
u (fu) = αucuDuf

2
u, (6)

where αu refers to the effective capacitance coefficient of u-th
user computation chipset [11].

2) Communication Energy Consumption: Users’ communi-
cation energy consumption can be affected by the distance
between UAV and terrestrial users. According to [11], we
plan to upload the local model parameters generated by users
after calculation in the way of time-domain multiple access
(TDMA). The uplink data rate is defined as follows:

ru = B log2

(
1 +

α0pu

σ2 (H2 +R2
u)

)
, (7)

where B is the bandwidth, pu is the transmission power
of u-th user, α0 denotes the channel gain at a certain dis-
tance, H is the hovering altitude of the UAV, and Ru =
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√
(X − xu)

2
+ (Y − yu)

2. We assume that the data size of
the model parameters to be uploaded in each round is a, and
thus the time of transmission delay is tcomu = a/ru. We can
obtain the total communication energy consumption required
for FL in a round:

Ecom
u (X,Y ) =

U∑
u=1

pu
a

B log2

(
1 + α0pu

σ2(H2+R2
u)

) . (8)

Therefore, we can denote the total energy by Eglob, which can
be represented as:

Eglob (fu, θ,X, Y ) =

U∑
u=1

(Ecom
u + v log(1/θ)Ecmp

u ). (9)

C. Problem Formulation

We aim to minimize the users’ energy consumption, by
jointly optimizing the UAV location [X,Y,H], resource al-
location {fu, Tcmp, Tcom}, while taking predefined learning
accuracy θ, and training latency τ into account. It is logical
that we can express the objective function as problem P1:

P1 : min
fu,X,Y,Tcom,Tcmp

L(θ)Eglob(fu, θ,X, Y )

s.t. L(θ)Tglob (θ, Tcom, Tcmp) ≤ τ, (10)
tcomu ≤ Tcom/U, ∀u ∈ U , (11)

max
u

cuDu

fu
= Tcmp, (12)

fmin
u ≤ fu ≤ fmax

u , ∀u ∈ U . (13)

In this minimization optimization problem, constraint (10)
means global training should be completed within a given
deadline τ . In constraint (11), it requires each user to complete
the communication in the same time. Constraint (12) assures
that Tcmp should not be shorter than the maximum time for the
terrestrial user to compute locally. Constraint (13) guarantees
the calculation frequency to be kept within a certain range.
In this paper, the mission period is divided into T time slots
with a certain length, where the set of the slots is denoted
by T := {1, 2, ..., T}. In fact, the time slot length should be
sufficiently small so that the users’ limited movement distance
can be regarded as relative stillness and the channel gain is
approximately sampled within each time slot. To be specific,
At the t-th slot, the terrestrial user locates through GPS, and
transmits the location information to the UAV through the
data transmission module and the UAV can get the optimal
location by solving P1. Then at t + 1 slot, the location of
the user has changed. The terrestrial users transmit the new
location information to the UAV. We only need to repeat the
steps and solve P1 again to get the optimal location of the
UAV. Therefore, for P1, we can only consider the total energy
consumption in a single time slot, instead of summing over
the whole time. The index t can be omitted.

IV. SOLUTION

It is crucial to deploy the UAV as a parameter server because
of the heterogeneous of users such as raw data and computing
power. Unfortunately, this optimization problem is difficult
due to the large search space of UAV location combinations
and their coupling with computational and communication

Fig. 2: A diagram of our proposed solutions.

resource allocation in the objective function. This means
that it is impractical to obtain the global optimal solution
in real time for a large number of inputs [36]. Therefore,
efficient approximation algorithms with low complexity are
ideal, which drives the design of the JULRA algorithm below.

A. Joint UAV Location and Resource Allocation Optimization

It is easy to see that the problem P1 is non-convex with
respect to Ru in the objective function. Eq. (9) shows that the
total user energy consumption is composed of communication
and computation. The communication energy consumption
is affected by the UAV location and communication time,
while the calculation energy consumption is only related
to the computation frequency and time. Therefore, we first
decompose P1 into two subproblems P2 and P3, which
are efficiently solved by existing convex techniques and SCA
approaches, respectively, and then propose an efficient iterative
algorithm based on the solutions of the subproblems. We can
see the diagram of our proposed solutions clearly in Fig. 2.

For a target local accuracy θ, the global iteration round
L(θ) is omitted because it has no effects on the solutions of
these subproblems. We can decompose the objective function
according to the dependence between the variables. Firstly, we
consider fixing the hovering location of the UAV to find the
optimal solutions of computation resources.

1) Computation Resource Allocation Optimization: In P2,
we fix the variables X , Y , and Tcom, so that the communica-
tion energy consumption Ecom

u becomes a constant value.

P2 : min
fu,Tcmp

U∑
u=1

αucuDuf
2
u

s.t. L(θ)Tglob (θ, Tcom, Tcmp) ≤ τ, (14)
cuDu

fu
≤ Tcmp, ∀u ∈ U , (15)

fmin
u ≤ fu ≤ fmax

u , ∀u ∈ U . (16)

Lemma 1. P2 is a convex problem.
Proof. The second derivative of the objective function, Eq.
(14) and Eq. (16) are all no less than zero. And the second
derivative of the LHS of Eq. (15) is derived as: ∇2( cuDu

fu
) =

2cuDu

f3
u

, which is always no less than zero. Thus, problem P2
is a simple convex problem.

For the convex problem P2, we can use the traditional
convex optimization to get the optimal solution f∗

u and T ∗
cmp

[44].
2) Joint UAV Location and Communication Resource Allo-

cation Optimization: Using the solutions f∗
u and T ∗

cmp
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obtained from P2, Ecmp
u becomes a constant value, which

we can omit in P3:

P3 : min
X,Y,Tcom

U∑
u=1

pu
a

B log2

(
1 + α0pu

σ2(H2+(X−xu)2+(Y −yu)2)

)
s.t. (11),

L(θ)[Tcom + v log(1/θ)T ∗
cmp] ≤ τ. (17)

P3 is continuous non-convex with respect to
a

B log2

(
1+

α0pu

σ2(H2+(X−xu)2+(Y −yu)2)

) and so as Eq. (11).

To reduce the complexity, we introduce a continuous slack
variable ηu, where ηu ≥ 1

B log2

(
1+

α0pu

σ2(H2+(X−xu)2+(Y −yu)2)

) ,

for ∀u ∈ U . Then introduce relax variables into problem P3,
it becomes to:

min
X,Y,ηu,Tcom

U∑
u=1

puaηu

s.t. L(θ)[Tcom + v log(1/θ)T ∗
cmp] ≤ τ, ∀u ∈ U , (18)

aηu ≤ Tcom/U, ∀u ∈ U , (19)

B log2

(
1 +

α0pu

σ2 (H2 +R2
u)

)
≥

1

ηu
, ∀u ∈ U . (20)

After the above transformation, the object function and the
LHS of Eq. (19) are now convex in ηu, the LHS and RHS of
Eq. (20) are convex in R2

u and ηu. According to [45], [46], we
employ the SCA to obtain the locally optimal solution of the
above problem. For any given local point Xr, Y r, the LHS
of Eq. (20) can be approximated as follows:

B log2

(
1 +

α0pu

σ2 (H2 +R2
u)

)
≥ λ(R2

u −Rr2
u ) + κ, (21)

λ = −
Bα0pu log2 e

σ2
(
Rr2

u +H2
) (

Rr2
u +H2 + α0pu/σ2

) , (22)

Rr2
u = (Xr − xu)

2 + (Y r − yu)
2 , (23)

κ = B log2

(
1 +

α0pu

σ2 (H2 +Rr2
u )

)
. (24)

Then the r-th subproblem can be given by:

P3r : min
X,Y,Tcom,ηu

U∑
u=1

puaηu

s.t. (18)(19),

λ(R2
u −Rr2

u ) + κ ≥
1

ηu
, ∀u ∈ U . (25)

After a series of transformations, the original problem
becomes a convex quadratic constrained quadratic program
(QCQP) [47], which can be solved using standard convex
solver given in Alg. 1.

B. Overall Iterative Algorithm and Analysis

As is shown in Alg. 2, the key idea of overall algorithm
is to alternate iteration optimizes two subproblems by using
CVX and SCA proposed in section III-A.
Theorem 1. Alg. 2 converges to a suboptimal solution.
Proof.

Ei−1
glob = Eglob

(
fu

i−1,Xi−1,Y i−1
)

≥ Eglob

(
fu

i,Xi−1,Y i−1
)

≥ Eglob

(
fu

i,Xi,Y i
)
= Ei

glob

(26)

The first inequality holds because of the optimality of f i
u by

solving P2, and the second inequality holds because of the
suboptimality of (Xi,Y i) by solving P3.

Algorithm 1 Joint UAV Location and Communication Re-
source Allocation Optimization Algorithm for P3.

Input: Initial feasible UAV position P (0) ≜
{
(X0, Y 0)

}
,

iteration index r = 0, maximum iterations rmax = 100,
step size sequence

{
σj

}
∈ (0, 1].

Output: UAV location P and communication resources Tcom.
1: while r ≤ rmax do
2: Compute P̂ (P (r)), the local optimal solution of P3r;
3: Set P (r + 1)← P (r) + σj(P̂ (P (r))− P (r));
4: if P (r + 1) is a stationary solution of P3 then
5: break;
6: else
7: Set r ← r + 1;
8: end if
9: end while

10: return P (r) and T r
com.

Algorithm 2 Joint UAV Location and Resource Allocation
Optimization Algorithm for P1.

Input: Initial feasible UAV location P (0) ≜
{
(X0, Y 0)

}
,

T 0
com, maximum iterations imax = 100, step size sequence{
σi
}
∈ (0, 1].

Output: UAV location P , computation resources fu, Tcmp

and communication resources Tcom.
1: Set i = 0;
2: repeat
3: Solve problem P2 for given X0, Y 0, T 0

com by CVX,
and denote the global optimal solution as f i

u, T i
cmp;

4: Solve problem P3 for given f i
u, T i

cmp by Alg. 1, and
denote the local optimal solution as Xi, Y i, T i

com;
5: Set i← i+ 1;
6: until the convergence condition is reached.
7: return P (i), T i

com, f i
u, and T i

cmp.

Since the objective value of problem P3, which intro-
duces relaxation variable puaηu, decreases with the number
of iterations (represented in eq.26) and has a finite lower
bound (represented in eq.20), the convergence of Alg. 1 to
the suboptimal solution is guaranteed [48].

Alg. 2 gives an alternate procedure for solving problem P1,
alternately optimizing one block from the users computation
resource allocation variables in problem P2 and the UAV
location in problem P3, with the other block fixed. This
algorithm also called block coordinate descent method, which
is often used to solve non-convex optimization problems
and obtain suboptimal solutions [49]. Although the resulting
overall algorithm (Alg.2) is generally suboptimal, we demon-
strate the effectiveness of Alg. 2 in reducing user energy
consumption by comparing with other benchmark schemes in
Section VI [50].
Theorem 2. The complexity of Alg. 2 is calculated as
O(I(U3(J + 1))), where I is number of iterations of Alg. 2,
J is number of iterations of Alg. 1, and U is the number of
terrestrial users.
Proof. The complexity of Alg. 2 can be calculated as follows.
First of all, to obtain fu

i with fixed (Xi,Y i), it is a convex
optimization problem whose computation complexity is about
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O(U3) [51]. Then obtaining (Xi,Y i) with fixed fu
i takes

O(JU3) time. Thus, the total computation complexity of Alg.
2 is O(I(U3(J + 1))).

The proposed algorithm is polynomial in complexity and
does not consume too much computational power for airborne
embedded devices. Because airborne embedded devices are
often small computers with powerful computing capabilities,
for example, Jetson Xavier NX. The Jetson Xavier NX is
equipped with NVIDIA Volta architecture with 384 NVIDIA
CUDA cores and 48 Tensor cores, and 6-core NVIDIA Carmel
ARM v8.2 64-bit CPU 6 MB L2 + 4 MB L3. Due to the
limited coverage of a single UAV, the number of terrestrial
users who can access the same UAV at the same time is also
limited, which greatly reduces the complexity of the algorithm.

V. EXTENSION TO TRADEOFF BETWEEN ENERGY AND
LATENCY IN AGIFL

When natural disasters or emergencies occur, existing ter-
restrial communication infrastructure or base station could be
damaged. A fast, reliable and efficient emergency network is
needed to effectively accomplish the task of public security.
Because of the long transmission delays in wireless networks,
FL has bottlenecks in communication and energy costs until
satisfactory model accuracy can be achieved. It is crucial
to complete training quickly and efficiently. Nevertheless the
large number of computations and communications iterations
over a short period of time require significant energy overhead,
which can be a challenge for low-battery devices. Thus, in the
extension paragraph, we consider the optimization problem of
tradeoff between energy consumption and latency.

On the basis of problem P1, we introduce FL latency
into the objective function. To capture the optimal tradeoff
between unit energy consumption and FL latency, we use
weight K (joules/SEC) [36] in the target as an additional
energy consumption per unit of training time. The tradeoff
problem is described by the following formula:

P4 min
X,Y,fu,Tcom,Tcmp

L(θ)
(
Eglob +KTglob

)
s.t. L(θ)Tglob (θ, Tcom, Tcmp) ≤ τ, (27)

tcomu ≤ Tcom/U, ∀u ∈ U , (28)
cuDu

fu
≤ Tcmp, ∀u ∈ U , (29)

fmin
u ≤ fu ≤ fmax

u ,∀u ∈ U . (30)
The problem can be decomposed into two subproblems as
follows:

SUB1: min
fu,Tcmp

U∑
u=1

Ecmp
u +KTcmp

s.t.(27), (29), (30).

SUB2: min
X,Y,Tcom

U∑
u=1

Ecom
u +KTcom

s.t.(27), (28).

SUB1 is a CPU cycle control problem that computes latency
and energy minimization, and SUB2 can be thought of as
location optimization to determine the best UAV location to
minimize UE’s energy and communication latency.

1) SUB1 solution: The introduction of latency does not
change the concavity of the problem. We also divide latency

into two parts: computing latency and communication latency.
Similarly, P5 is still a problem that can be solved by convex
optimization.

P5 min
fu,Tcmp

U∑
u=1

αucuDuf
2
u +KTcmp

s.t.(27), (29), (30).

2) SUB2 solution: Using the solutions f∗
u and T ∗

cmp obtained
from P5 by CVX [44], Ecmp

u becomes a constant value, which
we can omit in P6:

P6 : min
X,Y,Tcom

U∑
u=1

pu
a

B log2

(
1 + α0pu

σ2(H2+(X−xu)2+(Y −yu)2)

)
+KT com

u

s.t. (28),

L(θ)[Tcom + v log(1/θ)T ∗
cmp] ≤ τ. (31)

P6 is continuous non-convex with respect to
a

B log2

(
1+

α0pu

σ2(H2+(X−xu)2+(Y −yu)2)

) and so as Eq. (35).

Similarly, we use the method introduced in section III to
make convex approximations to non-convex functions. Then,
for any given local point Xr, Y r, the r-th subproblem can
be given by:

P6r : min
X,Y,Tcom,ηu

U∑
u=1

puaηu +KTcom

s.t. (18), (19), (25).

The problem becomes a convex QCQP [47], which could be
solved by the algorithm proposed in section III.

VI. PERFORMANCE EVALUATION

In this section, numerical results are provided to validate
the proposed joint UAV location and resource allocation opti-
mization algorithm as well as the fundamental energy-latency
tradeoff in the AGIFL.

A. Simulation Settings

The adopted FL framework can be adapted to different
models. A complex model requires a larger dataset to train
the local model, and at the same time, more model param-
eters are uploaded, and their data size a is larger. These
parameters are the inputs of our proposed algorithm. By
changing these inputs, our algorithm can be realized under
different applications. In the FL considered in this paper, we
use the publicly available MNIST dataset [37], which is also
commonly used for simulations and experiments [15]–[17],
[28], [36], [52]. The actual size of MNIST is about 10MB,
and using these samples for training, the local model can
achieve high accuracy [37]. According to [2], we consider
U = 100 terrestrial users to compute MNIST dataset (10MB),
and they are randomly distributed in a square area in the range
of [0, 1000] m2. The edge server UAV also hovers in this area,
at a height of 100 m. Assume that the constant v that controls
the local calculation turns is 4 and that the maximum time
limit τ is 600 seconds. The relevant settings for ground users
are as follows. The effective capacitance coefficient and the
maximum CPU frequency of each terrestrial users are set as
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α = 10−28 and fmax = 0.5 GHz [53]. CPU cycles needed is
C = 1000 cycles/bit [53]. The model parameters uploaded is
a = 200 KB and terrestrial users transmit power pu = [0.1, 1]
W. Channel gain α0, bandwidth B, and background noise
power σ2 are set to −50 dB, 0.1 MHz, and −90 dBm [54],
respectively.

Since there is no available studies about the joint UAV
location and network resource allocation in existing works,
we involve the four benchmark algorithms for performance
comparison (the proposed Alg. 2 is labeled as JULRA):

1) Random UAV Location with Optimized Resource Alloca-
tion (RUL-ORA): it randomly selects the position of the UAV
and then optimizes both the computation and communication
resource allocation similar to Alg. 2;

2) Optimized UAV Location with Fixed Resource Allocation
(OUL-FRA): it uses a fixed computation resource allocation
scheme (i.e., fu = 1

2f
max) and optimizes the UAV location

and communication resource allocation similar to Alg. 1;
3) Optimized UAV Location with Random Resource Alloca-

tion (OUL-RRA): it randomly chooses computation frequency
from the feasible interval and optimizes the UAV location and
communication resource allocation similar to Alg. 1;

4) Joint trajectory optimization and computing resource al-
location (JTOCRA): similar to [55], this algorithm optimizes
UAV trajectory and computing resource allocation to minimize
delay by using SCA.

B. Results Analysis

1) Convergence of JULRA: It can be seen that JULRA
algorithm can greatly reduce users’ energy consumption and
has good convergence in Fig. 3. Because compared with
the initial scheme, the energy consumption is optimized by
56.02%, 52.65%, and 52.59% and our algorithm converges
fast within a finite iterations.
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2) Impact of the Bandwidth: In Fig. 4, when bandwidth
increases, the users’ energy consumption is reduced, since
the large bandwidth can save the users’ communication en-
ergy consumption. Because computation frequency is not
optimized, when the bandwidth increased and the proportion
of communication energy consumption decreased, the FL
performance of OUL-FRA and OUL-RRA is worse than the
other two algorithms. Compare to RUL-ORA, OUL-FRA, and
OUL-RRA, the average gains of JULRA are 19.08%, 43.36%,
and 51.67%, respectively.
3) Impact of the Local Accuracy: In Fig. 5, with the increase

of θ, local computation turns reduces and overall communica-
tion energy consumption decreases. That is because θ refers
to the FL convergence threshold and a smaller θ means the
higher accuracy of the local model. Compare to RUL-ORA,
OUL-FRA, and OUL-RRA, the average gains of JULRA are
20.97%, 30.84%, and 37.32%, respectively.
4) Impact of the Data Size of Uploaded Model Parameters:

In Fig. 6, when data gets larger, the overall communica-
tion energy consumption increase due to face more pres-
sure in communication. The curve of OUL-FRA and RUL-
ORA intersect, because when the data becomes larger, the
proportion of communication energy consumption gradually
exceeds computation energy consumption, while RUL-ORA
does not optimize the UAV location, resulting in poorer FL
performance. Compare to RUL-ORA, OUL-FRA, and OUL-
RRA, the average gains of JULRA are 21.3%, 32.48%, and
40.7%, respectively.
5) When K = 0.1: We explore the impact of tiny weight

on the performance gain in cost reduction in Fig. 7-10. Under
the weight K=0.1, JULRA algorithm accomplish a satisfying
reduction on cost as 52.45%, 50.03%, and 47.81% in Fig. 7.
Introducing latency into the objective function for optimization
will accelerate algorithm convergence, which can be seen by
comparing Fig. 3 and Fig. 7. Fig. 8 reflects the Influence
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of bandwidth, the FL performance of JULRA is better than
the other algorithms due to the optimization of computation
frequency and reach the gain of 25.09%, 16.25%, and 21.26%.
Similar to Fig. 5, Fig. 9 describes the growing consumption of
communication and computation due to the increase of local
and global rounds. As described in Fig. 10, under the challenge
of a mass of data, JULRA can still maintain significant
performance compared with other algorithms and fulfills up to
25.31%, 17.37%, and 21.73% performance gain, respectively.

6) When K = 10: It is interesting to find that in Fig. 11, the
performance gain of our JULRA scheme is better than that in
Fig. 7, nearly eight percent. That is because in the objective
function, the numerical value of learning delay is much larger
than the value of energy cost, which implies that the delay
weight plays a leading role in global cost reduction. Similarly,
in contrast to three benchmarks, Fig. 12-14 shows the superior
performance advantage of JULRA algorithm under different
parameter settings including bandwidth, θ, and data size.

7) We have added the curve of the new comparison al-
gorithm (JTOCRA) in Fig. 4-6,8-10,12-14. As shown in the
Fig. 4-6, we change the bandwidth, local accuracy and the
data size of uploaded model. The results show that compared
with JTOCRA, our algorithm can reach the gain of 27.04%,
23.73%, and 25.98%. As shown in the Fig. 8-10, compared
with the comparison algorithm, JULRA can improve by
53.26%, 42.54%, and 43.5%, respectively. Similarly, in the
Fig. 12-14, our algorithm can reach the gain of 12.55%,
11.07%, and 8.78%. Compared with JTOCRA, our algorithm
not only optimizes the allocation of computing resources,
but also takes the allocation of communication resources
into account, as a result, the performance has been greatly
improved. Furthermore, as shown in Fig.7, 11, JTOCRA does
not adopt the alternate iterative optimization method, which
leads to the unstable performance.

Fig. 15: Experimental equipments.

Fig. 16: Small-scale field experiments with one UAV and
four terrestrial nodes on a football pitch.

VII. FIELD EXPERIMENTS

In this section we conduct field experiments by imple-
menting an AGIFL system to further prove the superiority
of our proposed algorithm JULRA. We use the FedAvg [56]
for image classification application, and employ the proposed
algorithm to optimize the UAV location and network resource
allocation in this scenario. More than that, our algorithm is
not only suitable for the recognition of handwritten digital
images used in the actual experiment in this paper, which can
be extended to a variety of other FL applications. Specifically,
this algorithm can obtain the optimal position of the UAV and
the optimal computing resource allocation of the user as long
as the user’s location, sample data volume, transmission rate
and other parameters are input.

A. Settings

As is shown in Fig. 15, our testbed consists of one UAV
mounted with a Jetson Nano, one UAV remote control,
four terrestrial devices (Jetson Nano), one HP laptop, and
one CUAV XBEE Radio. Terrestrial devices connect to the
airborne nano’s hot spot, and communicate with the UAV
to implement the transfer of the model. The laptop of the
terrestrial station is also connected to this LAN and reads
actual FL training information from the airborne Nano via
remote access software VNC. We can obtain the loss function
and precision curve of FL remotely.

The algorithm proposed above is verified on the FL platform
developed by ourselves. Specifically, we use Python tools to
build a set of FL platform in Linux system, which is divided
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Fig. 17: Comparison of training effects of different schemes.

into two parts: client and server. The client can locally fetch the
MNIST dataset from the Python library for local training. The
specific process is as follows: firstly, the handwritten digital
picture is converted into a matrix of 28*28 representing the
gray value of pixels, which is used as the input value of the
first-layer neural network. After the output result passes the
activation function ReLU, it is input to the second-layer neural
network, and the result passes the activation function softmax.
Therefore, the local training model is composed of two layers
of DNN network. We use mean squared error as loss the
function to measure the output loss of training samples, and
then optimize this loss function to find the minimum extreme
value. In DNN, the optimal extremum of the loss function is
solved step by step iteratively by mini batch gradient descent
method. After the local training is completed, the local model
is transmitted to the airborne Nano through the communication
module for model aggregation. The airborne Nano finally
broadcasts the global model to terrestrial devices.

Following [57]–[59], some hyperparameter settings are as
follows: we set the learning rate to 1.0 and the decay rate
of learning rate in each communication round is 0.999. We
choose a training set of different numbers of images for the
users and use the test and predict set of 10,000 pictures for
evaluation. The size of training batch is 2, testing batch is
1024, and predicting batch is 1.

Experimental settings and baselines: As shown in Fig.
16, we consider a small-scale experimental scenario that
one UAV hover in the sky to provide communication and
computation services for four Jetson Nanos which are placed
into a square as terrestrial training nodes to train the local
MNIST data set. The number of local epochs and iterations
before one round average are both 2. We adopt the stochastic
gradient descent method to minimize the loss function value
quickly, learning rate is set as 1 and decay rate of learning rate
in each communication round is 0.999. Obviously, we also take
the three comparison schemes in the simulation experiment as
the benchmarks of the field experiment.

B. Results Analysis

As is shown in Fig. 17(a), the heterogeneity of users is
reflected by different sample sizes of the four devices. In
each round of local training, each device will train 1000,
1500, 2000, and 3000 data samples respectively. According
to the calculation results of the proposed algorithm, we set
the working frequency of each nano through nvpmodel.conf
file to ensure the heterogeneity of computation power. Fig.
17(b) describes the time it takes for FL training to reach
the accuracy threshold in each scheme and Fig. 17(c) shows
the total average power of the nanos to complete training in
each scenario. Actually, the total average power depends on
the computational frequency assigned by the algorithm, thus
we can measure it to reflect the CPU operating frequency.
Although the power consumption of the proposed algorithm is
not the minimum, it greatly reduces the training time. Thus,
the total energy consumption of training is reduced, which
is reflected in Fig. 17(d). Compared with the comparison
algorithms, the energy consumption can be saved by 38.6%
on average.

VIII. DISCUSSION

Extension to optimization of learning parameters: In
our problem, we increase or decrease the number of local
computation rounds by changing the value of θ, since
the size of θ determines the number of computed rounds.
Nevertheless, θ could also be optimized for minimal energy
consumption.

We observe that the solutions to SUB1 and SUB2 have no
dependence on θ so that θ-related problem can be broken up
into a third subproblem. Hence, the optimal f∗

u , X∗, Y ∗, T ∗
com,

T ∗
cmp can be used for resolution of SUB3, as will be shown

in what follows.
SUB3: min

θ
L(θ)

[
Eglob (f

∗
u , X

∗, Y ∗, θ) +KTglob

(
T ∗
cmp, T

∗
com, θ

)]
s.t. 0 ≤ θ ≤ 1. (32)

There exist a special solution θ∗ that satisfies following
equation:

1

log
(
e1/θ∗θ∗

) = Φ, (33)

where

Φ =

∑U
u=1 E

cmp
u (f∗

u) +KT ∗
cmp∑U

u=1 [E
cmp
u (f∗

u) + Ecom
u (X∗, Y ∗)] +K

[
T ∗
cmp + T ∗

com

] .
(34)

After obtaining the special solution of θ in the current situation
(f∗

u , X∗, Y ∗, T ∗
com, T ∗

cmp), we can substitute it into the
calculation formula of local and global rounds to calculate the
energy consumption. In this way, we can add the optimization
of θ to the iterative optimization of the overall algorithm.

IX. CONCLUSION

We have studied how to jointly optimize the UAV location
and network resource allocation in the AGIFL. The prob-
lem is formulated as an overall users’ energy consumption
minimization problem with the constraints of learning ac-
curacy and training latency. Then we also have considered
the tradeoff between energy consumption and latency as the
optimization goal. Based on SCA and alternating optimization
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techniques, we have proposed a suboptimal algorithm that
iteratively optimizes the UAV location and communication
resource allocation, and the computation resource allocation.
The convergence of the proposed algorithm is also theoreti-
cally proved. Finally, the proposed algorithm is deployed in a
real air-ground integrated network and preliminarily verified
by practical experiments. One promising future work would
be thinking about UAVs collaboration in air-ground integrated
network.
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