
  

  

Abstract—We implemented an integrated system that can 
acquire neuronal signals from spinal cord dorsal horn neurons, 
wirelessly transmit the signals to a computer, and recognize the 
nociceptive signals from three different mechanical stimuli 
(brush, pressure and pinch). Positive peak detection method 
was chosen to distinguish between signal spikes. The inter spike 
intervals (ISIs) were calculated from the identified action 
potentials (APs) and fed into a numerical array called cluster. 
When the sum of the ISIs in the cluster reached a critical level, 
the program recognized the recorded signals as nociceptive 
inputs. The user has the flexibility to tune both the cluster size 
and critical threshold for individual’s need to reach 
optimization in pain signal recognition. The program was 
integrated with a wireless neurostimulator to form a feedback 
loop to recognize and inhibit nociceptive signals.  

I. INTRODUCTION 
armful stimuli to the skin or subcutaneous tissue (joints 
or muscle) are received by nociceptors (thermal, 

mechanical, and polymodal). The nociceptive stimulus 
travels to the dorsal horn of the spinal cord through Aδ and 
C fibers. The response of the spinal cord dorsal horn neurons 
are typically classified as low threshold (LT), high threshold 
(HT), and wide dynamic range (WDR) neurons according to 
their response to graded mechanical stimuli [1]. Among 
these types of neurons, WDR neurons are the only ones that 
respond to both Aδ and C fibers. In addition, WDR neurons 
have the capacity to precisely encode the intensity of a 
nociceptive stimulus [2]. Therefore, they can be used 
effectively to recognize the nociceptive signals. 

 It has been shown that electrical stimulation of the deep 
brain structures could be beneficial in pain treatment [3]–[5]. 
Areas of the brain that are examined for neurostimulation 
pain management include thalamic nuclei such as 
ventroposterolateral (VPL) or ventroposteromedial (VPM), 
and periaqueductal gray (PAG) [3]. All currently available 
brain stimulators perform in an open-loop fashion. After 
implantation, physician tunes the intensity of the stimulator 
based on patient’s understanding of pain [6]. Currently, 
doctors cannot physiologically document the pain signals in 
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a quantitative manner. However, several researchers have 
proposed the need for a closed-loop real-time system in deep 
brain stimulator (DBS) treatments [3], [6]. The closed-loop 
approach can provide more physiological data for the doctor, 
hence increase the efficiency and efficacy of the 
neurostimulator [3]. The efficiency of the system can be 
increased in terms of reduction in battery power 
consumption that will allow the implant to stay longer inside 
the patient’s body. 

In order to achieve the mentioned benefits, we have 
developed an automatic real-time feedback system that could 
record the neural activities from spinal cord dorsal horn 
neurons, recognize signals from three different mechanical 
stimuli, and inhibit the detected noxious signals by applying 
electrical stimulation to the brain. Brush (Br.), pressure (Pr.) 
and pinch (Pi.) were used as graded mechanical stimuli in 
this study. For neural stimulating and recording in a closed 
loop, we utilized our wireless system that was demonstrated 
by [7]. The system was tested on a Sprague-Dawley rat.  

II. METHOD  

A. System Overview 
A wearable, wireless module that was developed in our 

group [7] was utilized in this study. This module is an 
integrated platform that can be used for recording 
extracellular neuronal signals and electrical stimulation of 
the nervous system. The system consists of a receiver station 
and a transmitter station. Neuronal signals were acquired at 
the spinal cord, and transmitted wirelessly to the receiver 
station that was connected to two data acquisition units: 
USB-6008 (National Instrument) and CED 1401Plus 
(Cambridge Electronic Design). The CED 1401Plus was 
connected to a computer (#1) and acquired data into a 
commercial signal-processing program Spike 2 (Cambridge 
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Fig. 1. The block diagram of the system for automatic, real-time recognition
and inhibition of the nociceptive signals. Action potentials were recorded
from the spinal cord and transmitted wirelessly to the computers #2 where
received signals were processed, and electrical pulses commands were
initiated and transmitted to the wearable module on the rat to stimulate the
PAG area. Computer #1, which also acquired neural signals in real-time,
was used for further off-line processing and comparison of the signals. 
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Electronic Design). The data acquisition unit USB-6008 was 
connected to another computer (#2). A custom made 
program extracted the demodulated neuronal signals, 
processed the data, made decision on stimulation and 
wirelessly sent the stimulation commands through the 
transmitter station to the wearable module to initiate brain 
stimulation. The second data acquisition system (computer 
#1) was also used for further off-line verification of the 
performance of our software. The real-time processing of the 
recorded signals, including detection of the action potentials, 
an algorithm to distinguish the nociceptive ones from non-
nociceptive signals, and decision making for stimulation 
closed the feedback loop in the computer #2. LabVIEW 
(National Instrument) was used for programming of our 
signal-processing algorithm in the computer #2. The block 
diagram of the system is shown in Fig. 1. 

B.  Spike Detection 
A sampling rate of 10k Hz was chosen for signal 

acquisition assuming that the duration of an action potential 
was in the millisecond range [8]. Because a single 
microelectrode typically records from several nearby 
neurons that each could fire different forms of spikes, the 
recognition method has to differentiate between the desired 
action potentials and redundant spikes. In order to detect the 
desired spike, the simple positive threshold method was 
chosen [9] due to its acceptable accuracy and simplicity 
[10]. The program applied a positive threshold to the raw 
recorded data and detected action potentials above the 
threshold. Generally, the closer the microelectrode was to 
the recording neuron, the higher the threshold should be set 
to detect the desired action potentials.  

C. Neural Activity Detection 
In order to identify different levels of neural activities, 

WDR neurons that respond to a wide range of stimuli were 
recorded from the spinal cord, by a tungsten microelectrode 
mounted on a micromanipulator. The more noxious the 
stimulus is, the higher the frequency of the neuronal 
responses will be [11].  

 Inter spike interval (ISI) was used as the main feature 
[12], for differentiating the various mechanical stimuli (i.e. 
brush, pressure and pinch in our experiments). ISIs of the 
recognized action potentials were saved in a floating 
numerical array called cluster. The cluster size (CS) could be 
selected by the user for post-collection processing. 
Assuming a fixed size for the cluster, if the sum of the ISIs 
in the cluster became equal or smaller than a critical 
threshold (CT), the program defined the series of action 
potentials as nociceptive.  

Once the WDR neuron was identified, in order to find the 
optimized values for CS and the correspondent CT, an 
algorithm shown in Fig. 2 was developed for the off-line 
analysis. Responses to a 10-s baseline of brush, pressure and 
pinch stimuli were recorded. As shown in Fig. 3, there was a 
discontinuity between neural signals obtained from the brush 
stimulus, because it had a periodic rhythm due to manual 
strokes. The signals of pressure and pinch stimuli did not 
have the periodic rhythm. The numbers of spikes before and 

after the first brush stroke were counted and considered for 
setting the cluster size (step 1). Setting this CS, the 
summations of the ISIs inside the first cluster of each signal 
were calculated as CTBr, CTPr, and CTPi for brush, pressure 
and pinch, respectively (step 2). If the resulted CTPi 
happened to be smaller than both CTBr and CTPr (step 3), 
then the current value of CTPi (with the corresponding CS) 
was chosen in the system (step 4) to distinguish between the 
nociceptive and non-nociceptive signals. Otherwise, the 
cluster size would be increased with a step of 5 units (step 5) 
to repeat the same procedure until the CTPi became smaller 
than CTBr and CTPr.  

After the noxious signals were detected, the program 
closed its feedback loop by initiating an electrical 
stimulation command and the hardware transmitted it 
wirelessly to the wearable module to trigger the 
neurostimulator.  

D. Animal Experiment 
In vivo testing of the device and algorithm was conducted 

in an anesthetized male Sprague-Dawley (520 g) rat. The 
aims of these tests were two fold. First, we examined the 
accuracy of the system in recognizing the nociceptive from 
non-nociceptive spikes. Second, we assessed the efficacy of 
the feedback system in applying the stimulus signals. The 
recordings were obtained from WDR neurons at the L5 level 
in the spinal cord. The mechanical stimuli, using camel hair 
for brushing as well as two different bulldog clamps for 
pressure (31 N/m) and pinch (57 N/m) stimuli, were 
administered to the animal’s left hind paw, each for 10 s 
with intervals of 20 s. Brain stimulation was applied in the 
periaqueductal gray (PAG) area at 100 Hz, ±1 V, with a 
pulse width of 100 µs. All procedures were approved by the 
University of Texas at Arlington Institutional Animal Care 
and Use Committee. The procedures were in accordance 
with the guidelines published by the Committee for 
Research and Ethical Issues of the International Association 
for Study of Pain [13].  

Fig. 2. The flowchart for finding the cluster size (CS) and critical threshold
(CT) to distinguish different mechanical stimuli. 
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III. IN VIVO TESTING AND RESULTS 
Three experiments were conducted on the two spinal cord 

WDR neurons, WDR neuron #1 and #2. The first two 
experiments demonstrated the feasibility of the algorithm 
(Fig. 2) used in this paper. The third experiment showed the 
performance of the system using the WDR #1 in real time. 
The desired signals (with larger amplitudes) from both WDR 
neurons were separated from the background signals 
(smaller amplitudes) with the positive thresholds. The action 
potential patterns of the WDR neuron #1 in response to three 
different mechanical stimuli (brush, pressure and pinch) and 
the positive threshold (horizontal dashed line in Fig. 3) that 
was used to reveal the desired signals are shown in Fig. 3. 
The discontinuities in the brush signals due to the rhythmic 
manual strokes were specifically distinguished in this figure.  

Experiment 1. It was conducted on the WDR neuron #1, 
the first discontinuity (from the brush signal) was chosen 
and the numbers of action potentials before and after the 
discontinuity were counted (step 1). A cluster size of 10 was 
obtained. The ISIs of the first ten APs were calculated as the 
first cluster as shown in Fig. 4. The critical thresholds were 
calculated for brush (CTBr), pressure (CTPr) and pinch (CTPi) 
as 0.73 s, 0.21 s and 0.11 s, respectively (step 2). Because 
the CTPr was greater than CTPi (step 3) which means the 
program could recognize the pinch from pressure, the critical 
threshold was then set with CS of 10 to find the nociceptive 
signals in the third experiment (step 4).  

To investigate alternate ways of analyzing the WDR 
neuron #1, the cluster size was arbitrarily chosen to be four. 
The results of four consecutive ISIs (chosen arbitrarily 
among all ISIs) are shown in Fig. 4 as the second cluster. 
CTBr, CTPr and CTPi were obtained as 0.06, 0.13 and 0.10 
respectively. CTBr was smaller than both CTPr and CTPi, 
which meant the nociceptive signals were not recognized 
and the CS had to be chosen according to the step 1 (i.e. ten 
in the previous case) of the flowchart (Fig. 3). This suggests 
that the cluster size may not be chosen arbitrarily.     

Experiment 2. In the experiment on the WDR neuron #2, 
the step 1 of the flowchart was followed and a CS of eight 
and corresponding CTPr of 0.08 s and CTPi of 0.10 s were 
obtained (step 2). Because the CTPi was greater than the CTPr 
(step 3), five units were added to the CS (step 5) and the 
critical threshold was calculated for the CS=13. The resulted 

critical thresholds were 0.14 s, and 0.13 s for pressure and 
pinch, respectively. CT of 0.13 together with CS of 13 then 
were set (step 4) to differentiate the nociceptive and non-
nociceptive signals. However, the difference between the 
CTPr and CTPi was 10 ms, which provided a very narrow 
boundary between the pressure and pinch signals. Adding 
another five units to the CS, CTPr of 0.19 s and CTPi of 0.17 
s were obtained and provided a greater difference (20 ms) 
between CTPr and CTPi. Fig. 5 shows the resulted ISIs for the 
pressure (in black) and pinch (in gray) signals in the above 
mentioned iterations.  

Experiment 3. In this experiment, the performance of the 
system in differentiating the nociceptive from non-
nociceptive signals in real time was examined. This 
experiment was conducted on the WDR neuron #1. CS and 
CT were set as 10 and 0.11 s according to the results 
obtained in Experiment 1. For this experiment, the signals 
were also simultaneously recorded by Spike 2 (Fig. 6, 
bottom trace). The system triggered electrical stimulations 
(Fig. 6, middle trace) only during the pinch stimuli, but not 
the brush or pressure stimuli. The rates of action potentials 
were calculated in the bins of 500 ms (Fig. 6, top panel). The 
bins, which contain the clusters that satisfied the condition 
of CT less than 0.11 s are labeled with the numbered arrows. 

Fig. 3. Typical forms of the signals that were resulted from mechanical
stimulations of brush, pressure and pinch. The positive threshold was used
to distinguish different action potentials. The discontinuity in the brush 
signals was periodic due to rhythmic strokes. 

Fig. 4. The ISIs (inter-spike intervals) from a WDR neuron resulted from
the mechanical stimuli (brush, pressure and pinch). The ISIs were in two
different clusters. Black labels show data from a CS of 10 and the gray
ones show data from a CS of 4. 
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The rate of APs decreased (shown by solid vertical arrows) 
when the electrical pulses (shown in the middle panel) were 
triggered by the system. There was a time delay of 2.6 s 
between the initiation of pinch stimulation and the 
stimulation pulses generated by the feedback system. There 
were also time delays of 500 ms between the numbered bins 
and the initiation of electrical pulses.  

IV. DISCUSSION AND CONCLUSIONS 
In this study, we developed a system that can 

automatically recognize nociceptive signals resulting from 
three different mechanical stimuli in real time. Furthermore, 
the system generated electrical pulses using nociceptive 
signal as feedback to stimulate the PAG that could 
potentially inhibit the nociceptive signals. As shown in the 
flowchart for recognizing the nociceptive signals (Fig. 2), 
our results demonstrate the necessity of the step 1 in the 
flowchart for choosing the CS based on the brush signals 
(Figs. 4 and 5). The discontinuity in the brush signals (Fig. 
3) provides a valuable signature and the value chosen makes 
sure that both the CTPr and CTPi are greater than CTBr. They 
also show that if the cluster size is chosen correctly, CTPr 
would be greater than CTPi giving a criterion to distinguish 
between the pressure and pinch signals (Fig. 4). However, if 
the CTPi happens to be greater than the CTPr, it may give the 
wrong impression that the pinch stimulus causes less 
neuronal firing than the pressure does. Then, the CS needs to 
be increased in order to include more pulse samples to be 
considered (by five units, in this case, as in the step 5 of the 
flowchart in Fig. 2). Fig. 5 shows an example in which the 
CTPi happened to be greater than the CTPr. In this case, 
increasing the CS to 13 or 18 corrected the situation and 
CTPi became smaller than the CTPr. The increase of CS size 
can be adjusted to provide desired precision in 
distinguishing the stimuli. However, a large size of CS might 
cause excessive delay in finding nociceptive signals since it 
would require more time to fill the cluster. Therefore, a 
tradeoff between the CS size and the delay time is needed. 
We chose the smallest possible CS to minimize the time 
delay, due to the short period (10 s) of the mechanical 
stimuli in our experiment protocol. 

The performance of the whole system was examined and 
shown in Fig. 6. System recognized five clusters (with the 
size of 10) that satisfied the condition (CT < 110 ms), only 
during pinch stimuli. It meant that the system correctly 
distinguished pinch as noxious but did not recognize brush 
and pressure stimuli as nociceptive. In addition, there was a 
delay of several seconds between the initiation of the 
mechanical stimuli and electrical pulses triggered by the 
system. The reason for the delay is that the system did not 
find any cluster that satisfied the criteria immediately after 
the pinch stimulus was initiated. The delay of 500 ms 
between the nociception recognition and stimulation 
initiation was also contributed partially by the delay in 
wireless communication and signal processing time. In a 
real-time system, such a delay will not be an issue for 
applications since the system should be able to find the 
optimal size of cluster in continuous uses, and the limited 
delay will be acceptable for chronic pain management. In 
order to demonstrate the reliability of our feedback system 
and its use in human as the next step the efficacy of the 
system will be examined in awake animals.  
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