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Abstract

Tumorigenesis is a multistep, complicated 
process, and many studies have been com-
pleted over the last few decades to elucidate 
this process. Increasingly, many studies have 
shifted focus toward the critical role of the 
tumor microenvironment (TME), which con-
sists of cellular players, cell–cell communica-
tions, and extracellular matrix (ECM). In the 
TME, cyclooxygenase-2 (COX-2) has been 
found to be a key molecule mediating the 
microenvironment changes. COX-2 is an 
inducible form of the enzyme that converts 
arachidonic acid into the signal transduction 
molecules (thromboxanes and prostaglan-
dins). COX-2 is frequently expressed in many 
types of cancers and has been closely linked to 
its occurrence, progression, and prognosis. 
For example, COX-2 has been shown to (1) 
regulate tumor cell growth, (2) promote tissue 
invasion and metastasis, (3) inhibit apoptosis, 
(4) suppress antitumor immunity, and (5) pro-
mote sustainable angiogenesis. In this chapter, 
we summarize recent advances of studies that 
have evaluated COX-2 signaling in TME.
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6.1  Introduction

Tumorigenesis is a multistep and complicated 
process, in which oncogenes and tumor- 
suppressor genes are going through successive 
mutations and eventually lead to enhanced prolif-
eration and resistance to apoptosis. Currently, 
several major hallmarks of human tumor have 
been universally reported, including evading 
growth suppressors, gaining genome instability, 
promoting replicative immortality, resisting cell 
death, eliminating cell energy limitation, promot-
ing metastasis, inducing angiogenesis, sustaining 
proliferative signals, evading immune destruc-
tion, and aggregating inflammation [1, 2].

During the past few decades, the understand-
ing of tumorigenesis has greatly increased [3] 
and the focus of studies has shifted from the 
malignant cells themselves to the tumor microen-
vironment (TME) and the interactions between 
them. TME, which consists of extracellular 
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matrix (ECM) and cellular players such as fibro-
blasts, endothelial cells, neuroendocrine cells, 
adipose cells, leukocytes and so on, and their 
interactions [4], helps tumors to acquire their 
invasive characters. In detail, the tumoral niche 
has increasingly been reported to dictate abnor-
mal tissue functions and play an important role in 
the subsequent evolution of malignancies [5]. 
Scientists have also found that a healthy microen-
vironment could help maintain the healthy cellu-
lar status and protect against tumorigenesis and 
metastasis [3]. Many studies have shown tumors 
are not only a mass of proliferative malignant 
cells, but they also attract other stromal cells [6], 
vascular cells [7], and immune cells [8] by secret-
ing cytokines, chemokines, and stimulatory 
growth factors. These factors released by tumor 
cells may recruit other cells to rebuild the new 
microenvironment. Such communication 
between tumor cells and their microenvironment 
may enhance metastatic capability and immortal 
proliferation, causing eventual death [1, 2].

One of the key factors in the TME that has 
been characterized is cyclooxygenase-2 (COX- 
2). COX proteins are membrane-bound proteins, 
located on the nuclear envelope, and luminal side 
of the endoplasmic reticulum is an important 
mediator of angiogenesis and inflammation. It 
has three isoforms: COX-1, COX-2, and COX-3 
[9, 10]. COX-1, which is expressed in most tis-
sues, is a housekeeping enzyme to maintain the 
basal level of prostaglandins (PGs) [11]. It also 
helps maintain the internal homeostasis by regu-
lating the processes such as vascular smooth 
muscle functioning, cytoprotection of the gastric 
mucosa, platelet aggregation, and renal function 
[9]. COX-3 is reported as a variant of COX-1, 
and it is mainly present in the central nervous 
system [12, 13]. By contrast, COX-2 is an induc-
ible form, usually undetected in normal tissues 
and cells [14] in which its basal expression only 
can be found in the central nervous system, kid-
ney, stomach [15], and female reproductive 
organs [16]. By contrast, it is usually constantly 
expressed in many types of tumor tissues [14, 
17], such as squamous cell carcinoma, adenocar-
cinoma, transitional cell carcinoma, cholangio-
carcinoma, hepatocellular carcinoma, and 
endometrial carcinoma [18, 19].

As TME actively participates in the tumor 
metastasis and progression, and COX-2 is one of 
the critical inflammatory mediators deregulated 
in many tumors, therapeutic strategies targeting 
the COX-2 in TME may have great potential and 
be highly selective. Below, we will highlight the 
role of COX-2 signaling in the regulation of 
tumor progression in the TME and discuss its 
potential value in tumor therapy.

6.2  Structure of COX-2

Human COX-2 is a homodimer of 581 amino 
acids, which encoded by COX-2 gene locates on 
the chromosome 1q25.2-q25.3 [20]. The dimeriza-
tion of two 70 kDa subunits is necessary for cata-
lytic activity and its own structural integrity [21]. 
Each subunit of COX-2 contains three domains to 
form the structure: a membrane- binding domain 
(residues 73–116), an N-terminal epidermal 
growth factor domain (residues 34–72), and a 
C-terminal catalytic domain which comprises the 
bulk of the protein [22–28]. The membrane-bind-
ing domain consists of four amphipathic α helices, 
three of which lie in the same plane, whereas the 
last one extends into the catalytic domain [29]. 
These helices have aromatic and hydrophobic resi-
dues. Therefore, this structure could create a sur-
face that interacts with the lipid bilayer [22].

The peroxidase active site lies at the top of an 
L-shaped channel on the opposite side of the 
membrane-binding domain. It contains the heme 
that positioned at the bottom of a shallow cleft. 
Other molecules could access the heme easily 
except the dome formed by hydrophobic amino 
acids covers part of the cleft. At the entrance of 
the channel is a lobby. It is a large space that nar-
rows to a constriction. Inhibitors or substrates 
can only pass into the channel when the lobby is 
open. On top of the lobby, the channel is sur-
rounded by hydrophobic residues [25, 26, 28]. 
The structure of the active site makes COX-2 
only react with specific substrate but not a wide 
range of organic hydroperoxides [30]. 
Interestingly, although the preference of the per-
oxidase relies on hydrophobic dome, mutation of 
the dome residues affects little on substrate speci-
ficity or peroxidase activity [31].
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6.3  The COX-2 Signaling

6.3.1  The COX-2/PGE Signaling

COX-2 is a rate-limiting [20] and short-living 
enzyme [16] that converts phospholipase A2 
(PLA2)-mobilized arachidonic acid (AA) into 
the signal transduction molecules thromboxanes 
and prostaglandins (PGs) [32]. One principal 
product of COX-2 is prostaglandin E2 (PGE2), a 
mediator contributing to the modulation of sev-
eral biological processes, including angiogenesis, 
immunity, pain, and tumorigenesis [33–35]. In 
the tumor formation process, COX-2 could be 
overexpressed in TME due to transcriptional or 
posttranscriptional malfunction [36, 37]. Thus, 
COX-2 is an important marker for tumor identifi-
cation [14, 38]. Elevated expression of COX-2 
and its major product PGE2 has been reported to 
be inversely associated with patients’ survival 
rate [39–41].

Recent advances in the role of COX-2 and 
PGEs in the pathogenesis of cancer have been 
described [9, 15, 42–44]. The main form of pros-
taglandin involved in many types of cancers is 
PGE2. PGE2 can act on the receptors, for exam-
ple, EP1, EP2, EP3, and EP4 to induce PGE2 sig-
nal cascade, leading to changes of intracellular 
calcium, cAMP, and some inflammatory factors. 
As a result, physiological or pathological pro-
cesses follow [45, 46]. Recent investigations sup-
port that PGE2 may enhance progression of 
colorectal cancer [47–49], and EP4 is a therapeu-
tic target for cancer therapy [50, 51]. COX-2- 
derived PGE2 can also contribute to tumor 
development through several mechanisms includ-
ing inhibition of apoptosis. However, the mecha-
nisms by which PGE2 regulates apoptosis are still 
largely unknown. The EP2 and EP4 receptors 
mediate their activities through cAMP produc-
tion. Suppression of apoptosis by cAMP has been 
seen in intestinal cells through the induction of 
the IAP family member inhibitor of apoptosis 2 
(IAP-2) [52, 53]. Therefore, further research is 
warranted to investigate the antiapoptotic effects 
of PGE2 mediated through cAMP, which results 
in the induction of the IAP family member 
c-IAP2.

6.3.2  Cytokines and Other 
Compounds Regulating COX-2 
Signaling

6.3.2.1  IL-1β and TNF-α
Cytokines and other compounds such as interleu-
kin 1β (IL-1β) and tumor necrosis factor α (TNF- 
α) may promote expression of COX-2 mRNA 
and protein in human colorectal fibroblasts, pro-
foundly in cancer-associated fibroblasts (CAFs) 
[54–56]. When stimulated with the pro- 
inflammatory cytokines IL-1β or TNF-α, orbital 
fibroblasts express high levels of COX-2 and 
PGE2 [57]. Scientists have found that IL-1β or 
TNF-α promotes synthesis of PGE2 by 25-fold in 
human colorectal fibroblasts (CCD-18Co) and 
five human colorectal fibroblast strains obtained 
at routine colonoscopies [58]. Greater levels of 
IL-1β-stimulated COX-2 expression and PGE2 
synthesis in the cancer-associated fibroblasts 
could only be accounted for partially by increased 
COX-2 promoter and transcriptional activity in 
the cancer-associated phenotype. We have noted 
that IL-1β and TNF-α induce mRNA overexpres-
sion of COX-2 and promote production of PGE2 
in human colorectal fibroblasts, especially in 
CRC-associated strains [54, 59] at a rate at which 
COX-2 mRNA decays can be dramatically 
retarded in vitro by PGE2 [60].

6.3.2.2  NF-κB
The nuclear factor (NF)-κB could also regulate 
the activation of COX-2 signaling in cancer cells 
[61]. The subfamily of NF-κB proteins has five 
members, including NF-κB1 (p50), NF-κB2 
(p52), RelA (p65), RelB, and c-Rel [18, 62, 63]. 
Among the subfamily, p65 plays a role in the 
regulation of COX-2  in cancer cells [64, 65]. 
NF-κB/ COX-2 signaling could be induced by 
protein kinase C (PKC) [66], TRIP4 [65], 
ERK1/2 [67], IL-1β [61], caspase-3 [68], and 
conditions like endoplasmic reticulum (ER) 
stress [69]. Inhibition of this signaling is medi-
ated by annexin A5 [66] and miR-16 [70].

6.3.2.3  PKC and MAPK
Cytokines and growth factors induce COX-2 
expression via protein kinase C (PKC) signaling. 
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Molecules that interfere with microtubules such 
as taxanes could induce COX-2 by activating 
PKC and mitogen-activated protein kinases 
(MAPKs). There are three related MAPK pro-
teins including ERK1/2, p38, and c-Jun 
N-terminal kinase, which are contributed to the 
induction of COX-2 [71]. These members could 
mediate PKC effects on COX-2 signaling in can-
cer cells [72]. Combination of PKC and COX-2 
inhibitors can synergistically inhibit melanoma 
metastasis [73]. Among the MAPKs, p38 [74] 
and ERK1/2 [75] are downstream molecules of 
COX-2. In addition, COX-2/P38 signaling favors 
angiogenesis [74] and is involved in cancer cell 
resistance to apoptosis [76].

6.3.2.4  Other Signaling
There are also many other cytokines and com-
pounds which can regulate COX-2 signaling. 
One example is COX-2/STAT3 signaling, which 
contributes to the proliferation [77] and epithe-
lial–mesenchymal transition (EMT) [78] of can-
cer cells by promoting the immunosuppressive 
microenvironment [75]. Another example is 
SDF-1a which plays a role in cancer cell metasta-
sis and invasion through the stimulation of 
COX-2 by interaction with its receptor CXCR4 
[79, 80]. All the research above suggests that 
COX-2 signaling is highly involved in the patho-
genesis of cancer.

6.4  COX-2 Signaling in Tumor 
Microenvironment (TME)

6.4.1  COX-2 Regulates the Tumor 
Cell Growth

The cell behavior is controlled by complex sig-
naling pathways. It is thought that the malfunc-
tion of these signaling pathways causes tumor 
cells to grow uncontrollably. Two major signal-
ing pathways, Ras-MAPK and the PI3K/AKT 
signaling, are frequently shown to be deregulated 
in many human cancers, which can stimulate cell 
growth and survival when activated [81, 82]. 
There is a strong evidence showing that COX-2, 
together with PGE2, are mediators of cancer cell 
growth through the above signaling [83]. PGE2 

derived from COX-2 can enhance cell survival 
through the PI3K/AKT and Ras-MAPK/ERK 
signaling. Aberrant activation of the COX-2/
PGE2 signaling might increase mutations in the 
above two signaling pathways, which could pro-
mote tumor progression [84–86]. Furthermore, 
there are other ways mediating cancer cell growth 
by COX-2. For example, activation of stromal 
cancer-associated fibroblasts (CAFs) and neutro-
phils by COX-2 can release proliferative signals 
on cancer cells [87, 88], and induction of aroma-
tase cytochrome P450 (CYP19) by COX-2 con-
tributes to the conversion of estrogen to estrogen 
quinones [89], which is involved in tumor prolif-
eration [90].

Under physiological conditions, normal tissue 
can control cell growth by the action of antipro-
liferative signals, which is a crucial mechanism 
for maintaining homeostasis [1]. The membrane- 
bound ligands and soluble growth inhibitors are 
two kinds of key compounds of above signals to 
repress cell growth. Scientists have demonstrated 
two antigrowth signals that can restrain prolifera-
tion and maintain tissue homeostasis [1]. 
However, deregulation of the COX-2/PGE2 sig-
naling may limit the function of these signals by 
additional mechanism. The first antigrowth sig-
nals can maintain cells in G0 state to block prolif-
eration and keep cell quiescence. For example, 
transforming growth factor-beta (TGF-β) can 
block cell growth by activation of cyclin- 
dependent kinase inhibitors and suppression of 
c-Myc [91]. Usually, cancer cells are insensitive 
to the suppressive effect of TGF-β due to inacti-
vated mutations of the receptors or downstream 
signaling effectors [91]. One study showed that 
mutations of TGF-β receptor type II occur in 
colorectal tumors at a high frequency [92]. 
However, these mutations do not exist in all types 
of cancer cells. It is also reported that overexpres-
sion of COX-2 can downregulate the expression 
of TGF-β receptor type II, which means COX-2 
signaling can prevent the receipt of antigrowth 
signals [93]. The second antigrowth signals are to 
initiate a terminally differentiated state [1]. 
Aberrant activation of pathways such as 
β-catenin/WNT signaling in colorectal tumors 
contributes to the blockage of normal differentia-
tion and maintenance of progenitor state of  
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cancer cells [94]. Recently, evidence demon-
strates that the COX-2 signaling can activate the 
β-catenin/WNT signaling to keep cells in a pro-
genitor state [95]. Furthermore, when there is 
lack of β-catenin/WNT mutations, inappropriate 
activation of the COX-2/PGE2 signaling could 
discourage cell differentiation.

In addition to the above function, the activa-
tion of β-catenin/WNT signaling by PGE2 might 
also serve to the acquisition of the immortal phe-
notype [95], which means it can help the cancer 
cells to get limitless replicative potential. For 
example, colorectal cancer is thought to start 
from such immortal cells initiated by mutations 
in the β-catenin/WNT signaling. Scientists dem-
onstrated that in intestinal crypts, the stem cells 
and progenitor cells are maintained by activating 
WNT signaling [94]. Mutations of components 
of WNT signaling in colorectal tumors result in 
the formation of an active β-catenin/T-cell factor 
(TCF) complex that can mimic WNT signaling. It 
is reported that COX-2/PGE2 signaling may play 
a role in keeping the crypt in the progenitor phe-
notype by activating β-catenin/TCF complex in 
colorectal cancer cells [95]. Perturbation of the 
WNT signaling by deleting TCF4  in mice also 
leads to loss of the stemness in the small intestine 
[96]. This suggests that the WNT signaling could 
maintain the crypt stem cell phenotype in both 
physiological and cancer status.

6.4.2  COX-2 Promotes Tissue 
Invasion and Metastasis

COX-2 has been shown to be one of the critical 
metastasis progression genes [97] participating in 
the metastasis into the brain [98], bone [99], 
lymph nodes [100], and liver [101]. Factors like 
IL-11 induced by COX-2 are related to the cancer 
metastasis [99]. In order to achieve the invasion 
and metastasis, cancer cells must show an inva-
sive phenotype of more motile status. They lose 
and detach themselves from connected cells 
within the tumor, move into extracellular matrix, 
and finally invade into blood vessels and lym-
phatics [102]. After escaping from the primary 
tumor tissue, cancer cells must then colonize the 
surrounding tissue or distant sites with the help of 

blood or lymphatics. Recently, the significance of 
COX-2 as a necessary mediator for dissemination 
of cancer cells was reported in an in vivo model 
of breast cancer metastasis to the lungs [103]. 
Using both pharmacological and genetic meth-
ods, this study demonstrated that COX-2 is one 
of the key “metastasis” genes which helps to 
mediate tumor development, invasion, and metas-
tasis to other tissues.

There are many other studies demonstrating 
that COX-2 signaling plays critical roles in the 
metastasis processes—more specifically, pro-
moting a more metastatic phenotype in colorectal 
tumor cells through its product PGE2. For exam-
ple, EGFR transactivation mediated by intracel-
lular Src can stimulate the motility and invasion 
controlled by PGE2 [104]. PGE2 could also pro-
mote cytoskeletal reorganization and eventually 
lead to invasion and migration of colorectal can-
cer cells via PI3K signaling [105]. Overexpression 
of COX-2 can modulate the adhesive properties 
of intestinal cells [93] and increase the activity of 
matrix metalloproteinase (MMP) to promote 
tumor invasion [106]. Inhibition of this marker 
can prevent the metastasis of colorectal tumors 
in vivo in both human [107] and mice [108]. In 
addition, c-Met, also known as the hepatocyte 
growth factor receptor, is transactivated by PGE2 
through an EGFR-dependent pathway in colorec-
tal cancer [109]. C-Met signaling is associated 
with the loss of cell contact and invasive growth 
[110]. Scientists found that COX-2, c-Met, and 
β-catenin coexist at the invasive edge of colorec-
tal tumor [109]. The transactivation of c-Met can 
induce nuclear accumulation of β-catenin and 
increase expression and invasion of urokinase- 
type plasminogen activator receptor through 
Matrigel [109]. COX-2 can also induce 
β1-integrin that is related to cancer cell invasion 
[111, 112].

Furthermore, COX-2 can induce epithelial–
mesenchymal transition (EMT) through factors 
like transcription-3 (STAT3) and miR526b [78, 
113]. In cancer cells, EMT is thought to be a pro-
moter of invasiveness [18]. Inhibition of EMT 
mediated by COX-2 occurs after usage of canna-
binoids in cancer [114]. Interestingly, in the 
TME, the tumor maintenance and progression are 
only regulated by COX-2 secreted by the tumor 
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cells but not by other normal cells such as stromal 
cells [115, 116]. Therefore, these findings sug-
gest that COX-2 plays an important role in 
tumorigenesis.

6.4.3  COX-2 Inhibits Apoptosis

Apoptosis, the cell death programming process 
[117], plays an essential role in controlling cell 
number and maintaining tissue homeostasis in 
normal tissue [118, 119]. Malfunction of this 
mechanism results in excessive cell number and 
survival rate, which can lead to tumorigenesis 
and its malignant progression [120–122]. COX-2 
is related to suppression of apoptosis in many 
cancer types. The ability of COX-2/PGE2 signal-
ing to control apoptosis in tumor cells may 
depend on factors such as the TME and vary 
between cell types. In this signaling, several 
mechanisms have been reported. COX-2 contrib-
utes to the cancer apoptosis resistance through 
delaying G1 phase to slow the cell cycle [123]. It 
also induces the expressions of BCL-2 [124, 
125], MCL-1 [126], and Survivin [127] and 
represses caspase-3 signaling [128].

First, overexpression of COX-2 might regu-
late the intrinsic apoptosis signaling by inducing 
the expression of BCL-2 and increase resistance 
apoptosis induced by butyrate in rat intestinal 
epithelial cells [93]. Later studies demonstrated 
that COX-2/PGE2 might suppress apoptosis by 
increasing the expression of BCL-2 through acti-
vation of Ras-MAPK/ ERK signaling [129]. 
Other studies also indicated that COX-2 signal-
ing controls apoptosis by inducing the expres-
sions of BCL-2 [124, 125]. Second, scientists 
found that COX-2 is a critical mediator in apop-
tosis resistance by increasing the expression of 
MCL-1 [126]. Knockdown of MCL-1 would sen-
sitize the lung cancer cells to apoptosis substan-
tially. Moreover, the expression of MCL-1 could 
be significantly decreased when COX-2 was sup-
pressed [126]. Third, it was reported that overex-
pression of COX-2 contributes to the expression 
and stabilization of Survivin, which is an inhibi-
tor of apoptosis in non-small-cell lung cancer 
[127]. Suppression of COX-2 activity could 
induce degradation of Survivin and lead to lower 

cellular response to apoptosis pathways [127]. 
Fourth, scientists have reported that overexpres-
sion of COX-2 limited the cleavage of HuR and 
caspase-3, which reduced cell apoptosis in the 
paclitaxel-resistant oral cancer cells [128]. They 
also showed that inhibition of COX-2 increased 
apoptosis in paclitaxel-resistant oral cancer cells 
by activating of caspase-3, both in  vivo and 
in vitro [128]. Furthermore, studies also demon-
strate that COX-2/PGE2 signaling might regulate 
apoptotic by involving in many other pathways. 
For example, it is reported that PGE2 activates 
prosurvival signaling, such as ERK signaling 
[130], PI3K/AKT signaling [105, 131], EGFR 
signaling [132, 133], and cAMP/PKA signaling 
[134].

Other conditions like hypoxia could also con-
tribute to the induction of cell death. For exam-
ple, in colorectal tumor cells, COX-2/PGE2 
signaling could promote cell survival in hypoxia 
condition by activation of Ras-MAPK signaling 
[86], suggesting that COX-2 plays an important 
role in promoting the survival rate of cancer cells 
under difficult microenvironmental conditions. 
In addition, wild-type p53 is a suppressor of 
COX-2 in mediating apoptosis [18, 36]. Mutations 
of p53  in cancer cells would create a positive- 
feedback loop between COX-2 and itself. It 
might be a chemotherapeutic target for cancers 
[36, 135].

6.4.4  COX-2 Suppresses Antitumor 
Immunity

COX-2 signaling plays an important role in 
immune resistance and cancer immunotherapy. It 
regulates the immune response through recruit-
ing immune cells into the tumor milieu to induce 
an immunosuppressive state [136]. Cancer cells 
can release COX-2/PGE2 to the milieu to sup-
press immunological responses by blocking the 
activity of cytotoxic T lymphocytes [137]. 
COX-2/PGE2 has also been shown to be a major 
modulator of macrophage activation for a long 
time [138]. One of the major populations of 
tumor-infiltrating immune cells is tumor- 
associated macrophages (TAMs). 
Reprogramming the TAMs of M2 toward M1 
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phenotype or impeding the process toward the 
pro-tumor M2 subtype is an anticancer strategy 
[44]. COX-2/PGE2 signaling could promote mac-
rophage differentiating to M2 subtype [139, 140]. 
Immune suppression regulated by macrophages 
is related to increased T-cell infiltration regulated 
by CD4+/CD25+ and decreased CD8+ T-cell 
function [44].

Overexpression of COX-2 promotes tumori-
genesis by inhibiting proliferation of B-type and 
T-type lymphocytes, especially natural killer T 
cells, and subsequently limits immunosuppres-
sion of the host [141]. COX-2 inhibits the expo-
sure of antigen-specific T cells to their cellular 
targets and promotes the expression of indole-
amine 2,3-dioxygenase and interleukin-4 (IL-4) 
by tumor cells [44]. Scientists have demonstrated 
that COX-2/PGE2 is the factor resisted to the 
cytotoxicity induced by active form of antigen- 
specific T cells [142]. It has also been shown that 
T-cell receptors (TCR) such as TCR NKG2D 
(natural-killer group 2, member D), Vγ9Vδ2 
(Vδ2 gene with the co-expression of the Vγ9 
chain), and CD16 are all inhibited by COX-2/
PGE2 [143]. Moreover, COX-2/PGE2 helps the 
immune suppression mediated by cancer. They 
play an important role in promoting CD4+ and 
CD8+ T-cell differentiation and directly inhibit-
ing the proliferation and effector functions of 
regulatory T cells [144]. Furthermore, it is 
reported that Treg cells inhibited effector T cells 
by activating COX-2 signaling and participated 
in cancer immunosuppression [145, 146]. The 
expression of COX-2 is also significantly related 
to Treg localization and prevalence [147]. In 
addition, expression of the forkhead/winged 
helix transcription factor (FOXP3) gene could 
also drive the suppressive activity of regulatory T 
cells.

Natural killer (NK) cells are a subpopulation 
of lymphocytes that take part in innate immunity. 
All types of PGE2 receptors are expressed by NK 
cells, and PGE2 derived from tumor is a critical 
barrier to the NK cell-mediated killing. It has 
been reported that the natural cytotoxicity recep-
tors (NCRs), such as NKp30, NKp44, NKp46, 
major NK receptors (NKRs), NKG2D, and 
CD16, could all be inhibited by PGE2 [143]. In 
addition, the function of NK cells such as secrete 

interferon-γ (INF-γ), exert cytotoxic effects, and 
migrate are all inhibited by PGE2 [148]. EP2 and 
EP4 are the major receptors acted by PGE2 while 
inhibiting NK cells. And frondoside A, an EP4 
antagonist, inhibits breast tumor metastasis by 
acting on NK cells and decreases IFN-γ produc-
tion by NK cells [44]. Furthermore, MDSC pres-
ents in many cancer types and blocks adaptive 
immunity by inhibiting NK cells and the activa-
tion of CD4+ and CD8+ T cells [148, 149]. 
COX2 produced by tumor cells would maintain 
high level of MDSC, and subsequently block the 
tumor immunity. It has been shown to allow the 
proliferation of tumor cells without control from 
the immune system of the host [44].

Dendritic cells (DCs) participate in both 
innate and adaptive immunity. COX-2 is a crucial 
immunomodulator of DC activities [150], which 
can reduce DC ability to present antigens, express 
MHC class II molecules, mature, and activate T 
cells [151]. COX-2/PGE2 has been demonstrated 
to decrease the cytokine production of antigen- 
presenting DCs, away from a type 1 T cell (Th1) 
profile, and eventually result in a reduced antitu-
mor activation of cytotoxic CD8+ T cells [152, 
153]. Meanwhile, it is reported that EP2 and EP4 
receptor subtypes of PGE2 may be targets of 
modulating DC activity [90]. For example, PGE2 
could increase interleukin-10 (IL-10) production, 
which can lead to downregulation of DC func-
tions. These abilities of COX-2/PGE2 signaling 
to suppress antitumor immune responses may 
allow malignant cells to escape immunosurveil-
lance and promote tumor development.

6.4.5  COX-2 Promotes Sustainable 
Angiogenesis

COX-2 induced in tumor is associated with 
angiogenesis [154]. Inhibition of COX-2 sup-
presses corneal neovascularization in experimen-
tal lung and colon tumor growth [155]. COX-2 
expression localizes in tumor epithelium [106], 
stromal fibroblasts [115], endothelium [155], and 
infiltrating immune cells [156]. It also promotes 
the production of vascular endothelial growth 
factor (VEGF), a potent angiogenic growth factor 
[157]. It was demonstrated that expression of 
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COX-2 was critical for the induction of VEGF 
and the subsequent tumor angiogenesis in an 
Apc/COX-2 double-knockout mice model [158]. 
It is also reported that in COX-2 knockout mice, 
fibroblasts showed decreased level of VEGF 
mRNA and protein, together with lower vascular 
density compared to wild-type mice [115]. 
Consistent with this, in vivo studies have showed 
that homozygous deletion of COX-2 led to slower 
growth of tumor xenografts and lower tumor vas-
cular density [115]. One possible mechanism is 
that COX-2 might promote tumor angiogenesis 
through the production of PGE2, which has been 
reported to involve in endothelial cell spreading 
and migration by activation of Cdc42 and Rac 
[159]. PGE2 has also been demonstrated to induce 
VEGF expression in colon cancer cells by acti-
vating HIF-1, one of the key regulators of VEGF 
expression [160]. Furthermore, PGE2 has been 
reported to regulate vascularization though che-
mokine receptor signaling. For example, in vivo 
model showed that PGE2 can enhance basic 
fibroblast growth factor-induced chemokine 
receptor-4 that is crucial for vessel assembly 
[161]. Moreover, PGE2 can stimulate the 
 expression of CXCL-1 in vivo, a pro-angiogenic 
chemokine [162].

In addition, COX-2 modifies molecules 
involved in endothelial trafficking with vascular 
mural cells/pericytes, an interaction critical to 
vessel stability [163–165]. Pericytes are found in 
all vascularized tissues, attaching to the walls of 
blood vessels [166]. They surround vascular 
endothelial cells and communicate with them by 
physical contacts and paracrine signaling along 
the length of the blood vessels [167, 168]. 
Increased expression of key modulator of peri-
cyte PDGF-β or enhanced pericytes recruitment 
is characteristic features of tumor vasculature 
[169–171]. Moreover, when transplanting cancer 
cells into Nestin-GFP/NG2-DsRed mice, type-2 
pericytes were recruited during the angiogenesis 
of the development of tumor, while type-1 peri-
cytes did not penetrate [172]. COX-2, which 
modifies the proliferation and function of peri-
cytes, plays a crucial role in vascular response to 
chronic microenvironmental stress [173, 174]. A 
study in 2006 demonstrated the function of 
COX-2  in vascular assembly in an orthotopic 

xenograft model by using the specific COX-2 
inhibitor SC-236. The results showed that tumor 
growth was suppressed by SC-236 significantly 
in human Wilms’ tumor [164]. All the evidence 
above suggests that COX-2 could promote sus-
tainable angiogenesis in tumor.

6.4.6  Regulation of COX-2 
Expression by the TME

Upregulation of COX-2 has been described in 
many different types of tumors [175]. It is reported 
that the TME is a promoter of COX-2 overexpres-
sion [36]. This overexpression is led by uncon-
trolled function of transcriptional or 
posttranscriptional levels [37]; therefore, it could 
be an important marker to identify tumor cells from 
normal tissues [14, 38]. Although PTGS2 (the 
gene-encoding human COX-2) mutations have not 
been described clearly, there are several known 
mechanisms which can promote expression of 
COX-2 in tumor cells. In general, the mechanisms 
can be divided into two types: oncogene activation 
and growth factor signaling deregulation. For 
example, it is reported that the hypoxic microenvi-
ronment can induce COX-2 expression in colorec-
tal tumor cells [86]. This upregulation is mediated 
by HIF-1, a regulator of transcription in hypoxia. 
The same regulation dependent on HIF-1 has also 
been reported in lung cancer cells [176]. Other 
examples include activation of the TGF-β receptors 
[177], gastrin receptors [178], c-Met [179], 
β-catenin/WNT signaling [180, 181], and the Ras-
MAPK pathway [85, 182]. In addition, COX-2 is a 
constituent of exosomes derived from tumor [183]. 
Cancer promoters [184], oncogenic viruses [61], 
proinflammatory cytokines [185], radiation [186], 
and chemotherapy [187] are all inducers of COX-2 
expression in cancer cells.

6.5  Nonsteroidal Anti- 
Inflammatory Drugs 
(NSAIDs)

For decades, significant progress has been 
achieved in the discovery of effective drugs for 
colorectal cancer. One of those is nonsteroidal 

Y. Zhang et al.



95

anti-inflammatory drugs (NSAIDs) which inhibit 
COX-2 [188, 189]. Examples of NSAID include 
aspirin, ibuprofen, naproxen, nimesulide, and 
sulindac acid. Different NSAIDs may act via dif-
ferent signaling pathways to interact with COX- 
2. For example, ibuprofen, indomethacin, and 
naproxen can bind the activity site of COX-2 and 
inhibit its activity reversibly, while aspirin acety-
lates the activity site of COX-2, attenuating its 
activity irreversibly. Some NSAIDs, for example, 
aspirin, can facilitate the effect of COX-2 inhibi-
tors for treatment of stage III colorectal cancer 
[190]. In fact, aspirin may reduce colon cancer 
mortality in women by as much as 50% [191–
193]. Recently, a hybrid drug KSS19, a combina-
tion of NSAID rofecoxib and cis-stilbene, has 
been found to be a potent COX-2 inhibitor, which 
inhibits colon cancer cell growth effectively 
[194].

Although COX-2 inhibitors are promising 
candidates for treatment of cancer, some con-
cerns for treatment of cancer by COX inhibitors 
have been raised. For example, an elevated risk of 
myocardial infarction may be linked to its usage 
[195]. In addition, the extended use of nonselec-
tive NSAIDs is also associated with certain path-
ological symptoms, for example, abdominal pain, 
dyspepsia, gastritis, gastrointestinal bleeding 
nausea, and perforation of gastroduodenal ulcers 
[196]. Therefore, no major clinical trials of those 
inhibitors were successfully completed due to 
concerns of their adverse effects. Nonetheless, 
NSAIDs are effective in certain degrees for pre-
vention and treatment of cancer. For example, a 
randomized trial demonstrated that NSAIDs are 
preventive for colorectal cancer with polyps [197, 
198]. According to the results of large-scale tri-
als, including the Adenomatous Polyp Prevention 
on Vioxx trial [199], the Adenoma Prevention 
with Celecoxib trial [198], the Prevention of 
Colorectal Sporadic Adenomatous Polyps trial 
[200], and colon polyp prevention trial [201], 
COX-2 inhibitors are effective for prevention of 
recurrence from sporadic colon cancer. Regular 
consumption of NSAIDs is also helpful for low-

ering the risk of colorectal, breast, lung, and 
prostate cancer [202]. In all, COX inhibitors have 
shown promise, but there are still safety 
concerns.

To decrease the risk from COX inhibitors, 
many researchers have used low dose of COX 
inhibitors with other NSAIDs that target other 
critical pathways in carcinogenesis. For example, 
combination of celecoxib with erlotinib (an 
EGFR tyrosine kinase inhibitor) is more effective 
to control polyp formation using an ApcMin/+ 
mice model and to inhibit cancer growth in a 
xenograft model [203]. Celecoxib with erlotinib 
treatment is more effective for treatment of the 
advanced non-small-cell lung cancer [204]. A 
5-lipoxygenase inhibitor has been shown to 
inhibit resistant tumor cells to SC-236 (COX 
inhibitor) and tumor growth in a breast cancer 
animal model [205]. Combined treatment of cele-
coxib with peroxisome proliferators-activated 
receptor-γ agonist has been shown better than 
either alone in a mouse breast cancer model 
[206]. Combination of aromatase inhibitors with 
celecoxib has been shown better for patients suf-
fering from metastatic breast cancer than either 
alone [207]. Therefore, we may like to reconsider 
the prospect of COX inhibitors for treatment of 
cancer.

6.6  Conclusion and Perspective

As studies have shown over the last few decades, 
COX-2 is one of the key markers indicating 
worse cancer prognosis and stimulates cancer via 
various roles in the TME.  To date, clinical and 
basic research has shown that reduction of PGE2 
synthesis by either specific COX-2 inhibitors or 
NSAIDs has the potential to decrease the risk of 
tumorigenesis of certain types [97, 208–214]. 
Therefore, therapeutic strategies targeting the 
COX-2 in the TME may have great potential to 
improve clinical outcomes. COX-2 signaling in 
the tumor environment is summarized as follows 
(Fig. 6.1):
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