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Abstract
Central Asia (CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural 
hazards, strained water resources, and accelerated glacier melting, which underscores the need to achieve robust projection 
of regional climate change. In this study, we applied three bias-corrected global climate models (GCMs) to conduct 9 km-
resolution regional climate simulations in CA for the reference (1986–2005) and future (2031–2050) periods. The regional 
climate model (RCM) and GCM simulated daily temperature and precipitation are evaluated and the results show that both 
the bias-correction technique and dynamical downscaling method obtain numerous added values in reproducing the histori-
cal climate in CA, respect to the original GCMs. The former contributes more to reducing the biases of the climatology and 
the latter contributes more to capturing the spatial pattern. The RCM simulations indicate significant warming over CA in 
the near-term future, with the regional mean increase of annual mean temperature in a range of 1.63–2.01 ℃, relative to the 
reference period. Pronounced warming is detected north of ~ 45° N in CA from autumn to spring, which can be explained 
by the snow-albedo feedback. Enhanced warming projected in many mountains in the world is not found in CA, which is 
consistent with the study based on the reanalysis datasets during the past. Heatwave day frequency, number and maximum 
duration are expected to become more severe by 2031–2050. Changes in precipitation and Standard Precipitation Index (SPI) 
shows a wetter condition in CA in the coming decades. However, a fairer assessment of the wet/dry change with Standard 
Precipitation Evapotranspiration Index (SPEI) which takes into account of both precipitation and potential evapotranspiration 
reveals a drier condition. The climate change projections presented here serve as a robust scientific basis for assessment of 
future risk from climate change in CA.
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1  Introduction

Central Asia (hereafter CA), ranging from the Caspian Sea 
in the west to China in the east and from Russia in the north 
to Afghanistan and Iran in the south, is consisted of Kazakh-
stan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, 
with an area of about 4,000,000 km2 (Fig. 1a). There are 
Tien Shan and Pamir mountain ranges in the southeast, 
the vast grassy steppes of Kazakhstan in the north, and the 
Kyzylkum and Karakum desert in the south. Located within 

the Eurasia continent and far from the oceans, this region has 
arid and semiarid climate with cold winter and hot summer, 
sparse precipitation, strong potential evaporation, and large 
annual and daily temperature ranges.

CA has experienced a significant warming (0.16 ℃ per 
decade) during the past century (1901–2003, Chen et al. 
2009), with an accelerating warming rate (0.36–0.42 ℃ per 
decade) in the past ~ 30 years (1979–2011, Hu et al. 1979), 
which is detected to be mainly contributed by the anthro-
pogenic forcing, particularly the greenhouse gases forcing 
(Peng et al. 2019). Meanwhile, a significant increase in 
annual precipitation was observed in CA (Chen et al. 2011).

The warming and wetting trend in CA has increased both 
exposure and vulnerabilities to natural hazards, such as heat-
waves (Yu et al. 2020; Wang et al. 2020a), landsides, floods, 
and droughts (Thurman 2011). The World Bank reported 
that natural disasters lead, on average, to an astounding $10 
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billion in estimated economic losses every year (Burunciuc 
2020). The cost is very likely to rise in the future. Water is 
the most precious resource in CA and its use is the most con-
flict-prone (Frenken 2013). A warming future can aggravate 
the tensions concerning water allocation between upstream 
and downstream areas in this region. Climate change has 
exacerbated the glacier melting in the Tien Shan (Narama 
et al. 2010). Although in the first instance shrinking glaciers 
supply ample quantities of water in the form of increased 
glacier runoff, reduced glacier volume will ultimately result 
in a decrease in glacier and total runoff and eventually trans-
form glacial-nival runoff regions in the Tien Shan into nival-
pluvial regions (Sorg et al. 2012). The local ecosystems are 
very sensitive to temperature and precipitation changes 
(Zhang et al. 2016; Seddon et al. 2016; Gessner et al. 2013), 

which are anticipated to vary dramatically in the coming 
decades.

Due to the severe climate changes, frequent natural haz-
ards, strained water resources, accelerated glacier melting 
and fragile ecosystems in CA, it is imperative to project 
the regional climate change based on emission scenarios 
for application to vulnerability, impacts, and adaption 
assessments. Some efforts have been devoted on climate 
change projections in CA with both global climate mod-
els (GCMs) and regional climate models (RCMs). The 
GCM simulations largely agree on a regionwide precipi-
tation increase in CA by the end of this century (Huang 
et al. 2014; Jiang et al. 2020a). The RCM simulations by 
Mannig et al. (2013) and Ozturk et al. (2017) consistently 
show notable warming in the cold season in northern CA. 

Fig. 1   Study area and its surrounding (a), nested domains in the WRF model (b), and climate subregions in Central Asia (c). In subplot a, sta-
tions with records of daily mean temperature (Tmean) and precipitation (Prec) are marked by starts and circles, respectively
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A recent study with the use of RCM found hot days and 
extreme drought events will increase significantly over CA 
in the future (Zhu et al. 2020).

To date, the studies about climate change projections 
in CA are still limited relative to its surrounding areas, 
like East Asia, South Asia and the Mediterranean region 
(Darmaraki et al. 2019; Kim et al. 2021; Gao et al. 2006; 
Kumar and Dimri 2018; Niu et al. 2018; Supari et al. 2020; 
Zittis et al. 2019; Zou and Zhou 2016, 2017). Most of the 
previous RCM simulations used a single GCM as the lat-
eral boundary conditions (Mannig et al. 2013; Zhu et al. 
2020), which harbor high uncertainties in the projected 
climate changes. Since the terrain in CA is complex, their 
resolutions (Zhu et al. 2020; Ozturk et al. 2017; Mannig 
et al. 2013) are still low ( ≥ 30 km). The present authors 
carried out a study that involving the dynamical downscal-
ing of three different GCMs (MPI-ESM-MR, CCSM4, and 
HadGEM2-ES Table 1) for the CA region with an unprec-
edented horizontal resolution of 9 km, for the first time. 
As reported in the 1.5 ℃ special report of the Intergovern-
mental Panel on Climate Chane (IPCC), we are on track to 
exceed 1.5 ℃ warming between 2030 and 2052 based on 
the current warming rate, and hence the near-term future 
projection becomes more critical to human development 
than that for the end of this century. Nevertheless, climate 
changes in CA in the near-term future have not been inves-
tigated yet. Therefore, the future simulation period is set as 
2031–2050 under Representative Concentration Pathway 
(RCP) 4.5, with the reference period of 1986–2005.

All GCMs suffer from some kinds of bias, which can 
be problematic for the downscaling applications especially 
dealing with extreme weather events (Done et al. 2015; 
Ehret et al. 2012; Liang et al. 2008; Xu and Yang 2012). 
Thus, a bias-correction technique (Bruyère et al. 2014) 
is applied in this study to correct the climatology of the 
GCMs before the regional modeling. Two questions need 
to be considered:

What added values do the bias-correction technique and 
the dynamical downscaling method obtain in simulating 
the local climate in CA respect to the driving GCMs?
What are the basic features of the projected climate 
changes across the RCM simulations?

The present paper is, therefore, to evaluate the high-res-
olution climatology of the downscaled results from three 
GCMs as well as the GCM outputs; and to demonstrate the 
projected climate changes in the RCM simulations. The 
remainder of this paper is organized as follows: Sect. 2 
describes the data and methods. Model evaluation and pro-
jected changes are in Sect. 3. The main results are summa-
rized in Sect. 4.

2 � Data and methods

2.1 � Bias‑correction technique

MPI-ESM-MR (referred as MPI, Table 1), CCSM4 (referred 
as CCSM), and HadGEM2-ES (referred as Had) from Phase 
5 of the Coupled Model Intercomparison Project (CMIP5) 
are selected to drive the regional model. Since all GCMs 
suffer from some forms of bias that may propagate down to 
the RCM outputs, the bias-correction technique developed 
by Bruyère et al. (2014) is applied in this study to correct 
the climatology of the GCMs and allow synoptic and climate 
variability to change.

Six-hourly GCM data in a 25-year base period 
(1981–2005), as referred as GCM

BP
 , is broken down into 

the 25-year mean 6-hourly annual cycle ( GCM
BP

 ) plus a 
6-hourly perturbation term ( GCM′

BP
):

The ERA-Interim reanalysis data (Dee et al. 2011) as 
“observations” ( Obs ) is similarly broken down into the mean 
annual cycle ( Obs ) and a perturbation term ( Obs′):

(1)GCM
BP

= GCM
BP

+ GCM
�

BP

Table 1   Information about the 
datasets used in the study

In it, “Full” means all the variables required to generate the initial and lateral boundary conditions for the 
regional model

Model Run Spatial resolution Temporal resolution Variables

MPI-ESM-MR r1i1p1 1.9°× 1.9° 6-hourly Full
CCSM4 b40.[20th\RCP4.5].

track1.1 deg.012.
cam2.h4

0.9°× 1.3° 6-hourly Full

HadGEM2-ES r1i1p1 1.3°× 1.9° 6-hourly Full
CRU TS v4 – 0.5°× 0.5° Monthly Tmean/Tmax/Tmin
CPC – 0.5°× 0.5° Daily Tmean/Tmax/Tmin
ERA5 – 0.25°× 0.25° Daily Precipitation
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The bias corrected GCM data for the base period, 
GCM

∗

BP
 , is then constructed by replacing the GCM mean 

annual cycle ( GCM
BP

 ) from Eq.  (1) with the Obs mean 
annual cycle ( Obs ) from Eq. 2:

Similarly, six-hourly GCM data in a 25-year future period 
(2026–2050), as referred as GCM

FP
 , is broken down into 

the mean annual cycle over the base period ( GCM
BP

 ) and a 
perturbation term ( GCM′

FP
):

The bias corrected GCM data for the future period, 
GCM

∗

FP
 , is then constructed by replacing the GCM mean 

annual cycle over the base period ( GCM
BP

 ) with the Obs 
mean annual cycle ( Obs ) from Eq. (2):

Equation  (3) and (5) are applied to all the variables 
required to generate the initial and lateral boundary condi-
tions for the regional model: zonal and meridional wind, 
geopotential height, air temperature, relative humidity, sea 
surface temperature, mean sea level pressure, and et al.

To date, this bias-correction technique has been applied 
in numerous studies (Ortiz et al. 2019; Komurcu et al. 2018; 
Jing et al. 2020; Jayasankar et al. 2018; Chen and Frauenfeld 
2016) and was found to largely improve the performance of 
RCM in simulating the local mean climate and high-impact 
weathers. Note that the bias-corrected CCSM4 outputs are 
available on the Research Data Archive (RDA) of University 
Corporation for Atmospheric Research (UCAR).

2.2 � Regional model and experiment design

The Weather Research and Forecasting (WRF, Skamarock 
et al. 2008) model is used as the regional model to down-
scale the GCMs. It has a nested domain (Fig. 1b). The outer 
domain with a 27-km resolution and 290 × 205 grids covers 

(2)Obs = Obs + Obs
�

(3)GCM
∗

BP
= Obs + GCM

�

BP

(4)GCM
FP

= GCM
BP

+ GCM
�

FP

(5)GCM
∗

FP
= Obs + GCM

�

FP

a large Central Asia region (much larger than the CA region 
as defined and focused in this study), like in the CORDEX 
project (https://​cordex.​org/). The inner domain has a high 
resolution of 9 km and 409 × 295 grids, covering the CA 
region. The model has 33 levels in the vertical direction 
with its top fixed at 50 hPa. The physical schemes in the 
regional model are set based on our previous work about the 
sensitivity study of different physical parameterizations of 
the WRF model in simulating the local climate in CA (Wang 
et al. 2020b). They comprise the Thompson aerosol-aware 
microphysics scheme (Thompson and Eidhammer 2014), 
the New Tiedtke cumulus scheme (Zhang et al. 2011), the 
Yonsei University planetary boundary layer scheme (Hong 
et al. 2006), the RRTMG shortwave and longwave schemes 
(Iacono et al. 2008), and the Noah-MP (multi-physics) land 
surface model (Niu et al. 2011). Spectral nudging with a 
weak coefficient of 3 × 10–5 is applied in the outer domain 
(not in the inner one), which relaxes the model simulations 
of wind, temperature, and moisture toward the driving con-
ditions, and prevents possible model drift over the long-term 
integration. Despite greenhouse gases and solar constants, 
the WRF model is modified to consider other external forc-
ing, such as aerosols, volcanoes, and ozone, so as to make 
its inner external forcing consistent with the driving GCMs. 
We evaluated the modified WRF model in East Asia and 
found that using full external forcing improves the regional 
simulation there (Luo et al. 2020).

The RCM simulations with bias-corrected multiple 
GCMs (MPI, CCSM, and Had) as the driving data are 
referred as WRF_MPI_COR, WRF_CCSM_COR, and 
WRF_Had_COR, respectively (Table  2). The reference 
simulations are from December 1, 1985 to December 31, 
2005 and the future runs are between December 1, 2030 and 
the end of 2050 under a moderate carbon emission scenario 
RCP 4.5, which is arguably the most policy-relevant scenario 
as the Nationally Determined Contributions (NDCs) green-
house gas emissions framework would produce similar tem-
peratures trajectories (Gabriel and Kimon 2015). A 10-year 
(December 1, 1985–December 31, 1995) RCM simulation 
with the original HadGEM2-ES as the driving data is added, 
which is referred as WRF_Had (Table  2). Comparison 
between Had, WRF_Had, and WRF_Had_COR will help 

Table 2   Experiment design in 
the study

The initial and lateral boundary conditions are referred as “ICs and BCs”

Experiment name Simulation duration ICs and BCs Use bias 
correction or 
not?

WRF_MPI_COR 1986–2005, 2031–2050 MPI-ESM-MR Yes
WRF_CCSM_COR 1986–2005, 2031–2050 CCSM4 Yes
WRF_Had_COR 1986–2005, 2031–2050 HadGEM2-ES Yes
WRF_Had 1986–1995 HadGEM2-ES No

https://cordex.org/
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to quantify the contribution of the bias-correction technique 
and dynamical downscaling method to improving the RCM 
simulation. The first month in each simulation is discarded 
as spin up during the analyses.

2.3 � Climate subregions

Various types of terrain and altitude range from 0 to 7500 m 
above sea level, lead to diverse climates in CA, which under-
scores the need to do model evaluation and assess the pro-
jected climate changes on sub-regions of similar or consist-
ent climate. With the regionalization method used in our 
previous study (Qiu et al. 2017), the CA region is divided 
into four climate sub-regions, each of which is coherent 
in the seasonal circulation pattern in precipitation. They 
are northern CA (NCA), middle CA (MCA), southern CA 
(SCA), and the mountainous areas (MT) (Fig. 1c). From 
NCA to SCA, there is a transition from the cold temperate 
zone with wet summer to the subtropical zone with dry sum-
mer. The annual precipitation is generally below 400 mm in 
the low-elevation areas (NCA, MCA, and SCA); however, it 
can exceed 1000 mm in the mountainous areas (MT).

2.4 � Observational data

Version 4 of the Climatic Research Unit gridded Time Series 
(CRU TS v4, Harris et al. 2020, Table 1) is applied to evalu-
ate the simulated daily mean/maximum/minimum tempera-
ture (referred as Tmean/Tmax/Tmin) on annual and seasonal 
scales. CPC (Climate Prediction Center) Global daily tem-
perature from National Oceanic and Atmospheric Adminis-
tration (NOAA) is used as a supplementary to evaluate the 
percentiles of the simulated daily temperature. Because the 
rain-gauge-observation merged in the gridded observations 
like the CRU dataset is sparse and unevenly distributed over 
CA, the new generation reanalysis of European Center for 
Medium-Range Weather Forecasts (ECMWF), i.e., ERA5 
(Hersbach et al. 2020) is used as “observations” for precipi-
tation estimation, which has high accuracy in revealing the 
precipitable water vapor and detecting precipitation events 
over CA and its surrounding areas (Jiang et al. 2019, 2020b). 
Before the evaluation, the GCM (RCM) outputs are interpo-
lated to the observations’ grids with the bilinear (distance-
weighted average) method. We found that both on the annual 
and seasonal scales, the interpolation methods conserved the 
area averaged temperature and precipitation in the model 
outputs with a bias of less than 1–2% between the original 
and new grids. We thus concluded that our choice of inter-
polation procedure does not affect the main conclusions of 
our work.

As the gridded observations (CRU TS v4, CPC, and 
ERA5) have potential limitations in depicting the clima-
tology of temperature and precipitation in CA, the model 

outputs are also evaluated with the station observations. 
The stations’ data are from Global Historical Climatol-
ogy Network (GHCN) of NOAA National Climatic Data 
Center. They contain monthly mean Tmean from 58 sta-
tions (see stars in Fig. 1a) and monthly precipitation from 
52 stations (see circles in Fig. 1a), covering the reference 
period (1986–2005). The stations’ data have been quality 
controlled, and only the stations with less than 20% missing 
values are selected. Note that a station is compared with the 
model grid on which it is located.

2.5 � Heatwave and drought indices

As the CA region is at high risk from extreme temperatures 
and drought (Thurman 2011; Yu et al. 2020), it is essential 
to assess changes in heatwaves and drought in this region. 
According to Fischer and Schär (2010), a heatwave is 
defined as a spell of at least six consecutive days with Tmax 
exceeding the local 90th percentile of the reference period 
(1986–2005). The 90th percentile is calculated for each cal-
endar day, each model and at each grid point using a centred 
15-day-long time window. On the basis of this definition, 
the following extreme temperature indices are derived for 
20-year time slices.

HWF (heatwave day frequency): the average number of 
days meeting the heatwave criterion per year.

HWN (number of heatwaves): the average number of 
heatwaves per year.

HWD (heatwave maximum duration): the average dura-
tion of the longest heatwave per year (years without heat-
waves are excluded from this analysis).

A drought is an event of prolonged shortage in the 
water supply. In this study, the degree of drought is repre-
sented by the Standardized Precipitation Evapotranspira-
tion Index (SPEI, Vicente-Serrano et al. 2010), which is 
an extension of the widely used Standardized Precipita-
tion Index (SPI, McKee et al. 1993). The SPEI is designed 
to take into account both precipitation and potential 
evapotranspiration (PET) in determining drought. Thus, 
unlike the SPI, the SPEI captures the main impact of 
increased temperature on water demand. Like the SPI, 
the SPEI can be calculated on a range of timescales from 
1 to 48 months. According to Wei and Wang (2013), the 
timescale is set as 12 months and PET is estimated with 
the Thornthwaite method (Thornthwaite 1948). In order 
to calculate the relative SPEI, the Gamma distribution 
is utilized and its parameters are first estimated for the 
reference period (1986–2005). Future drought conditions 
are then expressed in terms of the present-day climate by 
computing the relative SPEI for 2031–2050 with respect 
to the Gamma distribution of the reference period. In 
order to assess the changes in dry and wet conditions 
between baseline and future period, the relative SPEI are 
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compared. To illustrate the contribution of temperature 
and precipitation changes to the evolution of drought, the 
relative SPI is also calculated and compared with the rela-
tive SPEI. A full description of computation of SPI and 
SPEI can be seen in Poornima and Pushpalatha (2019).

3 � Results

3.1 � Added values obtained by the bias‑correction 
technique and dynamical downscaling method

The high-resolution (9 km) downscaled results (WRF_MPI_
COR, WRF_CCSM_COR, and WRF_Had_COR) based on 
bias-corrected multiple GCMs (MPI, CCSM, and Had) are 

Fig. 2   Spatial correlation coef-
ficients (SCCs) and root mean 
square errors (RMSEs) of the 
simulated annual (ANN), sum-
mer (JJA, June–July–August), 
and winter (DJF, December–
January–February) mean Tmean 
over CA and the subregion MT 
in the GCM (MPI, CCSM, and 
Had) and RCM (WRF_MPI_
COR, WRF_CCSM_COR, and 
WRF_Had_COR) simulations

Fig. 3   Same as Fig. 2, but for 
annual and seasonal precipita-
tion
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very close to the observations in simulating the climatol-
ogy of Tmean and precipitation in CA both on annual and 
seasonal scales (Fig. S1, Fig. S2, Fig. S3, and Fig. S4). 
Respect to the driving GCMs, they have numerous added 
values in simulating the local temperature and precipitation, 
which is clearly reflected by smaller root mean square errors 
(RMSEs) and larger spatial correlation coefficients (SCCs, 
Figs. 2 and 3). For instance, the ensemble-mean RMSEs of 
annual and seasonal mean Tmean over CA are 1.37–2.26 ℃ 
in the RCM simulations (Fig. 2b), smaller than those of the 
GCMs (2.93–4.31 ℃). The ensemble-mean SCCs of annual 
and seasonal precipitation over CA are 0.80–0.86 in the 
RCM simulations (Fig. 3a), larger than those of the GCMs 
(0.62–0.70). The annual and seasonal mean Tmax and Tmin 
are also evaluated and the results are similar to those of 
Tmean (not shown here).

The RCM simulations also have added values in simulat-
ing the extreme percentiles of daily temperature and precipi-
tation. For instance, the RCMs have excellent performance 
in simulating all the percentiles of Tmax averaged over CA, 
NCA, and MCA, with the points on or close to the line of 
y = x (Fig. S5a-c). The 90th and 95th percentiles of daily 
precipitation in the RCMs are more realistic than those of 
the GCMs in the MT region (Fig. S6e).

The added values in simulating the local climate are more 
pronounced in the mountains than in the whole region (e.g., 
Fig. 3c vs Fig. 3a). For instance, over the CA region, the 
SCC of annual precipitation is increased from 0.70 to 0.85 
(Fig. 3a); over the MT region, it is increased from -0.14 to 
0.44 (Fig. 3c). It highlights the advantages of using dynami-
cal downscaling method in the regions of complex terrain.

The added values discussed above are very likely to be 
obtained by both the bias-correction technique and dynami-
cal downscaling method. To prove it and furtherly know 
which contributes more to improving the RCM simulation, 
the SCCs and RMSEs of precipitation over CA in Had, 
WRF_Had and WRF_Had_COR during a ten-year period 
(1986–1995) are compared (Fig. 4). Comparison of Had and 
WRF_Had shows the contribution of the dynamical down-
scaling method and comparison of WRF_Had and WRF_
Had_COR illustrates that of the bias-correction technique.

The evolution of SCCs and RMSEs (Fig.  4) gener-
ally confirms that both the bias-correction technique and 
dynamical downscaling method bring added values in sim-
ulating the local climate in CA. For instance, the dynamical 
downscaling method increases the SCC of winter precipita-
tion from 0.63 to 0.78 and the bias-correction method fur-
therly increase it from 0.78 to 0.86 (Fig. 4a). The dynami-
cal downscaling method reduces the RMSE of winter 
precipitation from 0.56 to 0.50 mm/day and the bias-cor-
rection method furtherly reduces it from 0.50 to 0.38 mm/
day (Fig. 4b). But it is hard to say which effect contributes 
more to improving the simulation. The evolution of SCC 

shows that the dynamical downscaling method contributes 
more (Fig. 4a). However, the evolution of RMSE supports 
the opposite opinion. For instance, the dynamical downs-
caling method slightly increases the RMSE of annual pre-
cipitation over CA from 0.47 to 0.53 mm/day while the 
bias-correction technique reduces it from 0.53 to 0.40 mm/
day (Fig. 4b), offsetting the additional error induced by 
downscaling.

Figure 5 shows the bias (model minus observation) pat-
tern of annual mean Tmean (1986–1995) in Had, WRF_Had, 
WRF_Had_COR and the ERI-Interim reanalysis. It’s found 
that the bias pattern of WRF_Had_COR is close to that of 
the reanalysis dataset (Fig. 5d vs Fig. 5b) instead of the driv-
ing GCM (Fig. 5d vs Fig. 5a). The reason is that the ERA-
Interim reanalysis as “observation” in the bias-correction 
procedure comprises the climatology component of the lat-
eral boundary conditions of the regional model and thus the 
biases of the reanalysis dataset propagate down to the down-
scaled results based on the bias-corrected GCMs. Without 
using bias correction, the RCM simulation has similar bias 
pattern with the driving GCM (Fig. 5c vs Fig. 5a). This 
finding suggests the use of more state-of-the-art reanalysis 
dataset like ERA5 in the bias correction in the future so as 
to make the downscaled results more realistic.

Fig. 4   Spatial correlation coefficients (SCCs) and root mean square 
errors (RMSEs) of the simulated annual (ANN), summer (JJA, June–
July–August), and winter (DJF, December–January–February) pre-
cipitation over CA in Had, WRF_Had, and WRF_Had_COR during 
1986–1995
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Since the gridded observations (CRU TS v4, CPC, and 
ERA5) have potential limitations in depicting the climatol-
ogy of temperature and precipitation in CA, the RCM outputs 
are also evaluated with the station observations and the results 
show the RCMs still have a fairly good performance in simu-
lating the local climate. For instance, the simulated annual 
mean Tmean is very close to the observed, with R2 as large as 
0.86 (Fig. 6a). Though WRF_MPI_COR and WRF_Had_COR 
overestimated annual precipitation, all the RCMs well captured 
its spatial pattern, with R2 in a range of 0.61–0.70 (Fig. 6b).

To sum up, the high-resolution RCMs driven by multiple 
bias-corrected GCMs are excellent in simulating the local 
temperature and precipitation in CA despite some system-
atic biases (e.g., warm (cold) bias during spring and summer 
(winter)) and obtain substantial added values respect to the 
original GCMs, which provides a good base for projecting 
climate changes in CA.

3.2 � Basic features of the projected climate changes 
across the RCM simulations

3.2.1 � Warming patterns

All the RCM simulations (WRF_MPI_COR, WRF_CCSM_
COR, and WRF_Had_COR) show significant warming 
over CA in the near-term future (Fig. S7), with the annual 
mean Tmean increase averaged over the entire area by 1.63, 
1.89, and 2.01 ℃, respectively. Though the warming ampli-
tude varies across them, they consistently project the most 
pronounced mean annual warming north of ~ 45°N in CA 
(above 2.0 ℃, Fig. 7 and Fig. S7), where subregion NCA 
and MCA mainly occupy (Fig. 8). Previous simulations pro-
jected a notable warming in the northern part of CA in win-
ter (Mannig et al. 2013; Ozturk et al. 2017; Peng et al. 2019). 
However, the strong warming in the north is also detected 

Fig. 5   The bias pattern of annual mean Tmean in Had, WRF_Had, WRF_Had_COR, and the ERA-Interim Reanalysis during 1986–1995
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for spring and autumn in this study (Figs. 7, 8, and Fig. 
S7). The warming in summer has a west–east pattern (Fig. 
S7j-l). The enhanced warming in the northern part of CA 
from autumn to spring is mainly caused by less snow cover 
(see changes in snow depth in Fig. S8) and smaller albedo 
(Fig. S9) in these seasons in the future. On one hand, the 
local warming can accelerate the snow melting and shorten 
snow cover duration. On the other hand, enhanced warming 
in the Arctic from October to April, known as the Arctic 
amplification, can reduce meridional temperature gradients 
in the Northern Hemisphere, weaken mid-latitude westerly 
flow and cyclones, and decrease mid-latitude precipitation 
(Dai et al. 2019; Dai and Song 2020; Routson et al. 2019; 
Walsh 2014).

Numerous studies found that the warming rate in moun-
tains is (will be) enhanced relative to non-mountain regions 
during the past (in the future), like the European Alps, the 
Tibetan Plateau/Himalayas in Asia and the Rocky Mountains 
in the United States (Palazzi et al. 2019; Pepin et al. 2015; 

Rangwala et al. 2013). However, our simulations show that 
the warming over the high-elevation regions in CA, espe-
cially in the Tien Shan, is generally lower than that over the 
plain areas (Fig. 7, see the results of subregion MT in Fig. 8, 
and Fig. S7), which is consistent with the analyses based on 
the reanalysis datasets during 1979–2011 (Hu et al. 1979). 
The possible reason why the enhanced warming projected 
in many mountains in the world is not detected in CA is that 
the important mechanisms that contribute towards elevation-
dependent warming (EDW, Pepin et al. 2015), like snow 
albedo and surface-based feedbacks, are lacked in the Tien 
Shan and Pamirs, which is out of our scope in the current 
paper and needs further studies.

3.2.2 � Projected changes in heatwave characteristics

To quantify changes in heatwave characteristics over a 
warmer CA in the near-term future, we differentiate heat-
wave day frequency (HWF), number (HWN) and maximum 
duration (HWD). All of these characteristics are expected to 
become more severe by 2031–2050 (Fig. 9). The frequency 
of heatwave days (HWF) strongly increases in the north-
east and the very south (Fig. 9a). Averaged over CA, HWF 
changes from about 25 days per year (1986–2005) to around 
45–55 days in 2031–2050 (Table 3, range depending on 
model). The average number of heatwaves (HWN) increases 
from 2.4 to 2.5 per year (1986–2005) to about 3–4 heatwaves 
per year (2031–2050). Moreover, simulated heatwaves are 
1.5–1.9 times longer in the coming decades (2031–2050).

Changes in heatwave frequency and duration are mainly 
related to the mean warming in summer season. For instance, 
the WRF_Had_COR simulation depicts an increasing trend 
of warming from west to east (Fig. S7l) in summer, which 
is similar with the geographical pattern of HWF and HWD 
(Fig. S10c, i). This finding is consistent with the simulations 
in Europe (Fischer and Schär 2010). With different warm-
ing amplitude in summer, changes in the heatwave char-
acteristics varies across the RCM simulations (Fig. S10), 
highlighting the necessity of using multiple GCMs as the 
lateral boundary conditions to give a range of the projected 
changes in CA.

3.2.3 � Projected changes in drought indices

The RCM simulations commonly show that annual precip-
itation will slightly increase over most of the plain areas 
(see the slashed areas in Fig. 10a), with the ensemble-mean 
increase of 0.01 mm/day in CA. For SPI is calculated based 
on precipitation data, changes in annual mean SPI has a sim-
ilar spatial pattern with those in precipitation (Fig. 10b vs 
Fig. 10a), with the ensemble-mean increase of 0.10. In terms 
of precipitation and SPI, a wetter condition is anticipated 
in CA during 2031–2050 relative to the reference period. 

Fig. 6   Scatter plots of annual mean Tmean (a) and annual precipita-
tion (Prec, b) between the station observation and the RCM outputs 
during the reference period
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Fig. 7   Projected ensemble-
mean changes of annual 
(ANN) and seasonal (DJF, 
December–January–February; 
MAM, March–April–May; 
JJA, June–July–August; SON, 
September–October–Novem-
ber) mean Tmean in Central 
Asia in the RCM simulations. 
Their regional mean (AVG) and 
standard deviation (STD) are 
listed

Fig. 8   Projected changes in 
annual and seasonal mean TG 
averaged over four climate sub-
regions (NCA, MCA, SCA, and 
MT) in the RCM simulations. 
The markers indicate the results 
of each RCM simulation and 
the bars indicate the ensemble 
means
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However, the strong regional warming as discussed above 
will favor the increase of PET (0.32 mm/day, Fig. 10c), 
which can easily offset the increase in precipitation and 
enhance drought. Therefore, annual mean SPEI taking into 
account of both precipitation and PET will decrease by 
− 1.04 (Fig. 10d), which reveals a drier CA in the near-term 
future. Comparison of changes in SPI and SPEI (Fig. 10b 
vs Fig. 10d) suggests that the warming plays a major role in 
the evolution of drought in the drylands like CA by increas-
ing PET and both temperature and precipitation should be 
taken into account to make a fairer assessment on the dry/
wet change in these regions. We also calculated changes in 
these drought indices for each season, and the results (not 
shown) are consistent with those on the annual scale.

4 � Summary

To project the regional climate in CA, bias-corrected mul-
tiple GCMs (MPI-ESM-MR, CCSM4, and HadGEM2-ES) 
from CMIP5 are selected to conduct high-resolution (9 km) 
dynamical downscaling over this area with the regional cli-
mate model WRF for the near-term future (2031–2050) rela-
tive to the reference period of 1986–2005, under the carbon 
emission scenario of RCP4.5.

Firstly, we carefully evaluated the RCM and GCM simu-
lated daily temperature and precipitation. It’s found that the 
high-resolution RCM outputs are excellent in describing 
the local temperature and precipitation in CA despite some 
systematic biases, and have numerous added values respect 
to the original GCMs, especially in the mountainous areas. 
Both the bias-correction method and dynamical downscal-
ing method contribute to improving the RCM simulation. 
The former contributes more to reducing the biases of the 
climatology and the latter contributes more to capturing the 
spatial pattern.

Then, basic features of the projected climate changes 
across the RCM simulations are demonstrated. All the RCM 
simulations (MPI_WRF_COR, CCSM_WRF_COR, and 

Fig. 9   Projected ensemble-mean changes of heatwave day frequency 
(HWF), number of heatwave (HWN), and heatwave maximum dura-
tion (HWD) in the RCM simulations. These indices are expressed as 
ratio between the future and reference period

Table 3   Regional averages of 
the simulated heatwave indices

The ensemble mean (first number) as well as the minimum and maximum ensemble member (in parenthe-
ses) are listed

Region CA NCA MCA SCA MT

HWF (days per year)
 1986–2005 25.1 (25.4/24.7) 23.9 (25.5/21.6) 25.1 (25.8/24.1) 25.2 (26.5/24.5) 27.5 (28.5/26.9)
 2031–2050 48.7 (55.3/44.6) 49.2 (59.9/42.9) 48.3 (53.5/45.1) 49.1 (54.8/44.3) 48.2 (53.6/42.8)

HWN (heatwaves per year)
 1986–2005 2.4 (2.5/2.4) 2.4 (2.6/2.4) 2.4 (2.6/2.3) 2.4 (2.4/2.3) 2.4 (2.6/2.2)
 2031–2050 3.7 (3.9/3.3) 3.9 (4.5/3.4) 3.7 (3.9/3.4) 3.6 (3.9/3.3) 3.1 (3.7/2.7)

HWD (days)
 1986–2005 13.6 (13.8/13.4) 12.3 (13.0/11.1) 13.4 (14.0/12.9) 14.2 (14.8/13.7) 15.9 (16.7/15.4)
 2031–2050 23.1 (26.2/19.8) 21.9 (25.2/17.5) 22.3 (24.2/19.5) 24.2 (28.1/21.3) 27.6 (33.4/22.3)
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Had_WRF_COR) show significant warming over CA in the 
near-term future, with the annual mean Tmean increase aver-
aged over the entire area by 1.63, 1.89, and 2.01 ℃, respec-
tively. They commonly reveal that the temperature will rise 
faster north of ~ 45 °N for each season except summer and 
the high-elevation areas generally have a weaker warming 
than the plains. Heatwave day frequency (HWF), number 
(HWN) and maximum duration (HWD) are expected to 
become more severe by 2031–2050. In terms of precipita-
tion and SPI, a wetter condition is anticipated in CA in the 
coming decades. However, a fairer assessment of the dry/wet 
change in CA with SPEI which takes into account of both 
precipitation and PET reveals a drier condition.

With the limitation of the computational and time cost, 
this study used three GCMs from CMIP5 to do the dynami-
cal downscaling over CA, which is an improvement com-
pared to using single GCM. However, it still harbors uncer-
tainties in the projected climate changes, especially for the 
extreme climate indices (i. e., changes in the heatwave indi-
ces as shown in Fig. S10). The downscaled results produced 

in this study provide high-resolution warming scenarios in 
CA, which is appropriate for the ecological and hydrologi-
cal applications and will be published on National Tibetan 
Plateau/Third Pole Environment Data Center. The reason 
why the elevation-dependent warming is not detected in the 
high-elevation areas in CA will be explained, by calculating 
the partial temperature changes due to changes in different 
terms in surface energy budget.
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