Yu Huang

Yu Huang
City College of New York | CCNY · Department of Biomedical Engineering

Doctor of Philosophy

About

45
Publications
9,915
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,742
Citations

Publications

Publications (45)
Article
Full-text available
Purpose: To develop a deep network architecture that would achieve fully automated radiologist-level segmentation of cancers at breast MRI. Materials and methods: In this retrospective study, 38 229 examinations (composed of 64 063 individual breast scans from 14 475 patients) were performed in female patients (age range, 12-94 years; mean age,...
Article
Purpose: Conventional automated segmentation of the head anatomy in magnetic resonance images distinguishes different brain and nonbrain tissues based on image intensities and prior tissue probability maps (TPMs). This works well for normal head anatomies but fails in the presence of unexpected lesions. Deep convolutional neural networks (CNNs) lev...
Preprint
Full-text available
Purpose: The goal of this research was to develop a deep network architecture that achieves fully-automated radiologist-level segmentation of breast tumors in MRI. Materials and Methods: We leveraged 38,229 clinical MRI breast exams collected retrospectively from women aged 12-94 (mean age 54) who presented between 2002 and 2014 at a single clinica...
Article
Objective: Interferential stimulation (IFS) has generated considerable interest recently because of its potential to achieve focal electric fields in deep brain areas with transcranial currents. Conventionally, IFS applies sinusoidal currents through two electrode pairs with close-by frequencies. Here we propose to use an array of electrodes inste...
Article
Full-text available
Despite being a popular neuromodulation technique, clinical translation of transcranial direct current stimulation (tDCS) is hampered by variable responses observed within treatment cohorts. Addressing this challenge has been difficult due to the lack of an effective means of mapping the neuromodulatory electromagnetic fields together with the brai...
Article
Full-text available
Severe brain injuries can lead to long-lasting disorders of consciousness (DoC) such as vegetative state/unresponsive wakefulness syndrome (VS/UWS) or minimally conscious state (MCS). While behavioral assessment remains the gold standard to determine conscious state, EEG has proven to be a promising complementary tool to monitor the effect of new t...
Article
Objective: Understanding how current reaches the brain during transcranial Electrical Stimulation (tES) underpins efforts to rationalize outcomes and optimize interventions. To this end, computational models of current flow relate applied dose to brain electric field. Conventional tES modeling considers distinct tissues like scalp, skull, cerebros...
Preprint
Full-text available
Objective Interferential stimulation (IFS) has generated considerable interest recently because of its potential to achieve focal electric fields in deep brain areas with transcranial currents. Conventionally, IFS applies sinusoidal currents through two electrode pairs with close-by frequencies. Here we propose to use an array of electrodes instead...
Preprint
Full-text available
Transcranial Direct Current Stimulation (tDCS) dose designs are often based on computational Finite Element Method (FEM) forward modeling studies. These FEM models educate researchers about the resulting current flow (intensity and pattern) and so the resulting neurophysiological and behavioral changes based on tDCS dose (mA), resistivity of head t...
Conference Paper
Transcutaneous spinal cord direct current stimulation (tSDCS) has been applied as an easy non-invasive approach to modulate spinal cord functions. Currently there is no formal layout or guidelines for electrode placement to optimize tSDCS. Most clinical applications simply place the stimulating electrode over the intended spinal cord target. Here w...
Conference Paper
The ability of transcranial direct current stimulation (tDCS) to produce lasting polarity-specific modulatory effects continues to drive use both in research and clinical domains. Computational models of tDCS over the years have provided valuable insight on the current flow pattern and magnitude of electric field induced in the cortex. However, ind...
Preprint
Full-text available
Conventional automated segmentation of the human head distinguishes different tissues based on image intensities in an MRI volume and prior tissue probability maps (TPM). This works well for normal head anatomies, but fails in the presence of unexpected lesions. Deep convolutional neural networks leverage instead volumetric spatial patterns and can...
Article
Objective: Research in the area of transcranial electrical stimulation (TES) often relies on computational models of current flow in the brain. Models are built based on magnetic resonance images (MRI) of the human head to capture detailed individual anatomy. To simulate current flow on an individual, the subject's MRI is segmented, virtual electr...
Preprint
Full-text available
Research in the area of transcranial electrical stimulation (TES) often relies on computational models of current flow in the brain. Models are built on magnetic resonance images (MRI) of the human head to capture detailed individual anatomy. To simulate current flow, MRIs have to be segmented, virtual electrodes have to be placed on these anatomic...
Article
Full-text available
Noninvasive brain stimulation techniques are used in experimental and clinical fields for their potential effects on brain network dynamics and behavior. Transcranial electrical stimulation (TES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), has gained popularity because of its co...
Article
It is well known that genetic and environmental factors amongst others make different ethnic populations dissimilar reflected by the difference in overall skull and brain volume, shape, and size. We sought to investigate in this study the effects of race related morphological changes by comparing across standard Caucasian, Chinese and Indian templa...
Article
To reach a deep target in the brain with transcranial electric stimulation (TES), currents have to pass also through the cortical surface. Thus, it is generally thought that TES cannot achieve focal deep brain stimulation. Recent efforts with interfering waveforms and pulsed stimulation have argued that one can achieve deeper or more intense stimul...
Preprint
Full-text available
To reach a deep target in the brain with transcranial electric stimulation (TES), currents have to pass also through the cortical surface. Thus, it is generally thought that TES cannot achieve focal deep brain stimulation. Recent efforts with interfering waveforms and pulsed stimulation have argued that one can achieve deeper or more intense stimul...
Conference Paper
Transcranial direct current stimulation (tDCS) aims to deliver weak electric current into the brain to modulate neural activities. Based on the volume conductor model of the head, optimization algorithm can be used to determine a specific montage of high-definition electrodes on the scalp to achieve targeted stimulation. However, simultaneous targe...
Conference Paper
Research in the area of transcranial electrical stimulation (TES) often relies on computational models of current flow in the brain. Models are built on magnetic resonance images (MRI) of the human head to capture detailed individual anatomy. To simulate current flow, MRIs have to be segmented, virtual electrodes have to be placed on the scalp, the...
Conference Paper
It is well known that genetic and environmental factors amongst others make different ethnic populations dissimilar reflected by the difference in overall skull and brain volume, shape, and size. We sought to investigate in this study the effects of race related morphological changes by comparing across standard Caucasian, Chinese and Indian templa...
Article
Full-text available
It has come to our attention that we did not specify whether the stimulation magnitudes we report in this Article are peak amplitudes or peak-to-peak. All references to intensity given in mA in the manuscript refer to peak-to-peak amplitudes, except in Fig. 2, where the model is calibrated to 1 mA peak amplitude, as stated. In the original version...
Article
Full-text available
Context and objective: Patients undergoing the same neuromodulation protocol may present different responses. Computational models may help in understanding such differences. The aims of this study were, firstly, to compare the performance of aphasic patients in naming tasks before and after one session of transcranial direct current stimulation (...
Article
Full-text available
Transcranial electrical stimulation has widespread clinical and research applications, yet its effect on ongoing neural activity in humans is not well established. Previous reports argue that transcranial alternating current stimulation (tACS) can entrain and enhance neural rhythms related to memory, but the evidence from non-invasive recordings ha...
Poster
Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. Here we measure electric potentials intracranially in ten epilepsy patients and estimate electric fields across the entire brain by levera...
Article
Full-text available
In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial current stimulation (TCS), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical...
Article
In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as...
Article
Full-text available
Individualized current-flow models are needed for precise targeting of brain structures using transcranial electrical or magnetic stimulation (TES/TMS). The same is true for current-source reconstruction in electroencephalography and magnetoencephalography (EEG/MEG). The first step in generating such models is to obtain an accurate segmentation of...
Article
Full-text available
Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. To perform a systematic review on meta-analyses of repetitive transc...
Article
The dose of transcranial direct current stimulation (tDCS) is defined by electrode montage and current, while the resulting brain current flow is more complex and varies across individuals. The left dorsolateral pre-frontal cortex (lDLPFC) is a common target in neuropsychology and neuropsychiatry applications, with varied approaches used to experim...
Article
Full-text available
Objective: Research studies on transcranial electric stimulation, including direct current, often use a computational model to provide guidance on the placing of sponge-electrode pads. However, the expertise and computational resources needed for finite element modeling (FEM) make modeling impractical in a clinical setting. Our objective is to mak...
Article
Objective: High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individua...
Article
Full-text available
Targeted transcranial stimulation with electric currents requires accurate models of the current flow from scalp electrodes to the human brain. Idiosyncratic anatomy of individual brains and heads leads to significant variability in such current flows across subjects, thus, necessitating accurate individualized head models. Here we report on an aut...

Network

Cited By