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Abstract

We provide a tool to model and solve strategic situations where players’ perceptions

are limited, in the sense that they may only be aware of, or model, some of the aspects

of the strategic situations at hand, as well as situations where players realize that other

players’ perceptions may be limited. We define normal, repeated, incomplete informa-

tion, and dynamic (extensive) form games with unawareness using a unified method-

ology. A game with unawareness is defined as a collection of standard games (of the

corresponding form). The collection specifies how each player views the game, how she

views the other players’ perceptions of the game and so on. The modeler’s description

of perceptions, the players’ description of other players’ reasoning, etc. are shown to

have consistent representations. We extend solution concepts such as rationalizability

and Nash equilibrium to these games and study their properties. It is shown that while

unawareness in normal form games can be mapped to incomplete information games,

the extended Nash equilibrium solution is not mapped to a known solution concept in

the equivalent incomplete information games, implying that games with unawareness

generate novel types of behavior. JEL Classification: C72,D81,D82.

1 Introduction

As game theoretical modeling becomes more prevalent as a practical modeling tool a central

problem arises due to a multitude of models that can be employed. The reasoning players in

a particular strategic interaction seem likely to come up with different games representing
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theorem.

1



the situation at hand. This discrepancy may be the result of players being unaware of some

aspects of the situation, or that the mere act of modeling and reasoning about the situation

leads the players to incorporate only a selection of aspects they deem most crucial, or both.

In all cases the player obtain a restricted perception of the game. The objective of this paper

is to provide a model that allows the players to have differing models for their interaction

and analyze reasoning and behavior in this setting.

Players who model the game differently should also be allowed to recognize that other

players may well have different models for the strategic interaction. We provide a new game

form that allows the representation of economic agents with varying restricted perception

of the environment at hand. The game form that we call – games with unawareness – is

a collection of standard games describing the perception of each player, their perception of

other players’ perceptions and so on. The standard games in the collection are then related

based on properties of reasoning about others reasoning in a manner that guarantees that how

each player views all interactive perceptions of the game is itself a game with unawareness –

players perceive the situation much like the modeler does. We use the same methodology to

extend normal (strategic) form games, repeated games, incomplete information games and

dynamic (extensive) form games, providing a unified framework for reasoning about limited

perceptions, or unawareness. We then turn to solution concepts and extend rationalizability

and Nash equilibria to normal form games with unawareness, as well as the other game

forms.

Our main results include the consistency of the representation of games with unawareness

for the aforementioned game forms, i.e. that every player in every game form views the game

as a game with unawareness that all players perceive other players’ view of the game as a

game with unawareness, and so on. We prove the existence of the extended Nash equilibrium

solution. Finally, we show that while games with unawareness can be naturally mapped to

games with incomplete information, the latter cannot replace the explicit modeling of games

with limited perceptions since the mapping cannot preserve the new solution concept. In

particular, the extended Nash solution concept generates a tighter prediction about behavior

than the Bayesian Nash equilibrium of the equivalent incomplete information game.

1.1 Two Examples

We operationalize restricted perception of the game as follows: A player – Alice – can be

unaware of some of the actions available to another player – Bob. This will imply that the

game she perceives does not contain some of Bob’s actions. Alternatively, Alice may not

include a third player in the game at all. This again represents a restricted game. It might

also be the case that Bob perceives that Alice is unaware of some aspect of the game, in
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this case his view of her view of the game is restricted but it does not imply that Alice

is indeed restricted in this manner. It might well be that Alice is aware of all aspects of

the interaction, yet Bob’s perception of her perception is limited. The two examples below

provide some variations on these type of situations. They also shed some light on how the

solutions to these games are constructed. The guiding principle for behavior is that every

player chooses a strategy in the game they perceive which reacts (e.g. with a best response)

to strategies the player believes others will be playing in the game she thinks they perceive.

Our first example is of a normal form game with unawareness. We begin with the game

depicted in (1) below. This game represents all the actions available to the players – Alice

and Bob – and the payoffs associated with each action profile. Assume that in the situation

we are modeling Alice and Bob are both aware of all the actions available in the game, so

when they write a description of the actions and payoffs it corresponds to (1) below. Assume

that they are commonly aware of each other’s existence, i.e. they are aware that the other

player is aware that they both participate in the game, they are aware of that, and so on.

However, consider a situation where Alice is unaware that Bob is aware of all her actions.

In particular, She is only aware that he is aware of the actions {a1, a2, b1, b2, b3} – She is

unaware that he is aware of her third action. This situation may arise if Alice perceives that

action a3 is secret, or if, say, Bob is new to the environment in which this interaction occurs

and there is no reason to think he would model action a3.

The strategy profile (a2, b1) is the unique Nash equilibrium of the game depicted in (1),

hence if such games have been played in the past (even if fully perceived by all players) there

is no reason that a data point containing a3 would appear. Hence, even if Alice believes

an inexperienced Bob will study similar past situations, she may well conclude that he will

not model this action. In this example we further assume that Bob realizes all this. Not

only does he consider a3 he also deduces that Alice does not realize that he is considering

it. Hence, Bob is aware that Alice perceives Bob’s perception of the game to consist only of

the actions {a1, a2, b1, b2, b3}. We also assume that Bob is aware that Alice is aware of the

whole action set {a1, a2, a3, b1, b2, b3}.
Turning to higher levels of interactive views of the game; since Alice is only aware of Bob

being aware of {a1, a2, b1, b2, b3}, she cannot be aware that he is aware that she is aware of

anything beyond this set, otherwise, she would be aware that he is able to reason about her

reasoning about the additional action a3, so he must be able to reason about a3 as far as

Alice can deduce, which would contradict our assumption that Alice is unaware that Bob is

aware of a3. In particular, any higher order iteration of awareness of Alice and Bob which is

not considered above is assumed to be associated with the set {a1, a2, b1, b2, b3}.
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Bob

Alice

b1 b2 b3

a1 0,2 3,3 0,2

a2 2,2 2,1 2,1

a3 1,0 4,0 0,1

(1)

As note above, the initial game we started out with in (1) has a unique Nash equilibrium

(a2, b1) obtained by iteratively eliminating strictly dominated strategies. However, while

both players are aware that this is the game being played, we assumed that Alice perceives

that Bob is aware of two of her actions. In other words, Alice is unaware that Bob is aware

of a3. While Alice and Bob both view the game as in (1) Alice perceives that Bob finds the

game being played as depicted in (2).

Bob

Alice

b1 b2 b3

a1 0,2 3,3 0,2

a2 2,2 2,1 2,1

(2)

Hence, Alice also finds that Bob finds that she perceives the game as in (2), and so on

for every higher order awareness. We obtain that Alice finds that Bob views the game as

a standard normal form game with complete awareness – a game where all participating

players are aware of all aspects of the game, they are aware that all other players are aware

of the same game, and so on. Taking Nash equilibria as the solution concept for normal form

games, Alice may deduce that Bob plays according to the Nash equilibrium (a1, b2) of the

game in (2) which is also the Pareto dominant outcome of this normal form game. Alice,

who sees herself as being more aware than Bob, will be inclined to choose her best response

to b2 which is a3. Bob can make the exact same deduction that we, as modelers, just made,

since he is aware of all the actions and he fully realizes how Alice perceives his awareness.

Hence, Bob can deduce that Alice, being unaware of his full awareness of her action set, will

assume he plays b2 and will play a3. This would lead Bob to play his best response to a3

which is b3. We will have that Alice chooses a3 and Bob chooses b3 as a result of this higher

order unawareness. Starting with a Nash equilibrium and considering best responses, we end

up with the worst possible payoff for Alice and a low payoff for Bob, even though both are

aware of the full extent of the game, both are commonly aware of the action profile of the

unique Nash equilibrium (a2, b1) and both act rationally given their perceived view of the
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Alice

M T W

(1,2) (0,1) (0,1)

Figure 1: Alice’s Shipping Decision.

game.

This example illustrates the general formulation of a game with unawareness as a col-

lection of standard normal form games: each game describing how players view the game,

how they view how others view the game and so on. The discussion above indicates some

of the properties linking these viewpoints, e.g. that all aspects of the game Alice views that

Bob is reasoning about are part of the game she is considering – if she is aware that Bob is

aware of some aspect of the game she is also aware of that aspect and find it relevant for the

strategic situation (if only for the reason that she find Bob finds it relevant).

The reasoning leading to the behavior described above allows us to define solution con-

cepts for normal form games based on best responses: Alice plays a best response in the

game she perceives to a strategy of Bob in the game Alice finds that Bob is considering, etc.

The same approach to defining a game form and solutions can be applied to dynamic

settings which allow us to also capture changing perceptions as in our next example. We

begin with a story in which Alice – the baker – has just contracted with Bob – the coffee shop

owner – to deliver a shipment of cakes from her bakery to his coffee shop. Alice can either ship

the cakes on Monday, Tuesday or on Wednesday. The contract states that Alice must ship the

cakes on Monday, and that penalties are to be enforced if she ships it late. The contract also

states that if unforseen contingencies beyond Alice’s control obtain, such as severe weather,

she must ship the cakes as soon as possible, with penalties adjusted accordingly. Without

any other possible events or actions the game can be written as described in Figure 1.

The payoff to Bob is high if the shipment is sent on Monday and arrives without problems,

it is lower if it is sent on Tuesday or Wednesday, but the penalty on late delivery is such

that Bob is indifferent between the two. Alice, on the other hand, would rather send the

shipment on Monday, however, even though the penalty is higher for shipping on Wednesday

rather than Tuesday, it is known that Tuesday is very busy for Alice and she would probably

expect to pay overtime to get the shipment out on Tuesday.

Driving to his coffee shop early Monday morning Bob notices that unanticipated road
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work is scheduled for that day (and that day only). He estimates that if Alice ships the

cakes that day then there is a 50% chance it will not be delivered. Hence, his expected

payoff if Alice attempts delivery on Monday drops to, say 1.2, somewhat lower than 1.5

since if she attempts to ship on Monday and fails due to the unforseen road work, he will

not be compensated for a later delivery according to the contract. But if Alice chooses to

ship on Tuesday or Wednesday to begin with, no unforseen contingency can be invoked and

payoffs for Bob would remain the same.

The central departure from a standard game in this story is that Bob recognizes the game

to include the possibility of road work, but he finds that Alice, much like he was before he

drove to his coffee shop, is unaware of the road work. Bob recognizes that it is not that

she thinks there will be no road work, it is that the possibility of road work never crossed

her mind, Bob thinks that Alice describes the game – models the economic environment –

according to the game depicted in Figure 1 just like he did before taking into account road

work.

As he drives to work Bob realizes that he can call Alice and let her know that there is

road work. In other words, he can strategically make her become aware of the road work.

If he does this early enough in the morning he expects he can, due to the unforseen road

work, agree that she delivers the cakes on Tuesday without being penalized but that if she

delivers them of Wednesday he will be compensated for the delay. Hence Bob views the

possible actions, including the road work and his ability to call Alice as the game depicted

in Figure 2. Bob associates with each of Alice’s decision points the game that she is aware

of, in particular, if he does not call her, he assumes that she finds the game to be the one

depicted in Figure 1 and if he does call her then she will figure out the game is as depicted

in Figure 2. Note that if Bob calls Alice and tells her of the road work she will be able to

reason that had he not called, she would not have become aware of it.

What Bob is unaware of is that Carol, one of Alice’s workers, lives close to Bob’s bakery.

Furthermore, Carol noticed on Sunday evening the signs indicating scheduled road work on

Monday and decided to e-mail Alice to let her know she might be late for work. Hence,

Carol’s e-mail made Alice aware of the road. Alice realizes the game is actually the one

depicted in Figure 3 and that Bob will see the road work Monday morning when driving to

work, and that he will model the game to be as in Figure 2 and reason about Alice’s view of

the game being as in Figure 1 since she would – rightly so – assume he is unaware of Carol’s

possible actions, and in fact is unaware of Carol’s existence. Carol, is simply not modeled

as a player in Bob’s perception of the game. The situation amounts to Bob thinking that

Alice is unaware of the road work and Alice not only aware of it, but also realizing that Bob

thinks she is unaware of it.
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Alice

M T W

(1,2) (0,1) (0,1) 

Alice

M T W

(-1,1.2) (0,1) (0,1) 

Alice

M T W

(-1,1.2) (1,0.5) (0,1)

Nature

Bob

Road W
ork

No
 Ro

ad
 W
or
k

Call Alice

No
t C
all

Figure 2: Bob’s Calling Decision.

This is the game as seen by Bob, if he does not call Alice he thinks that Alice views the game as in Figure 1
depicted in blue (the arrow indicates that in both decision points of the information set the Alice perceives
the same game, in particular she is unaware that there is an information set.)

The payoffs in our story change when we consider Carol, Alice’s awareness of road con-

struction, and that she can reason about Bob’s restricted view of the game and how Bob

views her view of the game as a further restriction of his. First, for simplicity, Carol’s payoff

are such that e-mailing Alice is a dominant strategy. Alice’s payoffs coincide with Bob’s view

if Carol does not e-mail her, or if Bob decides to call Alice and let her know of the road work.

However, if Bob decides not call Monday morning, Alice can claim that she discovered the

road work late on Monday1 and since she was not told in the morning they agree that she

would be allowed to deliver on Wednesday without penalty. Obviously, if she does deliver

on Wednesday in this case Bob’s payoffs are the lowest possible in this game, while Alice’s

are the highest.

The three games depicted in Figures 1, 2, and 3 as well as how they relate – which decision

point is associated with which game – comprise a game with unawareness. They describe the

standard extensive form game in Figure 3 as Alice sees it when she is making a decision (it

also describes the modelers view of the dynamic game). It describes how Alice views Bob’s

1To keep this example tractable we have encompassed some possibly strategic actions into the payoffs,
e.g. Alice informing Bob of her awareness on Monday afternoon, or even claiming she tried to deliver on
Monday.
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Alice

M T W

(1,2,0) (0,1,0) (0,1,0) 

Alice

M T W

(-1,1.5,0) (0,1,0) (0,1,0) 

Alice

M T W

(-1,1.5,0) (1,0.5,0) (0,1,0)

Nature

Bob Bob

Road Work
No

 Ro
ad

 W
or
k

Call Alice

No
t C
all

e-mail

No
t e
-m
ail

Alice

Carol

M T W

(-1,1.5,1) (1,0.5,1) (2,0,1) 

Alice

M T W

(-1,1.5,1) (1,0.5,1) (0,1,1) 

Call Alice

No
t C
all

Figure 3: With Carol’s E-mail Decision.

This is the game as seen by Alice (once Carol E-mails her, as well as the modeler. We have indicated in green
the parts of this game that Bob is unaware of. These include Carol’s actions and payoffs – her existence. As
well as the fact that Alice may be aware that Bob is aware of effect of the road work on Alice’s payoff.

viewpoint on what the game is as depicted in Figure 2. This is also the (standard) extensive

form game that Bob Actually perceives. Finally, it describes how Bob views Alice’s view of

the game at both her decision points in the game in Figure 2 as corresponding to the game

in Figure 1.

The dynamic game with unawareness is a collection of standard extensive form games

corresponding to how Alice perceives the game at her decision points, how Alice perceives

how Bob perceives the game at his decision point in the game she considers, how she perceives

the game he perceives that she perceives in her decision point in the game she perceives he

is considering, and so on. Here, Alice’s view of the game changes based on the actions of

Carol (if she e-mails) and Bob if he were to call Alice. As with the extension of normal form

games equilibrium solutions will be based on strategies that are best responses to strategies

that others play in the game they are perceived to consider.
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1.2 Results and Related Literature

The examples above are meant to illustrate a number of features of our model. First, the

definition of games with unawareness for all game forms is based on a collection of standard

games, games that describe players’ viewpoints, views of other players views of the game and

so on. In the case of dynamic games viewpoints correspond to decision points, in incomplete

information games they will correspond to types. We can also see the nested features of

these games where the actions and players that Alice views Bob is considering become part

of the game that Alice is considering. The examples also demonstrate how solutions can

come about in these games.

Our structural result shows that the definition of games with unawareness (in all forms)

implies that each player’s view of the game, view of others, and so on, itself is a game

with unawareness satisfying the exact same conditions as the game we, the modelers, are

considering. Furthermore, each view of each other player induces a game with unawareness

and so on. Next we define a variety of solutions and show that extended Nash equilibria and

extended rationalizability coincide with the standard solutions when there is no unawareness.

The solutions are extended based on the same reasoning justifying the solutions in standard

games. We show existence of solutions. Finally, we present sufficient conditions for a game

with unawareness to have a finite representation.

One of the main questions that arises with any new game form is whether it can tell us

something that the standard formulations cannot. With restricted perceptions it is partic-

ularly important to study whether these situations can be modeled using probability zero

rather than unawareness. We show that indeed normal form games with unawareness can

be represented as games with incomplete information. Moreover, there is a natural map-

ping (in the sense that the mapping is independent of the exact payoffs in the game with

unawareness) to incomplete information games that fully captures all the relevant views in

the game. But while the structure can be mapped between game forms it is the extended

Nash equilibrium which does not map to any known solution of Bayesian games. In fact,

it seems that generating such a solution in the Bayesian game amounts to reconstructing

the normal form game with unawareness. The extended Nash equilibrium turns out to be

a refinement of the Bayesian Nash equilibrium of the incomplete information representation

since the latter ends coinciding with the extended rationalizable solution for normal form

games with unawareness. We note that with other game forms, in particular incomplete

information games with unawareness, an extended solution will treat probability zero and

awareness in a different manner to begin with, making it at least as challenging as the normal

form case to map these games to known game forms.

There are three categories of work that relates to multi-person unawareness in economic
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theory. The first is a logic, foundational, perspective. Some recent work on modeling multi-

person unawareness includes Fagin and Halpern (1998), Halpern (2001), Halpern and Rego

(2008, 2009), Feinberg (2004), Heifetz, Meier and Schipper (2006, 2008), Sadzik (2006) Board

and Chung (2007, 2009), Li (2009) and Gossner and Tsakas (2010). These provide a variety

of models capturing the foundations of interactive unawareness.

The second category of multi-person unawareness studies includes analysis of specific

economic situations that involve unawareness and analysis of the role of unawareness in

these settings. Some examples include Chen and Zhao (2009), Filiz-Ozbay (2008), Grant,

Kline and Quiggin (2012), von Thadden and Zhao (2012), Zhao, X.J. (2008, 2011).

The third category to which the current paper belongs includes models for strategic in-

teraction with unawareness and their solution concepts. Our early work in Feinberg (2004)

included a syntactic approach to modeling dynamic games and produced quite a cumber-

some definition. In Feinberg (2005) which the current paper subsumes normal form games

were defined, these have been modified and generalized to the other game forms. Models

for normal form games appear in Copic and Galeotti (2005), Li (2006) and Heifetz, Meier

and Schipper (2007). Extensive form games were suggested by Grant and Quiggin (2009),

Halpern and Rego (2006), Heifetz, Meier and Schipper (2009) and Rego and Halpern (2012),

incomplete information games by Copic and Galeotti (2007) and repeated games by Mengel,

Tsakas and Vostroknukov (2009). We point out a number of aspects that distinguish this

current work from the literature that followed. First, we note the unified approach to ex-

tending all game forms to games with unawareness, all game forms are extended in the same

manner following the same conditions for high order unawareness. Second, we use standard

games to define games with unawareness – alternative methods introduce new constructs,

our game with unawareness is always a set of standard games.

The use of standard games keeps the definition relatively short and simple with four

conditions applied to each game form. Furthermore, it allows a relatively clear extension of

existing solution concepts to games with unawareness. Using hierarchies of perceptions allows

the proof of consistency of the representation in the sense that the modeler, players, and

higher order players’ view of other players, all have the same form as games with unawareness

(we discuss an equivalent “type” space representation below). Finally, our framework allows

the comparison between unawareness and probability zero events – we show that games

with unawareness can be represented by incomplete information games, however behavior

(extended Nash equilibria) under unawareness does not translate to the known solutions of

standard incomplete information games.
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2 Modeling Games with Unawareness

A game with unawareness is defined by describing the set of players, actions and payoffs in

the strategic situation, how each player views these, how they view others’ views and so on,

while allowing these views to be restricted – exclude players or actions from such perceived

games. The main principle for defining these games is that every view point is described by

a standard game of the corresponding form.

We extend four game forms to games with unawareness: normal, repeated, incomplete

information and dynamic (extensive). We postulate four conditions that are adapted to each

game form:

Condition 1 The decision maker Alice views the decision maker Bob to be relevant for

the strategic situation if and only if she views Bob to be a player in the game she is

considering.

Condition 2 Every action or player that Alice perceives that Bob is modeling in the game,

is also part of Alice’s perception of the game – Alice can consider the aspects of the

strategic situation that she thinks Bob is considering.

Condition 3 Alice’s view of Bob’s perception of the game coincides with her view of Bob’s

view of his own perception of the game.

Condition 4 Even if Alice is unaware of Bob’s participation in the game, the outcomes she

considers must agree with the outcomes of the game given one of Bob’s actions.

we generalize these conditions to high order reasoning in the formal definitions below. The

rest of this section is organized as follows. We begin with a definition of normal form games

with unawareness which is followed by a discussion of the hierarchy structure of the game

form. The following subsections present the definitions of the other game forms concluding

with the proposition stating that our model provides a consistent representation of games

with unawareness in the sense that every player’s view of the strategic situation is itself a

well defined game with unawareness, as is a player’s view of the view of others, and so on,

and that these forms coincide with our description of the game as modelers.

2.1 Normal Form Games with Unawareness

In standard normal form games the modeler describes the set of players, their possible

actions and payoffs for action profiles. The modeler’s normal form game is our starting

point: G = (I,
∏

i∈I Ai, {ui}i∈I) where I is a set of players, Ai is the set of actions available
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for each player and the functions ui associate the utility for action profiles in
∏

j∈I Aj.

These are the set of players and actions that the modeler is considering whether or not

the players are aware of each other or of some of the actions. Each player may have a

restricted view of the game. Hence for a player v ∈ I we consider a normal form game

Gv = (Iv,
∏

i∈Iv (Ai)v, {(ui)v}i∈Iv). Similarly, a player considers how each of the players that

appear in her game models the game. In general, a finite sequence of players v = (i1, ..., in)

is associated with a normal form game Gv = (Iv,
∏

i∈Iv (Ai)v, {(ui)v}i∈Iv) where Iv is the set

of players that i1 finds that i2 finds that ... that in is considering, and similarly for the sets of

actions (Ai)v and payoffs (ui)v defined on the set of action profiles
∏

i∈Iv (Ai)v. We call v an

iterated view, or in short a view. Throughout, v = ∅ corresponds to the modeler’s view, i.e.

G∅ = G. Note that this is the modeler’s view of the relevant players and their actions and

payoffs not of the unawareness of players. Correspondingly, we say that Gv is the situation

as viewed, or perceived at v, that (Aj)v is the set of j’s actions as viewed from v and so

on. We denote an action profile in Gv by (a)v. The singletons (v = i) corresponding to a

player’s view are called viewpoints and the set of viewpoints (players, in the case of normal

form games) is denoted V with a typical element v.

We denote the concatenation of two views v̄ = (i1, ..., in) followed by ṽ = (j1, ..., jm) as

v = v̄ˆṽ = (i1, ..., in, j1, ..., jm). The set of all potential views is denoted V =
∞⋃
n=0

(I)(n) where

I(n) =
∏n

j=1 I and I(0) = ∅.

Definition 1 A collection Γ = {Gv}v∈V where Gv are normal form games and V ⊂ V is a

collection of finite sequences of players is called a normal form game with unawareness and

the collection of views V is called its set of relevant views if the following properties hold:

C1 For every v ∈ V we have

vˆv ∈ V if and only if v ∈ Iv (3)

The first condition requires that the set of relevant views V is closed under the set of players

considered in the game perceived at a relevant view and that viewpoints of non-players are

irrelevant. There would be no impact on our results if players were to consider the views of

players not participating in the game, however we find such redundancy unpleasing, as with

any scientific modeling. The other direction of this condition is crucial for our setting since

if Alice models Bob as one of the players in the game, it is required that Alice should find

Bob’s view of the game to be relevant.

C2 For every vˆṽ ∈ V we have

v ∈ V (4)
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∅ 6= Ivˆṽ ⊂ Iv (5)

for all i ∈ Ivˆṽ we have ∅ 6= (Ai)vˆṽ ⊂ (Ai)v (6)

The first part of this condition states that if a relevant view’s perception of another view

is relevant, then the first view must itself be relevant, e.g. if it is relevant to consider

Alice’s view of Bob’s view of Carol, then Alice’s view of Bob is also relevant. Together with

condition C1 this implies that the set of relevant views is exactly the set of views inductively

constructed from considering the players that are perceived to be participating in the game.

In particular, if there exists any relevant view at all we also have, fortunately, that ∅ ∈ V –

the modeler’s view is relevant.

Condition C2 extends this principle to the set of players and actions: if Alice finds that

Bob is considering a player or an action as part of the game, she herself must consider them

to be part of the game. In other words, by the mere fact that you find in relevant that others

find some aspect of the game to be relevant enough for modeling, you must model that

aspect yourself. Much like we, the modelers, do when considering the reasoning of players.

Restating this with the notation of awareness the condition states that: what Alice is aware

that Bob is aware of, are things that Alice is aware of as well.

C3 If vˆvˆv̄ ∈ V we have

vˆvˆvˆv̄ ∈ V (7)

Gvˆvˆv̄ = Gvˆvˆvˆv̄ (8)

The third condition requires that each player, that is relevant along some view, has a correct

perception of their own perceived perception: if Alice perceives that Bob has a certain

perception of the game, she also perceives that he perceives to have that perception. With

awareness: if Alice is aware that Bob is aware of something, she is also aware that he is

aware that he is aware of it. It is important to point out that this does not imply that Bob

is actually aware of it. We note that when considering a relevant view of the form vˆ(i) we

have that vˆ(i)ˆ(i) is relevant and by C1 we have i ∈ Ivˆ(i) hence all players are aware of

their own participation in the game.

C4 For every action profile (a)vˆṽ = {aj}j∈Ivˆṽ
there exists a completion to an action profile

(a)v = {aj, ak}j∈Ivˆṽ ,k∈Iv\Ivˆṽ
such that

(ui)vˆṽ((a)vˆṽ) = (ui)v((a)v) (9)
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Since a view may consider only some of the players considered by another relevant view, or

by the modeler, the payoffs may not be uniquely determined by defining the restricted set

of players and actions. The fourth condition requires that the payoffs in a restricted game

coincide with payoffs in the larger game with more players by fixing some action profile for

these players. We note that for different action profiles of the restricted game we can have

different completing actions by players that only appear in the less restricted game2. In

other words, a restricted view of the game cannot introduce new payoffs. If one wishes, this

condition can easily be generalized to assume missing players are playing mixed strategies,

or even correlated strategies, without impact on our results.

These properties are used in all game forms discussed below. While the objects in the

game may change (with the addition of histories, types, or game trees) we obtain analogous

properties describing the structure of games with restricted reasoning translating conditions

C1-C4 to the appropriate setting.

2.2 Hierarchies and Types

Before we define the extension to additional game forms, we briefly discuss our choice for

describing a game with unawareness as a collection of standard form games – a “hierar-

chy” of games, rather than a “type space” – a set of type profiles representing each player’s

perception of the game and perception of the types of other players. First we note that a

representation a la Harsanyi’s type spaces is possible and actually quite readily obtained

and is briefly provided below. Moreover, one can also define a universal type space which

corresponds to the incomplete information representation we provide in Section 3.2. Hence,

the transition from hierarchies to type spaces and back is quite a standard (if tedious) ex-

ercise. However, this brings us to a central reason for choosing hierarchies: in the standard

incomplete information framework, the set of fundamentals generating the universal type

space is fixed. In particular, all players are implicitly assumed to be reasoning with the same

set of fundamentals which, in the Harsanyi’s approach, includes the collection of relevant

payoff matrices for the fixed and given set of players and their given sets of actions. This

makes the universal type space “common knowledge” in the sense that all players would

construct the same universal type space if they were modeling the game, see Aumann (1999)

for a discussion of this property. In contrast, our starting point is that players may rea-

son using different fundamentals – the building blocks of the game. As such, they would

construct different universal type spaces – different from each other and different from the

2This condition is weaker than the condition we proposed in Feinberg (2005) where we required that in
all the games a certain player is missing, the same action of this player will be used to determine the payoffs.
We also note that conditions C1 - C3 coincide with the weak axioms for unawareness we postulated in
Feinberg (2005).
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one the modeler uses. Moreover, the players would also attribute different universal type

spaces to other players. As such, while we can combine all these to an abstract space as

sketched below, working with such a space seems much more difficult than the analysis we

did in the examples in the introduction via the hierarchy representation. Working with a

type space representation that captures reasoning with differing fundamentals requires extra

caution since one needs to figure out at each state how each player perceives the type space.

While this is possible, it essentially amounts to reconstructing the hierarchies. Hence, we

prefer working directly with hierarchies. This is best exemplified when constructing solution

concepts. If we want a player type to play a best response to what other players’ types are

playing we need to consider the types that correspond to this player’s type space, which is

not the modeler’s type space. In addition, this player will need to evaluate the type spaces

that each other player is considering, the spaces that each of them associates to other play-

ers (more precisely, the spaces that the first player perceives the other players think others

are considering), and so on – recreating the hierarchies once again. Finally, the hierarchies

allow us to obtain an “equal perception” principle. In the sense that the modeler and the

players are easily shown to model the situation in the same manner (as well as model others’

perceptions and so on). While they may use different fundamentals for reasoning and at-

tribute different fundamentals to others, the rules governing the reasoning, the relationships

between these sets of fundamentals and the definition governing the game form all are of the

exact same form. Not only are the games the players consider of the same form, the games

they perceive other consider are of the same form and all these coincide with the modeler’s

game form. This is not a minor issue since, at least in economics, since one might consider

it desirable that a model used in describing or predicting behavior will not be at odds with

its own predictions if the modeled players themselves were to use the exact same modeling

approach. When one begins with an abstract modeler type space alone, it is not a priori

clear whether this property holds.

We describe a type space representation for normal form games with unawareness with

two players that are aware of each other. The generalizations are later described. The type

space representation is defined as a product T1 × T2 × λ and mappings τ1, G1, τ2, G2 such

that for i ∈ {1, 2} and j 6= i we have: Ti is player i’s type space, Λ is a set of normal form

games, τi : Ti → Tj and Gi : Ti → Λ. Hence, each ti ∈ Ti, is mapped to a member τi(ti) ∈ Tj
and a game Gi(ti) ∈ Λ.

We now add the conditions that correspond to conditions C1-C4 for the type space

representation. Condition C1 will be represented by the requirement that the game Gi(ti)

is a two person game played by i and j. Condition C3 will hold immediately from the type

space representation. Condition C4 holds for this specific case where there is no unawareness

15



of players. For condition C2 we will require that the game Gj(τi(ti)) is obtained from the

game Gi(ti) by (at most) eliminating pure strategies.

We need to show that every game with unawareness corresponds to a hierarchy of some

type space and mappings which satisfy the above conditions and that for every type space

with mappings as above we have that every pair of types generates a hierarchy that cor-

responds to a game with unawareness. The first part will be shown when we discuss

the canonical representation of games with unawareness later on. The second part fol-

lows from noting that for a given type ti, we can define the following hierarchy of games

Gi(ti), Gj(τi(ti)), Gi(τj(τi(ti))), ..., which corresponds to the view i, iˆj, iˆjˆi, ... respectively.

For every pair of types t1, t2 we define G∅ as the game that contains the union of pure strate-

gies of G1(t1) and G2(t2) (choosing arbitrary payoffs when not determined by G1 or G2). We

define the games for all views by extending the above inductively so that Gvˆvˆv̄ = Gvˆvˆvˆv̄

and we have a game with unawareness satisfying C1-C4.

This equivalence extends to more than two players without any change in conditions.

For the case where players may be unaware of other players we need to modify τi so that it

does not necessarily map to a type profile of all other players, but only the players that the

specific type ti is aware of. Similarly, Gi(ti) will include exactly the players that τi(ti) maps

to in addition to player i herself. Finally, we require that for a player j in Gi(ti) the game

Gj(τi(ti)) is obtained from Gi(ti) by at most eliminating actions and players and preserving

the payoff condition as in condition C4. Thus, the resulting type space and mappings will

represent all normal form games with unawareness. Note that while the representation has

a fairly simple space structure, the set of fundamentals considered by different types (even

of the same player) can be quite different.

For the most part a compact representation of a game with unawareness can be produced.

For example, in the first example in the introduction Alice and Bob are both aware that the

game is as in (1), but Alice thinks that Bob is unaware of one of her actions and considers

the game as in (2). Bob actually realizes that Alice attributes to him this restricted view.

The representation of this game with unawareness can be collapsed to three states {x, y, z},
two states x, y corresponding to (1) and the state z to (2). Alice is unaware of the actual

state x, at state x she considers state y to be the actual state, at state y Bob would consider

state z to be the actual state and he would be unaware of state y. Hence, Alice thinks

Bob views the game as (2) while Bob realizes this and actually views the game as (1). For

the seminal formal treatment of interactive unawareness and in particular the relationship

between models (state space formulation) and the syntax of hierarchies see Fagin and Halpern

(1988).
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2.3 Repeated Games with Unawareness

Repeated games introduce a dynamic environment where the restricted view of the players

may change as the games unfolds. Their view may be widened from directly observing

behavior they previously did not consider, from reflecting about behavior, or any other

means of discovery. A view can also dynamically narrow from forgetfulness, or by deeming

some aspect of the game irrelevant at some point.

As with the normal form games, we consider a collection of repeated games corresponding

to relevant views – sequence of viewpoints. This time, however, a player’s limited view may

depend on the period in which the game is played and, most importantly, it may also depend

on the history of play that this player observed. Hence, the collection of potential viewpoints

includes every player at every period conditional on every possible history of actions by a

subset of players.

We define repeated games with unawareness as a collection of standard repeated games

satisfying the four consistency conditions as above. The first condition accommodates the

added dynamic constraint on relevant viewpoints which now refer to specific histories. For

example, if Bob cannot reason about a certain action in the first period of the repeated game,

he cannot reason in this first period about his, or Alice’s, reasoning in the second period

conditional on this action being taken. As such, the viewpoint after the action has occurred

is not relevant for views that do not consider that action possible. The third condition is

modified to allow for imperfect monitoring and forgetfulness. In these cases a player may

not be aware of, or remember, the history of play which requires a modification of the self

awareness condition. The other two conditions remain intact.

Let G(T ) denote the T ≥ 1 repeated game with a stage game G = (I,
∏

i∈I Ai, {ui}i∈I)
and payoffs determined by the sum or average of the stage game payoffs (similarly we can

consider the infinitely repeated δ-discounted games G(δ)). Let ht(J) = (a1, ..., at) denote

a history of (restricted) action profiles in the first t periods where for every s we have

as ∈
∏

i∈J Ai. Hence as is the action profile for the given subset J ⊂ I. We denote

by Ai(h
t(J)) the actions taken by i along the history ht(J) assuming i ∈ J , i.e. the set

{asi |s = 1, ..., t}. Let H = {ht(J)|t = 0, 1, ..., T − 1 and ∅ 6= J ⊂ I} be the set of all histories

up to length T − 1 with h0(J) = ∅ for all J .

Each player after each history of play of a subset of players constitutes a possible view-

point. The set of possible viewpoints is defined as the collection V = {(ht(J), i)|ht ∈ H, i ∈
I, ∅ 6= J ⊂ I}, i.e. it is each player’s view of the game as a function of the history at the

time of observation when considering some of the players in the game. As before, a typical

viewpoint is denoted by v ∈ V .

The set of all finite sequences of viewpoints denoted V =
∞⋃
n=0

V (n) with V (n) =
∏n

j=1 V
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and the convention V (0) = ∅. As before a finite sequence of viewpoints v = (v1, ..., vn) is

associated with a repeated game Gv(T ) = (Iv,
∏

i∈Iv (Ai)v, {(ui)v}i∈Iv) where Iv is the set of

players that v1 finds that v2 finds that ... that vn is considering, and similarly for the sets

of actions (Ai)v and payoffs (ui)v defined for the stage game with action profiles
∏

j∈Iv (Aj)v

and repeated T times.

Definition 2 A collection Γ = {Gv(T )}v∈V where Gv(T ) are repeated games and V ⊂ V is

a set of relevant views is called a repeated game with unawareness if the following properties

hold:

CR1 For every v ∈ V , v = (ht(J), i) we have

vˆv ∈ V if and only if i ∈ Iv, J = Iv, Aj(h
t(J)) ⊂ (Aj)v for all j ∈ J (10)

The viewpoints that are considered relevant from the view v are exactly those that correspond

to players and histories taken from the stage game Gv(T ).

CR2 For every vˆṽ ∈ V we have

v ∈ V (11)

and

∅ 6= Ivˆṽ ⊂ Iv (12)

as well as

∅ 6= (Ai)vˆṽ ⊂ (Ai)v (13)

for every i ∈ Ivˆṽ.

CR3 If vˆvˆv̄ ∈ V where v = (ht(J), i) then there exists some ṽ = (h̃t(J̃), i) such that

Gvˆvˆv̄(T ) = Gvˆvˆṽˆv̄(T ) = ... = Gvˆvˆṽˆ...ˆṽˆv̄(T ) (14)

and vˆvˆṽˆ...ˆṽˆv̄ ∈ V .

This refines condition C3 by allowing a viewpoint to consider itself with respect to the

histories it can reason about. While a view v may consider v = (ht(J), i) because the

view finds the history ht(J) possible, it will recognize that the decision maker i may not be

aware of this history due to imperfect monitoring or forgetfulness. Hence, he might associate

himself with other viewpoints such as ṽ = (h̃t(J̃), i).
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CR4 For every action profile (a)vˆṽ = {aj}j∈Ivˆṽ
there exists a completion to an action

profile (a)v = {aj, ak}j∈Ivˆṽ ,k∈Iv\Ivˆṽ
such that

(ui)vˆṽ((a)vˆṽ) = (ui)v((a)v) (15)

The dynamic features of repeated games with unawareness prompt us to consider the

properties that relate a player’s past and present views. For example, we can consider the

assumption that once a player is aware of an action he remembers it and remains aware of

it in his future viewpoints. Such a property would suggest a possible explanation for the

notion of experience, as more experienced players consider larger, more elaborate, games.

To quote Alvin Roth: ”One of the most general things that experiments demonstrate is that

subjects adjust their behavior as they gain experience and learn about the game they are

playing and the behavior of other subjects.” (Roth 1995 p.327).

Memory For v = (i1(ht1), ..., ik(htk), ..., in(htn)) and ṽ = (i1(ht1), ..., ik(htk+l), ..., in(htn))

where htk+l is a continuation of htk and such that v, ṽ ∈ V we have that αv ⊂ αṽ.

Memory assumes that awareness is monotonic, in the sense that what a player (ik) is

aware of after a history (htk) he will still be aware of after some continuation of the

game. This property states that a player remembers not only actions but also what he

was aware of others’ awareness, and it also assumes that others are aware the player

remembers. Our results hold both with and without this assumption.

To get a better feel for the potential complexity of repeated games with unawareness

consider the game depicted in Figure 1 repeated twice. In period 1 Alice and Bob are

viewing each others perception at the current period as before: Alice and Bob are aware of

the actions {a1, a2, a3, b1, b2, b3}, and Alice perceives that Bob is unaware of her action a3,

i.e. she views him as viewing the game as depicted in Figure 2 as in our original example.

But how Alice views (at either period) the viewpoint of Bob in period 2 will depend on

the realization of play in period 1. If Alice played a3 in period one, she may safely assume

that Bob will remember this action and she will attribute to him the awareness he actually

already has. Moreover, if Bob plays b3 in the first period, Alice might deduce that Bob must

have been aware of a3 in the first period (and if he remembers, in the second period as well)

even if she did not choose a3 in the first period. Hence, Alice’s perception of Bob’s awareness

may change not only from the revelation of actions that were considered secretive, but also

from behavior that may best be explained by a different scope of awareness Alice should

attribute to Bob. In particular, Alice here may realize that her perception was limited (she

did not consider Bob considering a3) and revise her perception. In this case, Alice may
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actually reason at period 1 about how she would reason in period 2 about Bob’s reasoning in

period 1 if she observes b3. The important feature of the game form illustrated here is that

the choice of relevant views may depend on how perception changes with observed behavior

– a choice we usually associate with a solution manifests here in the game form. For more

on this game and how communication impacts strategic interaction with unawareness see

Feinberg (2007).

2.4 Incomplete Information Games with Unawareness

Incomplete information games with unawareness allow us to model uncertainty about the

awareness of players in addition to uncertainties about the payoffs as well as high order

uncertainties about both. They also allows us to model views that do not consider all

possible types. As with other game forms we begin with the modeler’s view which begins

with a standard Bayesian game with a prior G(B) = (I,
∏

i∈I Ai,Θ0 ×
∏

i∈I Θi, P, {ui}i∈I)
where I is a finite set of players, Ai is player i’s finite actions set, Θ = Θ0 ×

∏
i∈I Θi is a set

of type profiles where Θi is the set of player i’s types and Θ0 is the set of states of nature,

the ui’s are the players’ utilities defined for a realization of Θ and action profiles, and P is a

probability distribution over Θ. The distribution P is the probability over the type profiles

as seen by the modeler. Recall that in a standard incomplete information game each type has

a distribution over the other players’ type profiles. This will be captured in our setting when

we describe the game as viewed by each type which will include a probability distribution

corresponding to that type’s beliefs.

The set of viewpoints is the set of all possible types V =
⋃
i∈I Θi and a typical view-

point is denoted by v = θi ∈ V . The set of all finite sequences of viewpoints is V =
∞⋃
n=0

V (n). A finite sequence of viewpoints v = (v1, ..., vn) is associated with a game Gv(B) =

(Iv,
∏

i∈Iv (Ai)v, (Θ0)v×
∏

i∈Iv(Θi)v, Pv, {(ui)v}i∈Iv) where Iv is the set of players that v1 finds

that v2 finds that ... that vn is considering, and similarly for the sets of actions (Ai)v, states

of nature (Θ0)v, types (Θi)v, with Θv = (Θ0)v ×
∏

i∈Iv(Θi)v, the distribution Pv over the

viewed type space Θv =
∏

(Θ0)v
∏

i∈Iv(Θi)v, and payoffs (ui)v defined for the viewed states of

nature, types and action profiles (Θ0)v ×
∏

i∈Iv(Θi)v ×
∏

j∈Iv (Aj)v. The conditions defining

the extension to unawareness are almost identical to those used for the normal form games.

Definition 3 A collection Γ = {Gv(B)}v∈V where Gv(B) are games as above and V ⊂ V is

a set of relevant views is called an Incomplete Information Game with unawareness if the

following properties hold:
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CI1 For every v ∈ V , v = θi ∈ Θi we have

vˆv ∈ V if and only if i ∈ Iv, θi ∈ (Θi)v (16)

CI2 For every vˆṽ ∈ V we have

v ∈ V (17)

and

∅ 6= Ivˆṽ ⊂ Iv (18)

as well as

∅ 6= (Θi)vˆṽ ⊂ (Θi)v (19)

∅ 6= (Θ0)vˆṽ ⊂ (Θ0)v (20)

∅ 6= (Ai)vˆṽ ⊂ (Ai)v (21)

for every i ∈ Ivˆṽ.

CI3 If vˆvˆv̄ ∈ V we have

Gvˆvˆv̄(B) = Gvˆvˆvˆv̄(B) (22)

and vˆvˆvˆv̄ ∈ V .

CI4 For every state (nature and type profile) and action profile pair (θ, a)vˆṽ ∈ (Θ0)vˆṽ ×∏
i∈Ivˆṽ

(Θi)vˆṽ ×
∏

j∈Ivˆṽ
(Aj)vˆṽ there exists a completion to a pair (θ, a)v ∈ (Θ)v ×∏

j∈Iv(Aj)v that agrees with the appropriate coordinates of (θ, a)vˆṽ such that

(ui)vˆṽ((θ, a)vˆṽ) = (ui)v((θ, a)v) (23)

Note that the notion of a type in an incomplete information game with unawareness differs

from a type in a standard incomplete information game. The difference is that the beliefs

a type has over the type space (as he perceives it) need not be held in common knowledge.

Moreover, types are allowed to perceive different type spaces. For example, a type θi may

have a belief Pθi yet type θj may conceive type θi’s belief to be different, Pθjθi 6= Pθi and

even defined on a different space.
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It is natural to ask whether an analog to Harsanyi’s consistency condition – the common

prior assumption – can be found for these games with unawareness. The obvious prior

candidate is the modeler distribution P = P∅, however, since a type θi may be unaware of

the whole space Θ his distribution Pθi may be defined on a different set of types (Θ)(θi), and

if θi is unaware of some players then (Θ)(θi) may not be a subset of Θ but rather a subset of

a projection. Although this implies that Pθi cannot be merely a conditional of P it indicates

that a projection of the prior might do. Letting Pθi be exactly the conditional probability

over Θ(θi) of the marginal of P with respect to Θ0×
∏

j∈Iθi
Θj, and extending this definition

to iterated relevant views provides a candidate for an extended common prior condition.

Definition 4 We say that consistency (in the sense of Harsanyi) holds for an incomplete

information game with unawareness if for every relevant vˆṽ ∈ V we have

Pvˆṽ = Marg
(Θ0)v×

∏
j∈Ivˆṽ

(Θj)v

Pv | (Θ0)vˆṽ ×
∏
j∈Ivˆṽ

(Θj)vˆṽ. (24)

Copic and Galeotti (2007) have independently modeled incomplete information games

with unawareness in a similar manner. The difference is that they consider players and

actions as commonly known and modeled unawareness of types and their beliefs. While our

model above is more general, we find it reassuring that the structure of the two definitions

is essentially the same.

2.5 Dynamic Games with Unawareness

The most general games we consider are dynamic games – extensive form games. This

game form captures both uncertainties and dynamics. A dynamic game is composed of a

game tree capturing decision points, actions, nature moves, information sets, probabilities

for nature moves and payoffs. An extensive form game is denoted G(D) = ((W,≺), I, A0 ×∏
i∈I Ai, {Fi}i∈I , P, {ui}i∈I) where (W,≺) is a finite tree (infinite dynamic games vary in

definition and unawareness can be extended accordingly) with a disjoint union of vertices (a

partition) W = V0 ∪
⋃
i∈I Vi ∪ Z where V0 is the set of natures moves, Vi denotes the set of

player i’s decision points and Z is the set of terminal vertices and the order w′ ≺ w denotes

that w′ occurs before w on the tree.

Denote by Pred(w) and Succ(w) the (immediate) predecessor, and respectively successor,

of w – formally it is the maximal vertex smaller than w and the minimal larger than w

respectively. A pair e = (w, Succ(w)) of a vertex and its successor is called an edge and the

set of edges emanating from w is denoted E(w). We assume that every two vertices in the

tree are connected with a finite path – a finite sequence of edges. Hence, every vertex has a
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(single) predecessor except for the root that has none and the set of terminal vertices Z ⊂ W

is the set of vertices that have no successor. The set of players is I. An edge e = (w,w′)

belongs to player i, resp. Nature, when w ∈ Vi, resp. w ∈ V0. The mappings Ai(w,w
′) are

defined for player i’s edges, w ∈ Vi, w′ = Succ(w), (A0(w,w′) when (w,w′) is a nature move)

and associate an action with each edge in E(w). The partitions Fi of the sets Vi correspond

to the information sets of player i and fi(w) ∈ Fi denotes the partition member containing

a vertex w ∈ Vi. We require that for every w the function Ai(w, ·) of the successors of w is

one to one, that for every pair w 6= w′ the set of values that Ai(w, ·) and Ai(w
′, ·) obtain are

disjoint unless w′ ∈ fi(w) ∈ Fi in which case they are identical. The mapping P associates a

probability distribution over the edges following each of nature’s vertices. For every w ∈ V0

we denote by P (w) the probability distributions over E(w). Finally, ui : Z → R are the

utilities of players defined for terminal vertices.

The set of viewpoints is the players’ set of decision points V =
⋃
i∈I Vi and a typical

viewpoint is denoted by v. The set of all finite sequences of viewpoints is V =
∞⋃
n=0

V (n). A

finite sequence of viewpoints v = (v1, ..., vn) is associated with a dynamic game Gv(D) =

((Wv,≺), Iv, (A0)v×
∏

i∈I(Ai)v, {(Fi)v}i∈Iv , Pv, {(ui)v}i∈Iv) where Wv = (V0)v∪
⋃
i∈Iv(Vi)v∪Zv

and similarly for all other ingredients of the game in accordance with the description above.

We use the same ordering ≺ since Wv will be subsets of W .

Definition 5 A collection Γ = {Gv(D)}v∈V where Gv(D) are games as above and V ⊂ V is

a set of relevant views is called a Dynamic Game with unawareness if the following properties

hold:

CD1 For every v ∈ V , v ∈ Vi we have

vˆv ∈ V if and only if i ∈ Iv, v ∈ (Vi)v (25)

CD2 For every vˆṽ ∈ V we have

v ∈ V (26)

∅ 6= Wvˆṽ ⊂ Wv (27)

∅ 6= Ivˆṽ ⊂ Iv (28)
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as well as for all i ∈ Ivˆṽ, w ∈ (Vi)vˆṽ

(Vi)vˆṽ = (Vi)v ∩ (Wvˆṽ \ Zvˆṽ) (29)

(V0)vˆṽ = (V0)v ∩ (Wvˆṽ \ Zvˆṽ) (30)

(Fi)vˆṽ = {f ∩ (Wvˆṽ \ Zvˆṽ)|f ∈ (Fi)v} (31)

and

(Ai)vˆṽ(w,w
′) = (Ai)v(w,w

′′) (32)

for the unique successor w′′ of w in Wv such that w′′ � w′, where w′ is the successor

of w in Wvˆṽ.

CD3 If vˆvˆv̄ ∈ V with v ∈ Vi then we have fi(v)∩(Vi)vˆv 6= ∅ and for every ṽ ∈ fi(v)∩(Vi)vˆv

we have

Gvˆvˆv̄(T ) = Gvˆvˆṽˆv̄(T ) = ... = Gvˆvˆṽˆ...ˆṽˆv̄(T ) (33)

and vˆvˆṽˆ...ˆṽˆv̄ ∈ V .

The third condition for dynamic games first states that a viewpoint must consider its infor-

mation set to be relevant. Moreover, the viewpoints it considers in its information set are

assumed to find themselves relevant and model the game in the same manner. Otherwise, a

player at an information set would be able to distinguish decision points based on differing

views at the decision points.

CD4 Let vˆv̄ ∈ V . For every terminal vertex w ∈ Zvˆv̄ there exists a vertex w′ ∈ Zv such

that w ≺ w′ and

(ui)vˆv̄(w) = (ui)v(w
′) (34)

As with incomplete information games we did not constrain the subjective probabilities

that a viewpoint, or a view, associates with nature moves. If a restricted view of the game

omits some nature moves one may still impose an analog for common priors:

Definition 6 We say that Harsanyi consistency holds for a dynamic game with unawareness

representing an incomplete information game with unawareness, if for every relevant v ∈ V
we have at every w ∈ (V0)v that

Pv(w) = P (w)|Ev(w). (35)
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We note that the definition of condition CD3 is stronger than the repeated games version

CR3 as it requires that a viewpoint not only see itself as a viewpoint in the same informa-

tion set and agree with it, but also that it will agree with all its viewpoints in the restricted

information set. This definition follows the interpretation of an information set as repre-

senting indistinguishable information and indistinguishable awareness. We did not specify

the monitoring in repeated games with unawareness, or any other notion of information set,

allowing for imperfect monitoring and forgetfulness hence the more general allowance for a

player reasoning about her information there.

Our main structural result states that games with unawareness are consistent in the sense

that from every view the game is seen as a game with unawareness satisfying the exact same

conditions as the modeler’s game.

Consider a game with unawareness Γ = {Gv(·)}v∈V where Gv(·) has one of the four forms:

normal, repeated, incomplete information or dynamic. For every relevant v ∈ V we define

the relevant views as seen from v as: Vv = {ṽ ∈ V̄ |vˆṽ ∈ V}. For each relevant view ṽ ∈ Vv

we define the game Gv
ṽ(·) = Gvˆṽ(·) and the game with unawareness as seen from v is defined

as Γv = {Gv
ṽ(·)}ṽ∈Vv .

Proposition 1 For every game with unawareness Γ with a relevant view v ∈ V the game

Γv is a game with unawareness with relevant views Vv.

The proof of this as well as all other propositions in this paper appears in the Appendix.

We note that this game form allows for imperfect recall, i.e., players may not only discover

aspects of the game they were not aware of, they can also forget past actions. If one would

rather maintain perfect recall two extra conditions are required. First the actual game with

all the players and actions must be a game of perfect recall. Furthermore, at every decision

point a player must consider a game that includes the game they considered in the past, i.e.,

no player may have their view of the game contract over time. Imposing the latter condition

on higher order views (everyone views everyone’s view ... to include all past views) will allow

the conditioning on perfect recall at any reasoning level. Note that this condition still allows

a player to revise their view of what other players view of the game is. For example, Alice

can observe an action by Bob that may lead her to think that Bob is less aware than she

previously thought. This does not imply that she believes Bob forgot, it is a revision of

Alice’s view of Bob’s view at a given decision point for Bob. Once she revises this view, she

may well assign a restricted view for Bob in future decision points. Still, she will assume

that Bob has perfect recall as she revises all of his view to be more restrictive.
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3 Solutions for Games with Unawareness

In defining solution concepts for games with unawareness we follow the same principle used

in constructing the games: Each relevant view considers equilibrium behavior in a manner

consistent with the modeler’s definition of equilibrium behavior. There are some degrees of

freedom when taking this approach. Obviously, one needs to select the solution concept for

standard games whose behavior is being generalized, moreover, there may be some flexibility

in the extension of behavior to games with unawareness. The first solutions we analyze are

Nash equilibrium (NE) and Rationalizability (R) for normal form games with unawareness.

The definition and analysis of some solutions for the other game forms follow.

3.1 Rationalizability and Nash Equilibrium in Normal Form Games

with Unawareness

In order to define the solutions for games with unawareness we need to associate behavior

with each possible view.

Definition 7 Let Γ = {Gv}v∈V be a normal form game with unawareness. An extended

strategy profile ESP in this game is a collection of strategy profiles {(σ)v}v∈V where (σ)v is

a strategy profile in the game Gv such that for every vˆvˆv̄ ∈ V we have

(σv)v = (σv)vˆv (36)

in the sense that the same pure strategies are assigned the same probabilities in the two games

Gv and Gvˆv, as well as

(σ)vˆvˆv̄ = (σ)vˆvˆvˆv̄ (37)

The first condition requires that the strategy that the view v associates with player v in

the game Gv is the same strategy that the view v finds the player playing in the game as he

sees it, i.e. in the game Gvˆv. The interpretation is that whenever a strategy is assigned to a

player the player is indeed assumed to be playing the strategy. The second condition follows

the same logic behind condition C3 in stating that the behavior associate by a player to the

games he views is identical to the behavior he reasons about himself associating to games,

and that this principle holds from every view. In other words, Bob’s strategy associated with

the game that Alice perceives that Bob perceives is the strategy that Bob is assumed to play

in the game as Alice perceives it. In addition Bob’s view of his own view of the strategy

coincides with his view of the strategy and this is commonly understood at every view.

It is worthwhile noting that the definition of an extended strategy restricts the behavior

of players to actions they are aware of. In the definition of a game with unawareness we
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allowed the possibility that a player may have an action he is unaware of, i.e. a view v may

perceive a player v as having an available action a, i.e. a ∈ (Av)v, while at the same time

v may perceive that v is unaware of a, i.e. a /∈ (Av)vˆv. In this case the right-hand side of

(36) is defined on a strictly smaller set of actions and we assume that the right-hand side

support is in that set, hence the ESP is defined such that (σv)v assigns 0 probability to the

pure strategy a when the player is unaware of it.

We begin by defining rationalizability in games with unawareness. As expected, rational-

izability corresponds to playing a best response in the perceived game to perceived strategies

that are themselves best responses in how it is perceived the corresponding players view the

game, and so on. This extends rationalizability from normal form games to normal form

games with unawareness.

Definition 8 An ESP {(σ)v}v∈V in a game with unawareness is called extended rational-

izable if for every vˆv ∈ V we have that (σv)v is a best response to (σ−v)vˆv in the game

Gvˆv.

The principle governing the extension of NE to games with unawareness follows the epis-

temic foundation of the solution concept. A Nash equilibrium requires rationalizability –

players play a best response to conjectures, and some form of truth – knowledge of conjec-

tures, or agreement on strategies. These correspond in our setting to strategies that are best

responses at every view, and to strategies that coincide when the views of the game coincide,

respectively. The first property corresponds to rationality in the sense of playing a best re-

sponse to conjectures. The second property requires that the conjectures, or best responses,

are the same when reasoning about the same game. In other words, when players have the

same perceptions about the game (with unawareness) they share the same conjectures on

behavior – agreement on strategies.

For a game with unawareness two views v, v̄ share the same perception of the game if

they agree on how all other views consider the game, i.e. they consider the same game with

unawareness Γv = Γv̄.

Definition 9 An ESP {(σ)v}v∈V in a game with unawareness is called an extended Nash

equilibrium ENE if it is rationalizable and for all v, v̄ ∈ V such that Γv = Γv̄ we have that

(σ)v = (σ)v̄.

Note that an ENE assigns the same behavior in games corresponding to the concatenation

of views once the perceptions of the game coincide, .i.e., Γv = Γv̄ implies that for all ṽ such

that vˆṽ ∈ V we have (σ)vˆṽ = (σ)v̄ˆṽ. This follows from noting that Γv = Γv̄ implies that

(Γv)ṽ = (Γv̄)ṽ.
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We justify the use of the term “extended” with the following result. This result states

that when all views see the game in the exact same manner – there is no unawareness – then

the extended solutions coincide with their standard counterparts for the normal form game

at hand. More generally, at every view such that the game is seen to have no unawareness

the extended solution coincides with the standard one.

Proposition 2 Let G be a normal form game and Γ a normal form game with unawareness

such that for some v ∈ V we have Gvˆv̄ = G for every v̄ such that vˆv̄ ∈ V. Let σ be a

strategy profile in the normal form game G then

1. σ is rationalizable for G if and only if (σ)v = σ is part of an extended rationalizable

profile in Γ.

2. σ is a NE for G if and only if (σ)v = σ is part of an ENE for Γ and this ENE also

satisfies (σ)v = (σ)vˆv̄.

While a game with unawareness may correspond to an infinite collection of games, the

structure does support the existence of an equilibrium:

Proposition 3 Every normal form game with unawareness has an ENE. Hence, the weaker

extended rationalizability solution is also non-empty.

Condition C2 guarantees that every view of how a viewpoint perceives the game is a

restriction of the original view of the game. However, a game with unawareness Γ may still

incorporate an infinite number of differing views of the game with unawareness, i.e. the set

of games with unawareness {Γv}v∈V could have an infinite number of distinct members:

Example 1 Consider three players denoted 1, 2, 3 and let G be a normal form game where

player 1 has three actions and players 2 and 3 have a single actions each. Let F be a normal

form game obtained from G by removing one of player 1’s actions, and let E be a normal

form game obtained from F by removing one of the two remaining actions of player 1. We

define the game with unawareness Γ as follows.

All views are relevant, i.e. V = V̄ . Consider a view v = v1, v2, ..., vn such that vi 6= vi+1.

It suffices to define Gv for such views since Gv′ for a view v′ with consecutive vi is uniquely

derived according to C3.

Define for every prime p > 2

v′p = 1, 2, 1, 2, ..., 1, 2, 1︸ ︷︷ ︸
p

, 3 (38)

v′′p = v′pˆv
′
p = 1, 2, 1, 2, ..., 1, 2, 1︸ ︷︷ ︸

p

, 3, 1, 2, 1, 2, ..., 1, 2, 1︸ ︷︷ ︸
p

, 3 (39)
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For v with no consecutive identical viewpoints we define:

Gv =


E v = v′′pˆṽ for some prime p > 2 and some view ṽ

F if Gv is not defined above and v = v′pˆṽ for some prime p > 2 and view ṽ

G otherwise.

 .

(40)

For v with consecutive identical viewpoints we define Gv to be the same as the view obtained

by replacing each string of consecutive identical viewpoints with a single representative.

Claim 4 Γ is a normal form game with unawareness.

To prove this claim we need to show that Γ = {Gv}v∈V̄ satisfies the conditions of a

game with unawareness. Since for v with some consecutive identical viewpoints we define

Gv according to C3 this condition holds by definition. Since all players participate in all

games we have that all views are relevant and condition C1 holds as well. Similarly, since all

players participate in each of the viewed games, the payoffs are well defined and condition

C4 holds as well. Similarly, parts (4) and (5) in condition C2 hold. It remains to show

that (6) holds, or in other words, whenever Gvˆv̄ = F then Gv 6= E and that whenever

Gvˆv̄ = G then Gv = G. As before, we can assume that v, vˆṽ have no consecutive identical

viewpoints. In the first case, if by way of contradiction Gv = E then there is a prime p > 2

and some ṽ such that v = v′′pˆṽ. In particular, vˆv̄ = v′′pˆ(ṽˆv̄) which implies that Gvˆv̄ = E

– a contradiction. In the second case, we have that if Gv 6= G then v = v′pˆṽ for some prime

p > 2 and view ṽ (note that this holds whether Gv equals F or E). Hence vˆv̄ = v′pˆṽˆv̄

and we must have Gv′pˆṽ 6= G which completes the proof that Γ is a well defined normal form

game with unawareness.

Claim 5 The set of normal form games with unawareness {Γv′p}p>2 prime are all different.

The proof of this claim follows from observing that for every prime p > 2 we have that

G
v′p
v = F for v = ∅, v = 1, v = 12, ..., v = 121...21︸ ︷︷ ︸

p

and G
v′p
v′p

= G. Hence for all prime q such

that q > p we have that G
v′q
v′p

= F 6= G
v′p
v′p

which implies that every member of the set differs

from all the following members assuring that no two members coincide.

Claim 5 emphasizes that the existence of an ENE follows from the fact that at each view

each viewpoint is considered as playing a best response to strategies in some finite game, so

although we have an infinite number of games (one for each view) the fixed point conditions

are satisfied since payoffs for each view are determined in a finite game. However, we would

like to study conditions under which the normal form game with unawareness is finite, in the

sense that there is only a finite set of games with unawareness associated with the views in
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the game. This is particularly important if one wishes to represent the game in a state space

approach with a finite set of states. The following results demonstrates such a condition.

Consider a view v = (v1, ..., vn) ∈ V̄ , each view v′ = (vk1 , ..., vkm)) with 1 ≤ k1 < ... <

km ≤ n is called a sub-word of v and we denote the order induced by sub-words as v′ � v.

The stronger version of condition C2 is stated as follows:

S-C2 For every v ∈ V we have that for every v′ � v

v′ ∈ V (41)

and

∅ 6= Iv ⊂ Iv′ (42)

as well as

∅ 6= (Ai)v ⊂ (Ai)v′ (43)

for all i ∈ Iv.
We have

Proposition 6 If a normal form game with unawareness Γ satisfies condition S-C2 then

the set of games with unawareness {Γv}v∈V is finite.

Condition S-C2 is quite strong as it requires that if Alice models Bob’s perception

of Carol reasoning about some action then Bob’s model of the game must indeed include

Carol’s reasoning about that action. Furthermore, Alice model of Carol ’s perceptions of

the game must assume that Carol is reasoning about this action. The interpretation of this

condition is that the players do not “get it wrong”, in the sense that when they reason about

someone else’s perception they cannot attribute to that person an ability that he does not

actually posses. While we do not advocate setting condition S-C2 on the same level as the

more intuitive assumption C2, we point out that our introductory examples do satisfy this

condition. We note that condition S-C2 also implies that if two views of the game see it as

a standard game with no unawareness, then it must be the same standard game:

Proposition 7 For a normal for game with unawareness Γ which satisfies condition S-C2

and such that Γv and Γv
′

are both standard games with vˆv′, v′ˆv ∈ V, we have that Γv = Γv
′
,

and in particular we have the same ENE behavior in both.

We point out that even with condition S-C2 the length of views at which there is a

change of the perception of the game need not be bounded.
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Example 2 Consider three players denoted 1, 2, 3 and let G be a normal form game where

player 1 has two actions and players 2 and 3 have a single action each. Let F be a normal

form game obtained from G by removing one of player 1’s actions. We define the game with

unawareness Γ as follows.

All views are relevant, i.e. V = V̄ . For a view v = v1, v2, ..., vn such that for all i we

have vi 6= 3 we define Gv = G and otherwise we set Gv = F .

We leave it to the reader to check that the example satisfies all required conditions and note

that for any view v that does not contain player 3 the consideration of that player changes

the game, i.e. Gv 6= Gvˆ3.

We conclude this section with the observation that any NE of a standard game G such

that all its actions are held in common awareness, corresponds to an ENE of the normal

form game with unawareness. The definition of an ENE readily implies:

Claim 8 Let Γ be a normal form game with unawareness with G∅ = G. Assume that σ is a

NE of G and that every action in the support of σ is held in common awareness, i.e., every

view finds all the players in G and the actions in the support of σ to be part of the game,

then (σ)v = σ for all v is an ENE.

3.2 Representing Games with Unawareness as Games with Incom-

plete Information

The definition of a game with unawareness maps the strategic situation to a collection of

standard games – associating one standard game with each possible relevant view of the

situation. On the other hand the notion of unawareness or, ”leaving some aspect out of the

modeled game”, begs the comparison to the notion of assigning zero probability to an event.

While unawareness has some particular restrictions when it comes to iterated reasoning, it

is natural to ask why a novel structure is required, why not represent situations with un-

awareness in incomplete information games with zero probabilities replacing unawareness.

Indeed, such a construction is feasible, moreover there is a canonic mapping of normal form

games with unawareness to standard games with incomplete information – canonic in the

sense that varying the payoffs in the game, renaming actions, or players, does not alter

the state space under this mapping. We provide this mapping below. Furthermore, the

extended rationalizable solution exactly coincides with Bayesian Nash equilibria under this

mapping. However, it does not preserve is the extended Nash equilibrium. Hence, while nor-

mal form games with unawareness can be mapped to corresponding games with incomplete

information, Nash equilibrium reasoning in games with unawareness requires some additional

structure without which it differs from the solutions of incomplete information games.
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With respect to the other forms of games with unawareness the imbedding becomes more

complicated, but not impossibly so. For example, incomplete information games with un-

awareness can be mapped to standard incomplete information games, yet the problem of

mapping the solutions of the unawareness form becomes more severe. The reason is that be-

havior in incomplete information games with unawareness distinguishes between probability

zero and unawareness, a distinction that disappears in the representation with games with

incomplete information. Since our solution dictates behavior with characteristics unique to

unawareness the elimination of this distinction in the standard incomplete information form

hinders the reproduction of the solution to games with unawareness. Similar difficulties

arise when trying to imbed dynamic and repeated games with unawareness which require

the combination of extensive and incomplete information games.

Consider a normal form game with unawareness Γ = {Gv}v∈V with a set of relevant

views V with G∅ = G = (I,
∏

i∈I Ai, {ui}i∈I). We define the following I-player incomplete

information game GBayesian game = (I,
∏

i∈I Ai,Θ0 ×
∏

i∈I Θi, {Pi}i∈I , {ui}i∈I) where Ai agree

with the game G, Θ0 = V =
∞⋃
n=0

I(n), for every i ∈ I the players types are defined by Θi =

{vˆi|v ∈ V }, the players beliefs are Pi(vˆi, (vˆiˆj)j∈I |vˆi) = 1 hence all other (ṽ, (v̄jˆj)j∈I)

are assigned zero probability by the type vˆi. Finally, the payoffs ui are defined as

ui((v, (ṽjˆj))j∈I)((aj)j∈I) =

{
(ui)v when (aj)j∈I are an extension where (ui)v is defined

−∞ otherwise.

(44)

where (ui)v are the payoffs to i as defined in Gv. Note that the payoffs are determined by the

state of nature in Θ0 and that, following Harsanyi, we set the payoffs for actions that are not

modeled in Gv at −∞. We also emphasize that this mapping is not one to one since a game

with unawareness where a player has a single action according to some view v is mapped to

the same game as a game with unawareness for which at the same view v the player with

the single action is not part of the description of the game and the payoffs are determined

according to the single action, yet this minute difference has no impact on behavior.

An equivalent representation of a normal form game with unawareness can be provided

via a formulation where the set of states is V and each player possesses an information

partition of the state space. For every player i and every v ∈ V the player’s partition

member includes two states v, vˆi and player i assigns the probabilities 0 and 1 to the

two states respectively. This corresponds to the above game in that it adds a partition, but

preserves all probabilities. This mapping also provides a graphic representation of games with

unawareness which is depicted in Figure 4. The tree representation indicates the relationship

dictated by the second condition (for each game form) where the arrow from a view v to
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Figure 4: Representing Games with Unawareness.

Each state is denoted by a vertex v and the set of vertices V forms a tree with root v = ∅ (emphasized
in the figure). The pair of states forming player i’s partition are circled and the partition of player j is
similarly denoted with a dashed line. We also denote the probabilities that player i assigns to each of the
two states in the member of the information partition. We omit the notation of player k partition (which
exactly corresponds to the edges not circled in the figure). We also removed the probabilities for players
j and k which assign 0 to the vertex closer to the root and 1 to further one. The game associated with
every state is Gv(·). The edges connecting the views denote how each view views the game as seen from the
various viewpoints – the arrows point to the higher level views. We have omitted the views of players’ view
of themselves as this is redundant based on the third condition.

a view vˆv indicates how the viewpoint v perceives the game according to v as a more

restricted version of the game Gv(·).
A modification of the tree in Figure 4 can also capture unawareness of players – the

relevant views – by trimming the tree at views that are not relevant. Such elimination of

views still leaves us with a tree (and well defined partitions) since the second condition

implies that if a view is irrelevant so are all the views following it on the tree. We note

that all these alternative representations will preserve extended rationalizability as Bayesian
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Nash, but will map ENE to a new solution which refines Bayesian Nash.

We note that the representation does not depend on the payoffs of the games, it also gen-

erates the same state space and beliefs if the names of the actions, the extent of unawareness

of actions and the names of the players are changed. In fact, there will only be a change

if the unawareness of players changes and this is only in the last formulation above. The

mapping is canonic in the sense that what determines the state space and the beliefs are

the set of relevant views, or the set of all views depending on the representation, neither of

which constrains payoffs.

We turn now to ENE and compare them the Bayesian representation of the strategic

situation when the game with unawareness is mapped to a game with incomplete information.

We first note the following:

Claim 9 Let Γ be a normal form game with unawareness and G(B) be the Bayesian game

corresponding to Γ as above. The extended rationalizable strategy profiles of Γ coincide with

the Bayesian Nash equilibria (BNE) profiles of G(b) at the state of the world corresponding

to v = ∅.

The claim follows by observing that at every state the relevant player is playing a best

response to the state he assigns probability 1 to, where other players play according to how

he views their perception, in turn this applies for iteration of views and as can be seen

in Figure 4 the conditions for extended rationalizability coincide with the Bayesian Nash

equilibrium conditions. Claim 9 then implies that ENE is mapped to a strict subset of the

Bayesian Nash equilibria. In particular, this is a subset where at various states players must

play the same strategy if the games at the states they assign probability 1 to, they assign

probability 1 to others assigning probability 1, and so on, have exactly the same trees of

payoffs corresponding to these iterated beliefs. We note that trying to gage these higher

order beliefs about payoffs amounts to the construction of the game with unawareness to

begin with as a collection of normal form games corresponding to a set of views. Hence,

games with unawareness and the ENE provide a novel solution to setting with restricted

perceptions.

3.3 Equilibria of Incomplete Information Games with Unaware-

ness

The definition of extended BNE is constructed exactly in the same manner as the normal

form case. Every view considers a strategy in the game with incomplete information such

that every type plays a best response to the strategies in the game which the type perceives.
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In turn, these strategies corresponds to how the type perceives the other players’ types

play in the game as the first type perceives the other types are considering, and so on. As

with ENE we also require that if two views perceive the same incomplete information game

with unawareness – have the same perception of the incomplete information game, the same

perception of how the types in the game view the incomplete information game, and so on

– then they prescribe the same behavior.

Definition 10 Let Γ = {Gv(B)}v∈V be an incomplete information game with unawareness.

An extended strategy profile ESP in this game is a collection of strategy profiles {(σ)v}v∈V
where (σ)v is a strategy profile in the game Gv(B) such that for every vˆvˆv̄ ∈ V we have

(σv)v = (σv)vˆv (45)

and

(σ)vˆvˆv̄ = (σ)vˆvˆvˆv̄ (46)

Recall that in this case each viewpoint v corresponds to one type of a player in an

incomplete information setting. As with normal form games we extend the solutions:

Definition 11 An ESP {(σ)v}v∈V in an incomplete information game with unawareness is

said to be extended rationalizable if for every vˆv ∈ V we have that (σv)v is a best response

to (σ−v)vˆv in the game Gvˆv.

and

Definition 12 An ESP {(σ)v}v∈V in an incomplete information game with unawareness

is called an extended Bayesian Nash equilibrium EBNE if it is rationalizable and for all

v, v̄ ∈ V such that Γv = Γv̄ we have that (σ)v = (σ)v̄.

We note that, as with ENE for normal form games with unawareness, the EBNE is a new

solution concept. In order to capture this solution with standard incomplete information

games one would require a fine tailoring of the game that distinguishes the beliefs that stem

from uncertainty from those that are generated by unawareness. One would need to choose

a particular state space and define the types’ beliefs on a case by case basis to capture the

EBNE behavior in standard incomplete information games, while in the process essentially

mimicking the construction of incomplete information games with unawareness.
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3.4 Equilibria of Dynamic Games with Unawareness

Dynamic games provide a host of solution concepts. Many of these consider alternative

principles for belief revision. In particular, beliefs and behavior after a deviation from the

equilibrium path occurs. The extension of these solutions is no different than the extensions

to normal form, or incomplete information, games with unawareness. The extensions require

an epistemic foundation for the solution determining the nature of reasoning about beliefs and

rationality in a dynamic setting, and will depend on the choice of epistemic characterization.

Such characterizations need not be unique as can be seen in the epistemic characterization

of sequential equilibria for dynamic games with unawareness in Feinberg (2004).

Definition 13 Let Γ = {Gv(D)}v∈V be a dynamic game with unawareness. An extended

strategy profile ESP in this game is a collection of strategy profiles {(σ)v}v∈V where (σ)v is

a behavior strategy profile in the game Gv(D) such that for every vˆvˆv̄ ∈ V we have

(σv)v = (σv)vˆv (47)

and for every ṽ ∈ gi(v) ∩ (Vi)vˆv we have

(σ)vˆvˆv̄ = (σ)vˆvˆṽˆv̄ (48)

Recall that a viewpoint v corresponds to a decision point in the game tree. In particular,

this could be one of a number of points in an information set. Furthermore, at that decision

point the player may perceive the situation as corresponding to one of the other decision

points at the same information set due to beliefs about prior strategic behavior. We need to

verify that Using condition (48) agrees with the definition of a dynamic game and with the

interpretation of an information set. Indeed, inductively applying (48) we have that

(σ)vˆvˆv̄ = (σ)vˆvˆṽˆv̄ = (σ)vˆvˆṽ...ṽˆv̄ (49)

which is a well defined condition according to condition CD3.

As with standard dynamic games, rationality in a dynamic setting depends on whether

the payoff is calculated ex-ante, or conditional on reaching a decision point. With the

latter requiring postulating conditions for belief revision as well as forward, backward and

hypothetical rationality analysis. While one can analyze these alternatives as in Feinberg

(2004) here we simply extend NE directly without discussion of the epistemic conditions.

We do the same for refinements such as sequential equilibria which consider assessments –

strategies plus beliefs at information sets.
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Definition 14 An ESP {(σ)v}v∈V in a dynamic game with unawareness is called an ex-

tended Nash equilibrium ENE if for every vˆv ∈ V with v ∈ (Vi)v we have that the behavior

strategy {(σṽ)v | such that vˆvˆṽ ∈ V} for player i is a best response to (σ−i)vˆv in the game

Gvˆv(D). In addition, for all v, v̄ ∈ V such that Γv = Γv̄ we have that (σ)v = (σ)v̄.

We note that the definition requires that a player’s strategy is considered from how a view

perceives the perception of a decision point v. Even if the strategy implies that this decision

point is not reached and even if the player corresponding to v has a different perception of

the game at other decision points. This is not a choice made in defining the solution, but

rather a constraint of the definition of games with unawareness since a behavior strategy as

defined for player i in the game perceived from v may be beyond the scope of strategies in

the game as perceived by vˆv.

The definition of solutions based on assessments is more straightforward as they already

require reasoning at information sets. However, since these solutions involve beliefs at infor-

mation sets we must define extended assessments as well.

Definition 15 Let Γ = {Gv(D)}v∈V be a dynamic game with unawareness. An extended

assessment in this game is a an ESP {(σ)v}v∈V and a collection of belief function {(µv)v}vˆv∈V

such that (µv)v is a probability distribution over the information set gi(v)∩ (Vi)vˆv such that

for every vˆvˆv̄ ∈ V we have

(µv)v = (µv)vˆv (50)

and for every ṽ ∈ gi(v) ∩ (Vi)vˆv we have

(µ)vˆvˆv̄ = (µ)vˆvˆṽˆv̄ (51)

We are now set to define the extension of solutions based on assessments and will do so

in a general manner.

Definition 16 An extended assessment {(σ)v, (µ)v}v∈V in a dynamic game with unaware-

ness is called an extended ? equilibrium if for every vˆv ∈ V with v ∈ (Vi)v we have for any

ṽ ∈ gi(v)∩ (Vi)vˆv the mixed strategy (σṽ)vˆv maximizes the expected payoff to player i at ṽ in

the game Gvˆv(D), i.e. the expected payoff to i in Gvˆv(D) conditional on the information set

gi(v) ∩ (Vi)vˆv being reached with the probability distribution (µv)v, when other players play

according to (σ−gi(v)∩(Vi)vˆv
)vˆv. Where ? stands for sequential or variants thereof, and we re-

quire that (σv)v and (µv)v satisfy the consistency, or other conditions imposed by refinement

? in the game Gvˆv(D) with respect to the strategies as perceived from the view vˆv.

To see how the extended refinement can be implemented to various solution concepts,

consider sequential equilibria for example. In this case we can require that (µv)v agree with

37



the probability distribution generated by (σ−gi(v)∩(Vi)vˆv
)vˆv in Gvˆv(D) if the information set

is reached, and if not, it is the limit of probabilities assigned by best responses ε-completely

mixed strategies in the game Gvˆv(D).

We can now state the generalizations of Propositions 3 and 2 which concludes this paper:

Proposition 10 The set of extended solutions for normal form, incomplete information

and dynamic games with unawareness is non-empty. Furthermore, each extended solution

coincides with the standard solution when there is no unawareness.

4 Conclusion

This work provides a uniform framework to model and analyze games with unawareness. The

framework follows an identical treatment of various game forms and allows for unawareness

of participating players and their actions. The basic approach asks that at every decision

point (and given any information the player has) the player has a view of what the game is,

a view of how each player in that game views the game and so on. Hence, all these views

relate to standard games and the collection of standard games constitutes the game with

unawareness. Our four conditions guarantee reasoning consistency in the sense that if Alice

reasons about Bob reasoning about a player or an action then she can directly reason about

them as well, that Alice’s view about Bob’s view about his own view coincides with how

Alice views Bob and that when there is unawareness of a player the outcomes are consistent

with one of the player’s action.

We emphasize that these game can usually described much like the examples in the

introduction by indicating the relevant view of the game. When higher order views are

relevant (as in the gams depicted in (1) and (2) a further state space formulation may be

in order (see the discussion in Section 2.2). Games with unawareness can be represented

as incomplete information games. Indeed, it has been difficult to envision a situation that

cannot be presented as simply a game where players assign zero probabilities instead of being

unaware. However, this was not previously made precise. Using the hierarchies approach

the mapping to an incomplete information setting allows an explicit formulation of this

relationship. Moreover, it also demonstrates why a separate formulation for unawareness

may be useful. In particular, it shows that the natural extension of Nash equilibria to

games with unawareness does not map to any known solution in the incomplete information

formulation.
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5 Appendix

Proof of Proposition 1. Proposition 1 states that from every relevant view, the game

with unawareness defined by considering higher order views, i.e., the game as seen from that

view, is itself a game with unawareness, i.e., for each relevant view v, the game defined by

Γv = {Gv
ṽ(·)}ṽ∈Vv with relevant views Vv = {ṽ ∈ V̄ |vˆṽ ∈ V} satisfies the conditions for a

game with unawareness.

Recall the notation Gv
ṽ denotes the game Gvˆṽ. Similarly, we denote all the components

of the games Gv
ṽ(·) accordingly, e.g. the set of players is denoted Ivṽ , player v’s actions by

(Av)vṽ and so on.

Consider a normal form game with unawareness Γ = {Gv}v∈V and fix a relevant view

v ∈ V . Recall that Vv = {ṽ ∈ V̄ |vˆṽ ∈ V} and Γv = {Gv
ṽ}ṽ∈Vv . Since ṽ ∈ Vv is equivalent to

vˆṽ ∈ V we have from applying C1 to Γ that

vˆṽˆv ∈ V if and only if v ∈ Ivˆṽ. (52)

Since the left hand side is identical with ṽˆv ∈ Vv and the right hand side coincides with

v ∈ Ivṽ we have

ṽˆv ∈ Vv if and only if v ∈ Ivˆṽ (53)

for all ṽ ∈ Vv and the first consistency condition holds for Γv.
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If v̄ˆṽ ∈ Vv we have vˆv̄ˆṽ ∈ V which implies vˆv̄ ∈ V by (4) and is equivalent to v̄ ∈ Vv

proving the first part of condition C2. Similarly, we have from (5) and (6) that

∅ 6= Ivˆv̄ˆṽ = Ivv̄ˆṽ ⊂ Ivˆv̄ = Ivv̄ (54)

and

∅ 6= (Ai)vˆv̄ˆṽ = (Ai)
v
v̄ˆṽ ⊂ (Ai)vˆv̄ = (Ai)

v
v̄ (55)

for all i ∈ Ivˆv̄ˆṽ = Ivv̄ˆṽ which proves the second consistency condition holds for Γv.

If ṽˆvˆv̄ ∈ Vv we have

Gvˆṽˆvˆv̄ = Gvˆṽˆvˆvˆv̄ (56)

and vˆṽˆvˆvˆv̄ ∈ V which is equivalent to

Gv
ṽˆvˆv̄ = Gv

ṽˆvˆvˆv̄ (57)

and ṽˆvˆvˆv̄ ∈ Vv and the third condition holds.

For every action profile (a)vv̄ˆṽ = {aj}j∈Ivv̄ˆṽ
we have from (9) a completion to an action

profile (a)vˆv̄ = {aj, ak}j∈Ivˆv̄ˆṽ ,k∈Ivˆv̄\Ivˆv̄ˆṽ
hence the existence of an action profile (a)vv̄ =

{aj, ak}j∈Ivv̄ˆṽ ,k∈I
v
v̄ \Ivv̄ˆṽ

such that

(ui)vˆv̄ˆṽ((a)vˆv̄ˆṽ) = (ui)vˆv̄((a)vˆv̄) (58)

which is equivalent to

(ui)
v
v̄ˆṽ((a)vv̄ˆṽ) = (ui)

v
v̄((a)vv̄) (59)

and the fourth condition holds for Γv as required completing the consistency proof for normal

form games with unawareness.

For a repeated game with unawareness Γ = {Gv(T )}v∈V fix a relevant view v ∈ V . For

every v̄ ∈ Vv, v = (ht(J), i) ∈ V v where the history ht(J) contains only actions from (A)v

and i ∈ Iv, J ⊂ Iv we have from applying (10) to Gvˆv̄ = Gv
v̄ that

v̄ˆv ∈ Vv if and only if i ∈ Ivv̄ , J = Ivv̄ , Aj(h
t(J)) ⊂ (Aj)

v
v̄ for all j ∈ J (60)

which is the first consistency condition. The second condition is identical to the normal form

games case.

For the third condition let ṽˆvˆv̄ ∈ Vv where v = (ht(J), i) and the history and players

are taken from Gv. According to condition CR3 for Γ there exists some ṽ = (h̃t(J̃), i) such
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that

Gvˆṽˆvˆv̄(T ) = Gvˆṽˆvˆṽˆv̄(T ) = ... = Gvˆṽˆvˆṽˆ...ˆṽˆv̄(T ) (61)

and vˆṽˆvˆṽˆ...ˆṽˆv̄ ∈ V . Which is equivalent to

Gv
ṽˆvˆv̄(T ) = Gv

ṽˆvˆṽˆv̄(T ) = ... = Gv
ṽˆvˆṽˆ...ˆṽˆv̄(T ) (62)

and ṽˆvˆṽˆ...ˆṽˆv̄ ∈ Vv and the third condition holds. The fourth condition holds exactly

as in the normal form case completing the proof of consistency for repeated games with

unawareness.

For an incomplete information game with unawareness Γ = {Gv(B)}v∈V and a relevant

view v we have Gv
v̄(B) = (Ivv̄ ,

∏
i∈Ivv̄

(Ai)
v
v̄, (Θ0)vv̄×

∏
i∈Ivv̄

(Θi)
v
v̄, P

v
v̄ , {(ui)vv̄}i∈Ivv̄ ). The first three

consistency conditions hold in the exact same manner as for normal form games. Note

that conditions (19) and (20) are shown to hold in an identical manner as condition (21)

which is identical to the normal form case. As for the fourth condition, we note that it too

follows a similar proof to the normal form case by replacing partial actions profiles and their

completion by partial pairs of state and actions and their completion. More formally, for

every state and action profile pair (θ, a)vv̄ˆṽ ∈ (Θ0)vv̄ˆṽ×
∏

i∈Ivv̄ˆṽ
(Θi)

v
v̄ˆṽ×

∏
j∈Ivv̄ˆṽ

(Aj)
v
v̄ˆṽ there

exists a completion to a pair (θ, a)vv̄ ∈ (Θ)vv̄ ×
∏

j∈Ivv̄
(Aj)

v
v̄ that agrees with the appropriate

coordinates of (θ, a)vv̄ˆṽ such that

(ui)
v
v̄ˆṽ((θ, a)vv̄ˆṽ) = (ui)

v
v̄((θ, a)vv̄) (63)

and the proof for incomplete information games with unawareness is complete.

Finally, let Γ = {Gv(D)}v∈V be a dynamic game with unawareness and fix a relevant

view v and consider the collection Γv = {Gv
ṽ(D)}ṽ∈Vv . As before, the components of Gv

ṽ(D)

are denoted with the superscript v and in particular the game tree is denoted W v
ṽ as are its

components (nature moves, players’ decision points and terminal nodes) and the collection

of information sets are denoted (Fi)
v
ṽ.

The first condition holds by noting that v ∈ (Vi)
v
ṽ if and only if v ∈ (Vi)vˆṽ. Similarly, the

equivalents of (26), (27) and (28) hold as in the normal form case and (29), (30), (31) and

(64) follow from noting that the sets of vertices and ordering coincides between Gvˆv̄ˆṽ(D)

and Gv
v̄ˆṽ(D) as do intersections and complements of the sets of vertices and since the order

induced from � is preserved, i.e.,

(Ai)
v
v̄ˆṽ(w,w

′) = (Ai)
v
v̄(w,w

′′) (64)

for the unique successor w′′ of w in W v
v̄ such that w′′ � w′, where w′ is the successor of w in
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W v
v̄ˆṽ.

If ṽˆvˆv̄ ∈ Vv with v ∈ V v
i then we have f vi (v)∩ (Vi)

v
ṽˆv 6= ∅ from condition CD3 applied

to Γ as well as for every v′ ∈ f vi (v) ∩ (Vi)
v
ṽˆv we have

Gv
ṽˆvˆv̄(T ) = Gv

ṽˆvˆv′ˆv̄(T ) = ... = Gv
ṽˆvˆv′ˆ...ˆṽˆv̄(T ) (65)

and ṽˆvˆv′ˆ...ˆṽˆv̄ ∈ Vv simply by applying (33) for Γ with vˆṽ for v and v′ for ṽ.

Similarly, let ṽˆv̄ ∈ Vv. For every terminal vertex w ∈ Zv
ṽˆv̄ = Zvˆṽˆv̄ according to CD4

for Γ there exists a vertex w′ ∈ Zv
ṽ = Zvˆṽ such that w ≺ w′ and

(ui)
v
ṽˆv̄(w) = (ui)vˆṽˆv̄(w) = (ui)vˆṽ(w

′) = (ui)
v
ṽ(w

′) (66)

and the fourth condition holds as well. We have shown that dynamic games with unawareness

are also consistent in the sense that how every view is modeled to perceive the game, is itself

a game with unawareness and the proof is complete.

Proof of Proposition 2. Let G = (I,
∏

i∈I Ai, {ui}i∈I) be a normal form game and

Γ a normal form game with unawareness such that for some v ∈ V we have Gvˆv̄ = G for

every v̄ such that vˆv̄ ∈ V . We will assume v = ∅ the general case follows from considering

Γv instead.

Assume a strategy profile σ is rationalizable for the normal form game G. Then for every

player i ∈ I there is a strategy profile for all other players σ̄−i such that σi is a best response

to σ̄−i and such that for every j ∈ I \ {i} there is a strategy σ̃−j such that σ̄j is a best

response to it, and so on. For every view v we define a strategy profile inductively as follows:

Let (σ)∅ = σ, for v = i ∈ I let (σ)v = (σ̄−i, (σi)∅) i.e., combining player i’s strategy σi with

σ̄−i to which it is a best response. Given (σ)v we define (σ)vˆv as the strategy to which (σv)v

is a best response (augmented by (σv)v ) if the last viewpoint in v does not equal v, and we

let (σ)v = (σ)vˆv if the last viewpoint in v coincides with v.

Since the game associated with all view isG and all views are relevant, the above collection

of strategies is a well defined ESP. By definition of rationalizability, every view finds the

player is playing a best response to the strategies they are considering according to that

view which is the definition of extended rationalizability.

Consider now the same game and let {(σ)v}v∈V be an ESP satisfying extended rational-

izability. Since at every view the game corresponds to G we have that all views are relevant.

In particular, for every sequence of players i1, i2, ..., in we have a sequence of strategies cor-

responding to n+ 1 views: σ0 = (σ)∅, σ
1 = (σ)i1 , σ2 = (σ)(i1,i2), ..., σn = (σ)(i1,i2,...,in). These

satisfy by extended rationalizability that σkik+1
is a best response to σk+1

−ik+1
. Hence, we found

that for every player i ∈ I the strategy (σi)∅ is a best response to (σ−i)i with (σj)i each
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being best responses to (σ−j)(i,j) and so on making (σ)∅ a profile of rationalizable strategies

in the normal form game G.

The second part of the proposition follows similarly: Let G be as above and without loss

of generality assume the game with unawareness associates G with all views, i.e. we begin

with the view ∅. Let σ be a Nash equilibrium. Then setting (σ)v = σ for all views is a well

defined ESP. Hence the condition for identical strategies assigned to identical views of the

game with unawareness is satisfied. Since σi is a best response to σ−i for all i ∈ I by NE, we

have that (σi)v is a best response to (σ−i)vˆi for all v and every i ∈ I and the ESP satisfies

extended rationalizability and is therefore an ENE.

In the other direction, let σ be such that (σ)v = σ for all v is an ENE. In particular σ is

a strategy profile in G such that σi = (σi)v is a best response to σ−i = (σ−i)vˆi making it a

NE.

Proof of Proposition 3. The existence of ENE requires the examination of the

possibly infinite collection of views of the game assuring that a fixed point exists. Consider

a normal form game with unawareness Γ = {Gv}v∈V with views V . We define an auxiliary

standard normal form game G as follows:

Let i denote a player in G∅. The set of players in this game is given by

N = {v ∈ V \ {∅} | v = (i1, ..., in) with ik 6= ik+1 for all k}. (67)

The action set for each player v = (i1, ..., in) ∈ N , is given by

Av = (Ain)v. (68)

We define the payoff function for each player v = (i1, ..., in) ∈ N in this game by

Uv({(aj)ṽ}ṽ∈N ) = (uin)v({(aj)v}j∈Iv) (69)

where (uin)v({(aj)v}j∈Iv) is the payoff to in in the game Gv when the actions played are

{(aj)v}j∈Iv .
The game G = (N ,A,U) constitutes a normal form game with a countable number of

players. However, the payoff function for each player depends on the actions of only a finite

number of other players. Consider the product space of mixed strategies

Σ =
∏
v∈N

∆(Av). (70)

Since the game at each view has a finite action set we have that A is compact in the product
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topology. Considering the best response mapping

B(σ) =
∏
v∈N

Bv(σ) (71)

where

Bv(σ) = {σ̄v ∈ ∆(Av) | E(Uv(σ |σ̄v)) ≥ E(Uv(σ |σ̃v)) for all σ̃v ∈ ∆(Av)} (72)

and E(Uv(σ |σ̃v)) is the expected payoff when considering the strategy σ modified by having

player v play σ̃v. The expected payoff is well defined since for every v ∈ N there is only a

finite number of players influencing the payoffs.

The set valued functions Bv are non-empty, compact and convex valued since the payoff

functions Uv are linear continuous functions of Av. Hence, the product map B is a non-

empty, compact and convex valued set function on the compact convex set Σ. B is also

upper-hemi continuous since for every sequence σn −→ σ with σ, σn ∈ Σ for n = 1, 2, ..., we

have that if σ̄n ∈ B(σn) for all n and σ̄n −→ σ̄ then we must also have σ̄ ∈ B(σ). This

follows from noting that for every v ∈ N we have

E(Uv(σn |σ̄nv )) ≥ E(Uv(σn |σ̃v)) for all σ̃v ∈ ∆(Av) (73)

but since Uv depends only on the actions of v = (i1, ..., il and vˆj for j ∈ Iv, j 6= il, the

convergence of σn to σ implies convergence in all coordinates and hence the continuity of

the expectation of U yields

E(Uv(σ |σ̄v)) ≥ E(Uv(σ |σ̃v)) for all σ̃v ∈ ∆(Av) (74)

which holds for all v ∈ N and implies σ̄ ∈ B(σ) as claimed.

The set valued map B satisfies the conditions for the generalized Kakutani fixed point

theorem and as shown by Fan (1952) and Glicksberg (1952) there exists a σ ∈ Σ such that

σ ∈ B(σ) hence there exists an equilibrium σ in the auxiliary game G. We now define an

ESP for Γ by setting (σ)v = σv for v ∈ N and inductively for v = (i1, ..., in) ∈ V for which

(σ)v is defined, we set for ṽ = (i1, ..., ik, ik, ik+1, ..., in) the strategy (σ)ṽ = (σ)v hence we

inductively get an ESP. By definition of a NE for the auxiliary game this ESP is an ENE of

Γ as required.

We note that the NE of the auxiliary normal form game G defined in the proof of Propo-

sition 3 completely characterizes the set of ENE for the game Γ.

Proof of Proposition 6. Assume by way of contradiction that there is an infinite
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countable sequence of relevant views {vn}∞n=1 that offer distinct views of the game with

unawareness. Formally, for every pair n 6= m there is a ṽ such that

(A)vnˆṽ 6= (A)vmˆṽ. (75)

We note that if the games differ in the viewed set of players they will also differ in the

set of actions as above.

From Lemma 11 whose proof follows, there exists an infinite countable subsequence

{vnk}∞k=1 such that vnk � vnk+1
. In particular, for all ṽ we have vnkˆṽ � vnk+1

ˆṽ. From

condition S-C2 we have for every k and ṽ that

(A)vnkˆṽ ⊃ (A)vnk+1
ˆṽ. (76)

From (75) we have for every k > 1 there exists some ṽk such that

(A)vnk−1
ˆṽk 6= (A)vnkˆṽk (77)

and for this particular ṽk we have that

(A)vn1ˆṽk ⊃ ... ⊃ (A)vnk−1
ˆṽk ) (A)vnkˆṽk . (78)

Since (78) holds for every k > 1 we have a subsequence {vnk}∞k=1 and a sequence {ṽk}∞k=2

such that for all k = 2, 3, ... we have

(A)vnkˆṽk 6= (A)vnj ˆṽk ∀j < k. (79)

Using Lemma 11 once more, we can find an infinite subsequence {ṽkl}∞l=1 such that ṽkl � ṽkl+1

and considering the same subset of indices for vnk we have for all l

(A)vnkl ˆṽkl
6= (A)vnkj ˆṽkl

∀j < l, (80)

vnkl � vnkl+1
, (81)

ṽkl � ṽkl+1
. (82)

From (81) and (82) and since concatenation with the same word (recall that we termed

views as “words” comprised of viewpoints as “letters”. preserves the order � we have that

for all l

vnklˆṽkl+1
� vnkl+1

ˆṽkl+1
� vnkl+1

ˆṽkl+2
. (83)
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From condition S-C2 and from (83) we have for every l

(A)vnkl ˆṽkl+1
⊃ (A)vnkl+1

ˆṽkl+1
⊃ (A)vnkl+1

ˆṽkl+2
. (84)

Since every (A)v is a subset of the finite set A, we conclude that there exists a t such that

(A)vnkt ˆṽkt+1
= (A)vnkt+1

ˆṽkt+1
. (85)

Since (85) contradicts (80) we have reached the desired contradiction and the proof is com-

plete.

The proof of the proposition relied on the following lemma due to Higman (1952).

Lemma 11 For every sequence of views {vk}∞k=1 we can find an infinite countable subse-

quence {vnk}∞k=1 such that vnk � vnk+1
, i.e. each word vnk can be obtained by deleting some

letters of the word vnk+1
.

Proof. This Lemma follows immediately from Theorem 4.4 in Higman (1952). Higman

shows (as a special case of his finite basis property theorems) that given a finite alphabet

I, every set of words X from this alphabet has a finite subset X0 such that for every word

w ∈ X one can find a word w0 ∈ X0 such that the letters of w0 occur in w in their right

order, though not necessarily consecutively. In particular, let X = {vk}∞k=1, from Higman’s

theorem there exists a finite subset X0 ⊂ X such that from each word in v ∈ X one can

obtain at least one of the words in X0 by eliminating some members in v. Since X0 is finite

and X is countable there exists a word in X0 denoted vn1 that can be imbedded in an infinite

subsequence of words from X \X0. Hence from every countable sequence of words we can

find a subsequence such that the first word in the subsequence can be obtained from every

word that follows by eliminating some letters. We can now consider the subsequence from

the second word onwards and find a subsequence such that the second word can be imbedded

in all the words that follow. Maintaining the same first element vn1 we now have that the

first two words can be imbedded in every word that follows. By induction the required

subsequence is derived.

The following direct proof of Higman’s theorem is due to Michael Ostrovsky:

By induction on k – the number of letters in the alphabet (main induction). For k = 1,

the claim is obvious. Suppose it is true for k up to n. Let us show that it is also true for

k = n+ 1.

48



Claim 12 Any infinite sequence wi of words (made up of k = n+1 different letters) contains

two words, wi1 and wi2, such that i1 < i2 and wi1 � wi2.

Proof of claim. By induction on l – the length of the shortest word in the sequence.

For l = 1 take the one-letter word. Without loss of generality, the letter is A. Eliminate all

the words that go before that word from the sequence; we now have w1 = A. If any other

word in the remaining sequence contains the letter A, we are done. If not, then the sequence

(w2, w3, w4, . . . ) is made up of only n = k − 1 different letters, and by the assumption of

the main induction, this sequence contains an increasing subsequence (wj1 , wj2 , . . . ) with any

two words, e.g., wj1 and wj2 , satisfying the requirement.

Suppose the claim holds for all l up to m. Let us show that it is also true for l = m+ 1.

Take the shortest word in the sequence. Without the loss of generality, it is the first word

in the sequence, and the first letter in this word is A. If there is only a finite number of

other words that contain the letter A, then the remaining infinite subsequence is made up of

only n different letters and we are done. Otherwise, drop all the words that do not contain

the letter A from the sequence. For each remaining word wi, let Li be the part of the

word that precedes the first occurrence of A in the word, and Ri be the part that follows

the first occurrence of A (e.g., if wi = BCADCAB, then Li = BC and Ri = DCAB; if

wi = ABC, then Li is the empty word, and Ri = BC). Note that all words in the sequence

(L1, L2, . . . , Li, . . . ) are made up of only n different letters, and so there exists an increasing

subsequence (Li1 , Li2 , . . . ) such that for any t, it < it+1 and Lit � Lit+1 . Note also that since

we assumed that w1 is the shortest word and starts with an A, we can let i1 = 1 – the empty

word is smaller than any other word.

Now, consider the corresponding sequence (Ri1 , Ri2 , . . . ). The shortest word in this se-

quence has length of at most m (because R1, by construction, has length m), and therefore,

by the minor induction assumption there exist u and v such that u < v and Riu � Riv . But

we also know that, by construction, Liu � Liv , and so wiu � wiv , and the claim follows.

We can now complete the proof of the step of the induction of Higman’s theorem. Take

any sequence of words made up of k = n + 1 different letters. Consider all words wi in this

sequence such that there does not exist j > i such that wi � wj. There can be at most a

finite number of such words, since otherwise the subsequence formed from these words would

be a counter-example to the claim. Let wh be the last one of these words in the sequence,

so that for any j > h there exists k > j such that wj � wk. It is now possible to construct

an infinite increasing subsequence, e.g. take the subsequence (wit) such that i1 = h+ 1 and

for all t > 1, it = mini>it−1{i|wit−1 � wi} and the proof of Higman’s theorem is complete.

Proof of Proposition 7. Let v and v′ be such that Γv and Γv
′

are standard games.
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Hence, for every ṽ such that vˆṽ ∈ V we have

Avˆṽ = Av and Ivˆṽ = Iv (86)

as well as for every ṽ such that v′ˆṽ ∈ V we have

Av′ˆṽ = A′v and Iv′ˆṽ = I ′v. (87)

Since v′ ≺ vˆv′ ∈ V the condition S-C2 and (86) imply that Av = Avˆv′ ⊂ A′v and using

(87) we similarly get Av′ ⊂ Av. Using the same argument we conclude that Iv = Iv′ . Since

there is common awareness from these points onward we have that Gv = Gv′ as well as

Gv = Gvˆṽ = Gv′ˆṽ = Gv′ for all ṽ such that vˆṽ or equivalently v′ˆṽ is relevant. Since ENE

for games with unawareness where all views share the same standard game coincides with

NE of the standard game, the same behavior is dictated by ENE in both Γv and Γv
′
.

Proof of Proposition 10. The proof of existence of the extended solution concepts for

repeated, incomplete and dynamic games with unawareness follows quite closely the proof

of Proposition 3. Similarly, the proof that the solutions coincide with the standard solution

once the views agree follows closely the proof of Proposition 2. We detail the required

modifications for the application of these proofs.

The proof for incomplete information games with unawareness is identical to the normal

form games proof with the exception that type spaces may be infinite. Hence, there may be an

uncountable set of views. Still, the critical condition (74) holds as long as the utility of a type

is continuous in other players types strategies, but this amount to continuity in a standard

incomplete information game since all we need is for the strategies to be measurable in the

type space. Repeated games and dynamic games with unawareness require a modification

of the final part of the proof of Proposition 3 where the equilibrium of the auxiliary game

is extended to the game with unawareness. The difference here is that a viewpoint for a

player may consider itself as a different view point, for example, a viewpoint corresponding

to one member of an information set may view herself as corresponding to another member

of the (same) information set. This is illustrated in condition CD3 in (33) (and condition

CR3 for repeated games). Constructing a strategy for the game with unawareness from

a strategy for the auxiliary game that we construct in the proof of Proposition 3 requires

that we extend the strategies defined for a subset of views to all relevant views. The subset

of views is determined as iterating views that can be associated with different strategies in

the games with unawareness. For dynamic games the subset of views that the auxiliary

game considers will not have two views from the same information set. When mapping these

strategies to the game with unawareness we complete the set of strategies, for all relevant
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views, by identifying views that must be associated with the same strategy. In particular,

once the strategy for a view vˆvˆv̄ is defined, we assign the same strategy for the views

vˆvˆṽˆv̄, ..., vˆvˆṽˆ...ˆṽˆv̄ where ṽ is as determined by condition CD3. The rest of the

proof coincides with the proof for the normal form case.
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