The competition number of a graph and the dimension of its hole space

Suh-Ryung Kima,1, Jung Yeun Leeb, Boram Parka,1, Yoshio Sanoc,2,*

aDepartment of Mathematics Education, Seoul National University, Seoul 151-742, Korea.
bNational Institute for Mathematical Sciences, Daejeon 305-390, Korea.
cPohang Mathematics Institute, POSTECH, Pohang 790-784, Korea

Abstract

The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number $k(G)$ of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number $k(G)$ for a graph G and it has been one of important research problems in the study of competition graphs to characterize a graph by its competition number. Recently, the relationship between the competition number and the number of holes of a graph is being studied. A hole of a graph is a cycle of length at least 4 as an induced subgraph. In this paper, we propose the dimension of its hole space as an upper bound for the competition number of a graph and show that it is sharp for connected triangle-free graphs and present various classes graphs satisfying the inequality.

Keywords: competition graph; competition number; cycle space; hole; hole space

2010 MSC: 05C75, 05C20

1. Introduction

Suppose D is an acyclic digraph. The \textit{competition graph} of D, denoted by $C(D)$, is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of an acyclic digraph. From this observation, Roberts \cite{17} defined the \textit{competition number} $k(G)$ of a graph G to be the smallest number k such that G together with k isolated vertices is the competition graph of an acyclic digraph.

The notion of competition graph was introduced by Cohen \cite{2} as a means of determining the smallest dimension of ecological phase space. Since then, various variations have been defined and studied by many authors (see \cite{3, 14} for surveys). Besides an application to ecology, the concept of competition graph can be applied to a variety of fields, as summarized in \cite{16}.

Roberts \cite{17} observed that characterization of competition graph is equivalent to computation of competition number. It does not seem to be easy in general to compute $k(G)$ for a given graph G, as Opsut \cite{15} showed that the computation of the competition number of a graph is an NP-hard problem (see \cite{3, 14} for graphs whose competition numbers are known). It has been one of important research problems in the study of competition graphs to characterize a graph by its competition number. From this point of view, Cho and Kim \cite{1} and Kim \cite{6} studied the relationship between the competition number and the number of holes of a graph. A cycle of length at least 4 of a graph as an induced subgraph is called a \textit{hole} of the graph and a graph without holes is called a \textit{chordal graph}. For a graph G, we denote the set of all holes of G by $H(G)$ and denote the number of holes of G by $h(G)$. Kim \cite{6} conjectured that $k(G) \leq h(G) + 1$ for a graph G and the following are the families of graphs which were found in efforts to answer the conjecture.

- $G_1 = \{ G \mid h(G) = 2 \}$ (Lee, Kim, Kim, and Sano \cite{10}; Li and Chang \cite{13});

*Corresponding author: ysanso@postech.ac.kr ; y.sano.math@gmail.com
1This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (700-201000658).
2This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (No. 2010-0029638).
• $G_2 = \{ G \mid \text{all the holes of } G \text{ are independent} \}$ (Li and Chang [12]);
• $G_3 = \{ G \mid \text{any two distinct holes of } G \text{ are mutually edge-disjoint} \}$ (Kim, Lee, and Sano [11]);
• $G_4 = \{ G \mid (\forall C \in H(G))(\exists e \in E(C)) [e \in C \text{ belongs to no other induced cycle of } G] \}$ (Kamibeppu [4]);

where a hole C of a graph G is called independent if, for any hole C' of G,
- $|V(C) \cap V(C')| \leq 2.$
- If $|V(C) \cap V(C')| = 2$, then $|E(C) \cap E(C')| = 1$ and $|V(C)| \geq 5$.

Other than the families given above, the chordal graphs (Roberts [17]) and the family of graphs with exactly one hole (Cho and Kim [1]) satisfy the Kim’s conjecture. Lee et al. [11] also studied on graphs having many holes but with small competition number. In this paper, we propose the dimension of its hole space as an upper bound for the competition number of a graph and show that the inequality holds for various families of graphs, including the graph families given above except those graphs having holes sharing edges. As a matter of fact, this bound equals the competition number for several interesting classes of graphs including the family of a nontrivial connected triangle-free graphs.

2. The hole space of a graph

Let F_2 be the finite field of order 2. We take a graph G and let $E(G)$ denote the set of maps from $E(G)$ to F_2. For a cycle C of G, we define a map $\chi_C : E(G) \to F_2$ by

$$\chi_C(e) := \begin{cases} 1 & \text{if } e \in E(C); \\ 0 & \text{otherwise.} \end{cases}$$

(We may regard χ_C as a vector in $F_2^{E(G)}$ once an edge labeling is given.) Then

$$C(G) := \text{Span}\{ \chi_C \in F_2^{E(G)} \mid C \text{ is a cycle of } G \}$$

is the cycle space of G. For every connected graph G, $\dim C(G) = |E(G)| - |V(G)| + 1$ (see Theorem 1.9.6 of [5]). Now we set

$$H(G) := \text{Span}\{ \chi_C \in F_2^{E(G)} \mid C \in H(G) \}.$$

Since a hole is a cycle, $H(G)$ is a subspace of the cycle space $C(G)$ of G. We call $H(G)$ the hole space of G and $\dim H(G)$ the hole dimension of G.

For an illustration, consider the graph G given in Figure 1. There are exactly three holes $C_1 := v_5v_6v_7v_9v_5$, $C_2 := v_5v_7v_8v_8v_5$, and $C_3 := v_5v_6v_7v_8v_5$ in G. We let $e_1 = v_5v_6$, $e_2 = v_6v_7$, $e_3 = v_7v_9$, $e_4 = v_9v_5$, $e_5 = v_7v_8$, $e_6 = v_5v_8$, $e_7 = v_1v_5$, $e_8 = v_1v_6$, $e_9 = v_2v_6$, $e_{10} = v_2v_7$, $e_{11} = v_3v_7$, $e_{12} = v_3v_8$, $e_{13} = v_4v_8$, $e_{14} = v_4v_5$. Then

$$\chi_{C_1} = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);$$
$$\chi_{C_2} = (0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0);$$
$$\chi_{C_3} = (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0).$$

Since $\chi_{C_1} = \chi_{C_2} + \chi_{C_3}$ and χ_{C_2}, χ_{C_3} are linearly independent, the hole dimension of G is 2.

Note that $\dim H(G) \leq |H(G)| = h(G)$. Thus any graph G satisfying $k(G) \leq \dim H(G) + 1$ satisfies the Kim’s conjecture. The competition number of the graph G in Figure 1 is 1 and the digraph D in Figure 2 is an
Figure 2: As \(i < j \) whenever \((v_j, v_i) \in A(D)\), \(D\) is acyclic. It can be checked that \(C(D) = G \cup \{a\}\) for \(G\) in Figure 1.

acyclic digraph whose competition graph is \(G \cup \{a\}\). Thus \(k(G) \leq \dim \mathcal{H}(G) + 1\). In \(D\), \(a\) covers edges \(v_1v_5\), \(v_1v_6\), \(v_3v_6\) (‘a vertex covers an edge’ means that the vertex is a common out-neighbor of the ends of the edge); \(v_1\) covers edges \(v_2v_6\), \(v_2v_7\), \(v_5v_7\); \(v_2\) covers edges \(v_3v_7\), \(v_3v_8\), \(v_7v_8\); \(v_3\) covers edges \(v_4v_5\), \(v_4v_8\), \(v_5v_8\). Thus the vertices \(a, v_1, v_2, v_3\) cover the edges of the cycle \(C_5\). Similarly we may check that the vertices \(v_2, v_3, v_4, v_5\) cover the edges of the cycle \(C_2\). This observation tells us that assigning in-neighbors to cover the edges of \(C_2\) and \(C_3\) also covers the edges of the hole \(C_1\). It motivates us to introduce the notion of hole dimension by a desire to find a sharp upper bound for the competition number of a graph.

3. Graphs satisfying the inequality \(k(G) \leq \dim \mathcal{H}(G) + 1\)

In this section, we show that the inequality \(k(G) \leq \dim \mathcal{H}(G) + 1\) holds for various families of graphs. In fact, the equality holds for a nontrivial connected triangle-free graph:

Proposition 1. If \(G\) is a nontrivial connected triangle-free graph, then \(k(G) = \dim \mathcal{H}(G) + 1\).

Proof. Since \(G\) is connected, \(\dim \mathcal{C}(G) = |E(G)| - |V(G)| + 1\). Since \(G\) is triangle-free, \(\mathcal{H}(G) = \mathcal{C}(G)\) and so \(\dim \mathcal{H}(G) = |E(G)| - |V(G)| + 1\). Again, since \(G\) is nontrivial, connected, and triangle-free, \(k(G) = |E(G)| - |V(G)| + 2\). Thus \(k(G) = \dim \mathcal{H}(G) + 1\).

Proposition 1 stands out in sharp contrast to the fact that the competition number of a triangle-free graph can be much larger than the number of its holes. For example, the complete bipartite graph \(K_{n,n}\) has the competition number \(n^2 - 2n + 2\). The number of holes of \(K_{n,n}\) is

\[
\binom{n}{2} \binom{n}{2} = \frac{n^2(n-1)^2}{4}.
\]

Kim and Roberts [8] showed that if \(G\) is connected and has exactly one triangle, then \(k(G) = |E(G)| - |V(G)|\) if \(G\) has a hole and \(k(G) = |E(G)| - |V(G)| + 1\) otherwise. If \(G\) has a hole, then \(\dim \mathcal{H}(G) = \dim \mathcal{C}(G)\) or \(\dim \mathcal{C}(G) - 1\). Thus \(k(G) < \dim \mathcal{H}(G) + 1\) if \(G\) has a hole and so the following proposition holds:

Proposition 2. If a graph \(G\) has exactly one triangle, then \(k(G) \leq \dim \mathcal{H}(G) + 1\). The equality holds if and only if \(G\) is a chordal graph without isolated vertices.

Two vectors representing two distinct holes of a graph are linearly independent. Thus, for a graph \(G\) with at most two holes, \(\dim \mathcal{H}(G) = h(G)\). Since a graph \(G\) with at most two holes satisfies the inequality \(k(G) \leq h(G) + 1\), the following proposition holds:

Proposition 3. If a graph \(G\) has at most two holes, then \(k(G) \leq \dim \mathcal{H}(G) + 1\). Especially, the equality holds if \(G\) is a chordal graph (has no hole) without isolated vertices.

Furthermore, vectors representing holes any pair of which are mutually edge-disjoint are linearly independent. Thus, the hole dimension of any graph in the family \(G_3\) equals the number of its holes and so the following proposition holds:

Proposition 4. If \(G\) is a graph such that any two distinct holes of \(G\) are mutually edge-disjoint, then \(k(G) \leq \dim \mathcal{H}(G) + 1\).
Remark 5. The hole dimension of a graph can be arbitrarily larger than its competition number. For example, the complete multipartite graph with m parts ($m \geq 2$) each of which has size 2 has competition number 2 (see [3]) while $\dim \mathcal{H}(G) = h(G) = \binom{m}{2}$.

In the following, we present another large class of graphs satisfying the inequality $k(G) \leq \dim \mathcal{H}(G) + 1$.

Lemma 6. Let C be a cycle of a graph G. Then there exist cycles C_1, \ldots, C_t such that, for each $i = 1, \ldots, t$, C_i is a triangle or a hole, $V(C_i) \subset V(C)$, and $\chi_C = \sum_{i=1}^t \chi_{C_i}$.

Proof. By induction on the length of a cycle. If C has length 3, then C is a triangle and the lemma immediately follows. Now suppose that C has length at least 4. If C does not contain a chord, then C itself is a hole and the lemma follows. Suppose that C has a chord. Then we may take a chord uv such that the length of one of the (u, v)-sections of C is the minimum among the lengths of sections of C determined by each of its chords. Then the shorter (u, v)-section of C together with uv form a triangle or a hole of G. We denote it by C_1. Then obviously $V(C_1) \subset V(C)$. The longer (u, v)-section of C together with uv form a cycle C' with the length smaller than that of C. By the induction hypothesis, there exist cycles C_2, \ldots, C_t such that, for each $i = 2, \ldots, t$, C_i is a triangle or hole, $V(C_i) \subset V(C')$, and $\chi_{C'} = \sum_{i=2}^t \chi_{C_i}$. Now

$$\chi_C = \chi_{C_1} + \chi_{C'} = \sum_{i=1}^t \chi_{C_i}.$$

Since $V(C') \subset V(C)$, $V(C_i) \subset V(C)$ for each $i = 2, \ldots, t$. Thus the lemma holds.

Theorem 7. Let G be a connected graph which has a connected spanning subgraph G' satisfying the following properties:

(a) G' contains all the triangles of G;

(b) $k(G') = 1$.

Then $k(G) \leq \dim \mathcal{H}(G) + 1$.

Proof. Let $E^* := E(G) \setminus E(G')$. Take an edge $e \in E^*$. Since G' is connected, $G' + e$ contains a cycle containing the edge e. Take a shortest cycle C_e of $G' + e$ containing e. From the choice, C_e is a triangle or a hole in $G' + e$. By the property (a) and the fact that $e \not\in E(G')$, C_e must be a hole in $G' + e$. Since C_e is a cycle in G, by Lemma 6

$$\chi_{C_e} = \sum_{C \in \mathcal{H}^*} \chi_C + \sum_{C \in \mathcal{T}^*} \chi_C$$

where \mathcal{H}^* and \mathcal{T}^* are sets of holes and triangles of G, respectively. We will claim that $T^* = \emptyset$ by contradiction. Suppose that $T^* \neq \emptyset$. Let C be a triangle in T^*. Then one, say e^*, of the three edges of C is a chord of C_e in G. By the property (a),

$$e^* \in E(C) \subset E(G'),$$

which contradicts the fact that C_e is a hole in $G' + e$. Thus $\chi_{C_e} = \sum_{C \in \mathcal{H}^*} \chi_C$ and so $\chi_{C_e} \in \mathcal{H}(G)$. Therefore, for each edge $e \in E^*$, there exists a hole C_e of $G' + e$ such that $C_e \in \mathcal{H}(G)$.

Since $e^* \not\in E(C_e)$ for any $e^* \in E^* \setminus \{e\}$ for each $e \in E^*$, $\{\chi_{C_e} \mid e \in E^*\}$ is a linearly independent set and so $|E^*| \leq \dim \mathcal{H}(G)$. By the property (b), $k(G') = 1$ and so there is an acyclic digraph D' such that $C(D') = G' \cup \{i\}$ where i is a new isolated vertex added to G'. Now we define a digraph D by

$$V(D) := V(D') \cup \{i_e \mid e \in E^*\};$$

$$A(D) := A(D') \cup \bigcup_{e=x,y \in E^*} \{(i_x, i_e), (i_e, i_y)\}.$$

It is easy to check that D is acyclic and $C(D) = G \cup \{i\} \cup \{i_e \mid e \in E^*\}$. Hence $k(D) \leq |E^*| + 1 \leq \dim \mathcal{H}(G) + 1$.

Using Theorem 7, we will show that a connected graph G with at most three triangles satisfies the inequality $k(G) \leq \dim \mathcal{H}(G) + 1$. We need the following two lemmas.
Lemma 8. Let G be a connected graph. For a forest F of G, there exists a spanning tree T of G such that $E(F) \subseteq E(T)$.

Proof. We show by induction on the number of edges of a graph. For a connected graph G with $|E(G)| \leq 2$, the lemma obviously holds. Suppose that for any connected graph with $m \geq 2$ edges, the lemma is true. Take a connected graph G with $m + 1$ edges. Let F be a forest of G. If G is a tree, then G is a spanning tree satisfying $E(F) \subseteq E(G)$. Suppose that G is not a tree. Then there exists a cycle C of G. Since F does not contain a cycle, there exists an edge $e \in E(C)$ such that $e \notin E(F)$ and $G - e$ is connected. Then F is a forest of $G - e$ and by the induction hypothesis, there exists a spanning tree T of $G - e$ such that $E(F) \subseteq E(T)$. Since $G - e$ is a connected spanning subgraph of G, T is also a spanning tree of G. \hfill \Box

Lemma 9. A connected graph with at most three triangles has a connected spanning subgraph satisfying the properties given in Theorem 4.

Proof. Let G be a connected graph with at most three triangles. If G is triangle-free, then any spanning tree satisfies the properties given in Theorem 4. Suppose that G has a triangle. Let H be the subgraph of G induced by the edges of triangles of G. Then H is chordal. For, otherwise, there is a hole C of length at least four. Then each edge of C belongs to a triangle and any two distinct edges of C cannot belong to the same triangle. This contradicts the hypothesis that there are at most three triangles. On the other hand, for each triangle T, since there are at most two triangles other than T in G, there exists an edge e_T not belonging to any other triangle. Now we delete e_T from H for each triangle T of G. Then the resulting graph F is a forest since e_T belongs to a unique induced cycle T in H for each triangle T.

By Lemma 5, there exists a spanning tree Q of G such that $E(F) \subseteq E(Q)$. Let G' be the graph obtained by adding the edge e_T to Q for each triangle T. Obviously G' is a connected spanning subgraph of G containing all the triangles of G. To show that G' is chordal by contradiction, suppose that G' contains a hole C'. Then at least one edge of C' is in F for some triangle T. Replacing e_T with the other two edges of T for each edge e_T on C' results in a subgraph of Q since F contains the two edges of T other than e_T for each triangle T. However, each vertex of this subgraph has degree at least 2 in this subgraph and so contains a cycle in Q. This contradicts the fact that Q is a tree. Hence $k(G') = 1$. \hfill \Box

By Theorem 4 and Lemma 9, the following theorem holds:

Theorem 10. If a graph G has at most three triangles, then $k(G) \leq \dim \mathcal{H}(G) + 1$.

Remark 11. Any connected graph in G_4 has a connected spanning subgraph satisfying the properties given in Theorem 4.

Proof. Take a graph $G \in G_4$. Then for every hole C of G, there exists $e_C \in E(G)$ such that e_C is not contained in any other induced cycle of G. Now let

$$G' := G \setminus \{e_C \mid C \in H(G)\}.$$

Since only edges are deleted, G' is a spanning subgraph of G. To show that G' is connected by contradiction, suppose that G' is not connected. Then $\{e_C \mid C \in H(G)\}$ contains an edge cut F of G. Take an edge $e_{C^*} = uv \in F$. Then $(E(C^*) \setminus \{e_{C^*}\}) \cap E(G')$ contains an edge $e^* \in F \setminus \{e_{C^*}\}$ since u and v belong to different components of G'. Since $e^* \in F \setminus \{e_{C^*}\} \subseteq \{e_C \mid C \in H(G)\} \setminus \{e_{C^*}\}$, $e = e_{C^*}$ for a hole C' distinct from C^*. Then e_{C^*} belongs to both C^* and C', which contradicts the choice of e_{C^*}.

For each hole C, e_C is not contained in any triangle of G. Thus G' contains all the triangles of G and so G' satisfies the property (a).

To show that G' is chordal by contradiction, suppose that there exists a hole C of G'. Then C is not a hole of G by the definition of G'. Thus C contains a chord $e_{C^*} = uv$ for some hole C' of G. Then the cycle formed by a (u, v)-section of C' and e_{C^*} contains an induced cycle of G containing e_{C^*} by Lemma 5 which contradicts the choice of e_{C^*}. Thus G' satisfies the property (b). \hfill \Box

It is worth noting that even if a graph has a connected spanning subgraph satisfying the properties given in Theorem 4, it may not belong to G_4 (see the graph given in Figure 5).

By Theorem 4 and Remark 11, the following proposition holds:

Proposition 12. For any graph G in G_4, $k(G) \leq \dim \mathcal{H}(G) + 1$.

5
Figure 3: G does not belong to G_4 while G has a connected spanning subgraph satisfying the properties given in Theorem 7.

References

