
Machine Learning Techniques for Civil EngineeringProblemsYoram ReichDepartment of Solid Mechanics, Materials, and Structures,Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, IsraelPhone: +972-3-640-7385, Fax: Phone: +972-3-640-7617email: yoram@eng.tau.ac.ilNovember 10, 1996To appear in Microcomputers in Civil Engineering, special issue on Ma-chine Learning AbstractThe growing volume of information databases presents opportunities for advanceddata analysis techniques from machine learning (ML) research. Practical applicationsof ML are very di�erent from theoretical or empirical studies, involving organizationaland human aspects, and various other constraints. Despite the importance of appliedML, little has been discussed in the general ML literature on this topic. In order toremedy this situation, we studied practical applications of ML and developed a proposalfor a seven-steps process that can guide practical applications of ML in engineering.The process is illustrated by relevant applications of ML in civil engineering. Thisillustration shows that the potential of ML has only begun to be explored, but alsocautions that in order to be successful, the application process must carefully addressthe issues related to the seven-step process.1 IntroductionOver the last several decades we have witnessed an explosion in information generationrelated to all aspects of life including all engineering disciplines. There has been an increasein active information collection to be used for solving critical engineering problems suchas infrastructure management [89]. One notable example of data collection is the NationalBridge Inventory in the US. In most information collection cases, information has beenaccumulated without knowing how it will be analyzed or used, and to date, no major practicalbene�t has been gained from these data collection endeavors.Recently, a new set of techniques for knowledge extraction from data has emerged frommachine learning (ML), which is a branch of arti�cial intelligence (AI). The original objectiveof ML techniques was the automated generation of knowledge for its incorporation in expertsystems. This generation was expected to alleviate the knowledge acquisition bottleneckoften associated with the construction of expert systems. While there have been demon-strations of knowledge acquired by single ML techniques (e.g., [52]), there has not beensigni�cant practical progress in using single ML techniques as regular tools by engineers due1



Reich (1996) Machine Learning Applications in Civil Engineering Practicemainly to two reasons. First, practical problems are often too complex to be handled bya single method and second, the task of applying ML techniques in engineering practice ismuch more complex than described in those early studies; it is not simply a matter of takinga program and applying it to data.To overcome the limitations of existing learning techniques with respect to the �rst reason,ML researchers postulated that the solution to diversity and complexity in learning situationsrequires the use of multiple ML techniques. Such multistrategy learning [54] would enablethe variety of information available for learning to be taken into account.In general, two levels can be identi�ed within the multistrategy approach to learning [70]:the macro and the micro. The macro level deals with the use of a collection of learningprograms, each addressing a separate learning problem even though they interact. It is thenon-trivial task of the user to assemble these techniques and resolve their interactions. Themicro level deals with the development of new learning programs that employ a variety of�ne-grained learning strategies for solving a speci�c learning task.An example of a multistrategy learning program is Bridger, an experimental systemdeveloped to explore the extent to which ML can aid in the creation of design supportsystems [68, 79]. At the macro level, Bridger's learning task was manually decomposedinto two subtasks, learning synthesis knowledge and learning redesign knowledge, with a pre-de�ned interaction scheme. Each of these tasks was assigned to a di�erent learning program:Ecobweb and Eprotos (these are enhancements of Cobweb [27] and Protos [8], thatamong other improvements, can handle continuous-valued attributes). At the micro level,each of these programs used several learning strategies to accomplish its subtask. Otherexamples of multistrategy systems are MOBAL (micro and macro, [59]), MLT (macro, [42]),and MCS (micro, [13]).ML techniques can be viewed not only as knowledge generation tools but more generally,as data analysis or information modeling tools similar to traditional statistical techniques.Both statistical and ML techniques can be viewed as approximating functions. Nevertheless,ML (and some recent statistical) techniques are non-parametric, making fewer assumptionsabout the data, at the expense of additional computations which became possible due to theincrease in the power of computers.One example of using ML techniques for modeling involved the modeling of a decisionprocedure (DP) for selecting among mathematical models that simulate ground water con-taminant transport processes [81]. The modeling employed two ML programs: CN2 [21] andIND [16]. Training examples for these programs were generated by simulating the DP. Theprograms created di�erent models of the DP that led to its better understanding, which inturn, led to the detection of errors and to the subsequent improvement of the DP. The newDP was then subjected to the same modeling procedure.The aforementioned projects, one for the knowledge acquisition role and one for the in-formation modeling role, suggest that solutions to practical ML problems require the useof multiple ML methods for providing di�erent and complementary functionalities and per-spectives. A successful application requires matching the scope of applicability of ML toolsto the nature of the application. This matching requires an intimate understanding of MLtechniques and being creative in their operation.But there is more to successful applied ML than using multiple ML techniques; thewhole application process needs to studied. This paper addresses this issue in the context2



Reich (1996) Machine Learning Applications in Civil Engineering Practiceof civil engineering. The state of applied ML in civil engineering is reviewed (section 2)and the status of preliminary guidelines for using ML techniques is summarized (section 3).A seven-stage process, called Contextualized ML Modeling (CMLM), is developed from anearlier version [67] (section 4). The utility of this process needs to be tested and its futureimprovement depends on using it in developing practical ML applications. The stages areexplained using the studies reviewed and other ML sources. Section 5 summarizes the keypoints and presents some future work.2 State of the art of using ML in civil engineeringThe �rst uses of ML programs in civil engineering involved testing di�erent existing toolson simple problems (e.g., [6, 50, 74, 86]), gradually, more di�cult problems were addressed(e.g., [32, 65, 96]), and recently, the solution of few complex practical problems have beenexplored (e.g., planning wastewater treatment plant operation [83], and architectural design[9]).In many early studies, as well as many contemporary, a single ML technique has beenemployed. By and large, the selection of these techniques was based on availability and notnecessarily applicability of the ML technique to the target problem. Often, the problem rep-resentation used was a simpli�cation driven by the limitation of the available ML technique.There have been exceptions to this practice. In some cases, new techniques or modi�cationsof existing techniques were developed to expand the applicability of ML techniques (e.g., forlearning synthesis knowledge in Bridger [78], for architectural design in FABEL [9], or formonitoring water treatment plants [43, 83]). In other cases, several methods and creativeknowledge representations were used to address di�erent variations of learning problems(e.g., modeling material stress-strain relations [32]).While addressing increasingly complex problems, the necessity to integrate several MLtechniques for solving them was recognized and an initial theoretical foundation for suchintegration was developed [75]. Several subsequent systems that dealt with large problemsemployed multiple methods (e.g., Bridger, FABEL, [83]). These systems also incorporatednew or signi�cantly adapted ML tools.The role assigned to ML techniques in civil engineering applications varied signi�cantly.There have been studies on knowledge extraction (e.g., feasibility of wind bracing [6] andenvironmental impact assessment [38]); studies solving complete problems in which learningplayed a major role (e.g., cable-stayed bridge design [68] and monitoring water treatmentplants [83, 43]); and studies that employed learning as part of their operation (e.g., steelbridge design [1], highway truck load monitoring [29], transmission line towers design [60],and architectural design [9]).In addition, there have been studies directed at information modeling for creating estima-tion models (e.g., material stress-strain relations [32] and properties of composite materials[15]) and studies on modeling aimed at improving the understanding of a phenomenon (e.g.,decision procedures [81] and material corrosion behavior [82]). The latter studies employedmultiple ML techniques.There are two issues that put work on ML in civil engineering into perspective. First,studies to date on ML applications in civil engineering have explored a small number of ML3



Reich (1996) Machine Learning Applications in Civil Engineering Practicetechniques, most notably supervised concept learning with few exceptions employing unsu-pervised learning (e.g., Bridger) or other techniques. This is in contrast to the potentialthat many other ML techniques o�er [76]. Thus, the use of ML in civil engineering is only atits infancy. Second, many previous studies contained little or no systematic testing and havehad little or no follow-up work. This suggests that many of these studies were preliminaryand did not mature. It also cautions us to critically review the conclusions of these studies.3 Preliminary guidelines for using ML techniquesML techniques and problems can be characterized along many dimensions that inuencethe applicability of the techniques and thus should be consulted when selecting betweenthem. These dimensions include: (1) the complexity of representing input data and learnedknowledge; (2) the mechanisms for learning knowledge (or models) and the functional formof these models; (3) the mode of learning whether batch or incremental; (4) the amountof background knowledge employed while learning; (5) the ability to handle missing values,noisy, or numeric data; (6) the computational complexity of the algorithm; and (7) thelearner user interaction.In addition to these dimensions we stress two additional dimensions because they createclusters that somewhat correspond to three classical approaches to ML (see Figure 1). Thesedimensions are: comprehensibility and timing. The comprehensibility dimension ranges from(1) clear|in systems that create clear, comprehensible knowledge (e.g., rule induction);to (2) opaque|for example, in black-box systems such as neural networks. The timingdimension ranges from (1) early in systems that learn pro-actively by receiving data, learningand storing knowledge that can subsequently be used for problem solving; to (2) late insystems that learn reactively by storing data and subsequently retrieve it, learn from it(locally), and adapt it to solve problems. Note that the task of storing the data may involvelearning to index the data e�ciently.Most ML systems learn pro-actively except for instance-based learning (IBL) systems(e.g., [97]) or case-based reasoning (CBR) systems (e.g., [9], [43], or [83]) that are reactivelearners. On the comprehensibility dimension, IBL or CBR are placed in the middle, some-what closer to symbolic learning because while their description might be clear, it mightcontain irrelevant data and the knowledge embedded in them might not be so clear. Deci-sion trees might be clear or di�cult to understand depending on their size and nature ofdata.The comprehensibility and timing dimensions create three clusters of ML approachesshown in Figure 1. Most studies on ML in civil engineering can be classi�ed into one ofthese clusters. Particular systems will be placed along these dimensions depending on thespeci�c mechanisms that they employ. For example, Ecobweb mainly learns pro-activelyby creating a hierarchical classi�cation of designs; this hierarchy is less comprehensible thanrules or decision trees.From the previous paragraphs we see the many dimensions inuencing the behavior of MLtechniques. To be successful, the application of ML to engineering practice requires carefuland systematic analysis that identi�es appropriate ML techniques for solving the learningtasks we wish to perform. This requirement has begun to be addressed in various studies4



Reich (1996) Machine Learning Applications in Civil Engineering Practice
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Figure 1: Key dimensions of learning systemsincluding:� Developing a method for the contextual use of ML for solving complex engineeringproblems [67, 68, 73].� An analysis of the di�culty and importance of various stages in the process of applyingML in engineering and a proposal to support these di�culties [80].� Developing guidelines for the selection of ML techniques to match the characteristics oflearning problems [41]. (We borrow some details from this paper in the present study.)� An analysis of the process, issues, and steps involved in applying classi�cation tech-niques in practice [14]. (We borrow some details from this paper in the present study.)� Developing guidelines for using back-propagation neural networks in applications [35].� The development of a system that selects the best model among three available forlearning classi�cation knowledge in a divide-and-conquer strategy [13].� A comparison between several ML programs recommending an order for using themon classi�cation problems [91].� A study comparing between 23 ML classi�cation programs on 22 datasets to derivevarious guidelines for their practical use [55]. This comparison is signi�cantly di�erentfrom the one in the previous item or from other comparisons in the literature. Itincluded testing many state-of-the-art programs, sometimes several from each type;the comparison was carried out on many databases rather than one or several, thusreducing a potential bias in favor of some programs.� A characterization of classi�cation programs to permit selecting among them for a givenlearning task properties [30]. The process is driven by meta-learning from previous testresults including those from the previous item.� The development of a consultant expert system to aid practitioners in using the ma-chine learning toolbox (MLT) [42] which includes 10 ML programs integrated together[85]. This system is based on knowledge acquired from ML users and experts. Thesystem evolved in a longitudinal study through several versions used in practice.In civil engineering, there have been other studies that briey mentioned a sequence of stepsfor applying ML techniques (e.g., [45] or [94]). In spite of all the above studies, the complexityof applying ML techniques to practical problems is not well appreciated or understood. Thefollowing section discusses the process of applying ML to practical problems in detail, using5



Reich (1996) Machine Learning Applications in Civil Engineering Practiceexamples from studies on applying ML in civil engineering.4 Using ML programs: Contextualized ML modelingSolutions to many problems follow several steps leading from problem analysis to solutiondeployment (see Figure 2). Some of these steps (e.g., 1 and 2, or 2, 3, and 4) may beexecuted in parallel or even in reverse order and the process may iterate before a successfuland acceptable solution is obtained. As in many sequential procedures (even if iterative),the initial steps are the most inuential on the success of the overall process but the leastunderstood, structured, or appreciated. There are many constraints that may be imposedon this process including: time, availability of tools or information, or a required solutionquality. To each practical problem, there may be several candidate solutions satisfying therequirements and the constraints. The application of ML to solving practical engineeringproblems follows similar steps and share similar characteristics.
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Reich (1996) Machine Learning Applications in Civil Engineering Practicesuitable ML techniques. Such a mapping can be used to select and apply ML techniques ina routine fashion. We already mentioned several studies directed at creating such a mapping(e.g., [30], [41], and [85]), but in most cases, a straight forward selection and applicationwill not su�ce. Problems will be simpli�ed to match the capabilities of ML techniques (e.g.,in Bridger as well as in most other studies), solution methods will be adapted (e.g., inBridger) or newly developed (e.g., [38], [43], and [83]), and their use may therefore betermed as innovative or creative.The following subsections detail seven steps that systematically address the critical issuesinvolved in building ML applications. These steps together is a proposed procedure expectedto lead to the development of successful ML applications.4.1 Problem analysisEngineering problems are hard to formulate and what needs to be learned may often beunclear or poorly understood. Although good formulations are very critical to the success oflearning, little has been done to address the problem analysis step in the context of using MLor other data analysis tools [14, 80, 85]. When addressing real world engineering problems,the learning task cannot be formulated precisely at the beginning of a project since the taskmust be based on deep understanding of and involvement in this project. Thus, as shownin Figure 2, problem analysis may have to be executed iteratively and continually. Theseobservations also hold in research projects [68], but it is rare that the evolution of ideas insuch projects is reviewed. Included in the problem analysis are the following aspects:� The data and domain knowledge availability. Good data and domain knowledge are keyto successful application of ML. Often data is unavailable or is in insu�cient quantity.Problem analysis should identify the status of data. The access to domain expertsis critically important to successful ML applications. Domain experts are needed forassisting developers in better understanding the problem, in data preparation, and inresult interpretation and evaluation.� Time constraints. This aspect inuences the availability of experts and data and thenumber of iterations through the steps in Figure 2 possible in a particular project.� The human and organizational aspects. This aspect is critically important because ifpotential users are not involved in the application development, the proposed solutionwill probably fail even if preliminary studies show signi�cant potential [71]. Successfulreal world applications of ML were developed collaboratively by ML researchers andusers (e.g., SKICAT [25], MLT).� The status of a project. Part of the problem analysis deals with classifying the statusof the ML application. There can be several status classi�cations: (1) Proving of orillustrating concepts (e.g., [6], [34], [82], [86], and [96]); this requires a focused e�ortto yield convincing results that point to a new research or development direction. (2)Conducting preliminary studies (e.g., Bridger, [15], [29], [32], [38], and [93]) thatdeal with several steps but do not attempt to build a practical system. (3) Developingpractical systems (e.g., [83]); these projects must follow the seven steps including usersfeedback.The status of a project determines the focus on some aspects of the problem. Never-theless, it is important not to make choices in proof-of-concept or preliminary studies7



Reich (1996) Machine Learning Applications in Civil Engineering Practicethat might prevent them from scaling to deal with the real problems from which theyemerged.� The goal of learning. This goal can be automated knowledge creation or modeling ingeneral. For each of these types, there can be several variations. A diagnosis problemwill require learning predictive knowledge (e.g., [6], [38], [94], and [95]); an evaluationor estimation problem may require learning a continuous-valued function (e.g., [15],[29], [32], and [93]); and a synthesis problem will need generative knowledge (e.g., [37]and [77, 79]). While the previous problems require the use of the most applicable MLtechnique, modeling problems that focus on understanding (e.g., [81] and [82]) canbene�t from the use of diverse techniques.The importance of problem analysis cannot be over-emphasized. Careful problem anal-ysis can lead to: addressing complex problems (e.g., prove the concept of learning designknowledge [66]); isolating parts of complex problems that can be solved by ML (e.g., prelim-inary study of improving �nite element mesh [48]); and identifying sets of practical problemsthat can bene�t from ML (e.g., modeling problems [81], damage detection [7, 88, 93], andestimation problems [15, 29, 32]).In order to bene�t from the collective experience of problem analysis conducted in manystudies, it is critical that over time, more longitudinal studies are performed that documentthe evolution in problem understanding and proposed solutions. Beside [68], this topic hasbeen neglected in civil engineering research.4.2 Collecting data and knowledgeThis stage is intertwined with problem analysis. Often the data improves the problemunderstanding and often no reasonable understanding is possible until data has been collectedand studied. Data can be collected from various sources including:� Experts can provide domain knowledge (e.g., [51] and [58]), case data or descriptionlanguage (e.g., [6], [78], [83], and [94]), and can evaluate the results of learning (e.g.,[6], [22], [58], [81], and [94]). Experts can also assist in interactive learning (e.g., [6],[58], and [86]).� Historical records include data available or scattered in old records or in the literature(e.g., bridge design data [78, 79], design failure data [86]) as well as more recent repos-itories of collected information (e.g., plant operation data [83], or accident records [5,97]). Such data is often incomplete or inhomogeneous, requiring pre-processing or eventhe development of new ML techniques to handle it.� Published experimental data include tabulated data, usually created for analysis pur-poses other than ML (e.g., material data [32, 82]). Similar to historical record data,this data is often incomplete. When such data are collected from multiple sources itrequire special treatment [82].� Simulations can be used to generate data when ML techniques are used to solve inverseproblems such as (e.g., material modeling [15], error estimation of �nite element anal-ysis [96], debugging �nite element input �les [95], signal plan generation [84], bridgeloading identi�cation [29], and damage detection [7, 88, 93]). Simulations can also beused when ML is used to model analytical or other tools (e.g., decision procedures [81],or expert systems [20]). Data created by simulating existing systems may leave many8



Reich (1996) Machine Learning Applications in Civil Engineering Practicemissing values in the data; these values require special treatment [81].Several important issues inuence the data and knowledge collection [41, 80]. We willillustrate those related to learning classi�cation models. Large datasets will often lead tobetter covering of the domain thus result in learning more honest models. However, inclassi�cation, not only is the size of the dataset important but also are the distribution ofdata across the classes. Failing to obtain well distributed data or failing to treat such dataappropriately may lead to large errors [5, 63]. This has been termed the problem of small dis-juncts [63]. Available data must be representative of the domain and should contain enoughcontextual information (e.g., include all environmental conditions in empirical material data[82]).In civil engineering applications, the size of data ranged from several examples in proof-of-concept studies to several thousands when data were created by simulations. Data fromhistorical records ranged from several tens to several hundreds. The number of attributesranged from less than ten to 70-80. The number of classes ranged from two to 18. In onestudy they were 17 classes and the problem of small disjuncts was manifested [5]. If negativeexamples are unavailable, closed world assumption can sometimes be used to generate them[22].One critical and time consuming issue is the integration of multiple sources of informationand the processes integrating them, e.g., selecting the sources, reconciling their terminology,and selecting the information that can best aid learning [80]. Creating terminology for usein data and knowledge descriptions is a critical and non-trivial task [18]. In order that MLusers turn past cases into useful sources of information, these cases have to be describedmeaningfully relative to the present problem and the knowledge associated with it. Evenwhen this is done, descriptions are always from the point of view of those recording themand tend to incorporate only a partial understanding or partial information of the overallproblem [82]. This may require iterating to complete the data, and expert assistance indata pre-processing. Few studies have recognized the terminology problem and designedthe learning approach to handle such diversity by processing sub-terms [49], by interactivelycreating high level terms [86], or by planning to use natural language processing to createterminological structures for data pre-processing [80].As shown in Figure 2 Step 2, the data collection process may reveal that the problemanalysis was imperfect thus, requiring iterations through the problem analysis stage.4.3 Creating representations for the problem, data, and knowl-edgeOnce cases are collected from various sources, a schema for representing them must be de-vised. The schema determines much of the learning bias which signi�cantly impacts learning.Learning bias de�nes the search space for models that could �t the data. Incorrect bias leavesthe models that best explain the data or the more \natural" knowledge structure outsidethe search boundaries. Through the collection of experience in applied ML and intimateproblem understanding, recent ML research has attempted to gather heuristics for selectingappropriate learning bias [33].The dimensionality of data as reected by the number of attributes and classes highlyinuences the ability to learn. Pre-processing of the data can reduce its dimensionality.9



Reich (1996) Machine Learning Applications in Civil Engineering PracticeIn one study, a complex real domain described by 38 attributes was transformed into arepresentation of 11 attributes which included numeric attributes discretized by experts andfew other discrete attributes [83]. Preliminary results of this study suggest that this pre-processing captured su�cient information for learning. In another study, data describedby 20 original attributes was transformed into a description of 12 attributes where all thenumeric attributes have been discretized [5]. The large error rates (i.e., 63-78%) suggestthat this pre-processing might have lost information that otherwise could have been usefulfor learning, that the original data was insu�cient, or that the ML program employed wasnot the best for the task.Pre-processing can also change the \nature" of the data. Dimensional analysis can leadto learning from information that is less dependent on the particular data measurements butthat captures more of the \internal structure" of the data and may lead to better models[34]. Normalization of data that otherwise employ di�erent scales can make the data more\homogeneous" and improve the ability to learn from it [29]. Sometimes, domain knowledge(and not dimensional or other analyzes) can suggest that the ratios between attributesprovide additional information that is useful for learning thus leading to the construction ofnew ratio attributes [69, 79, 94]. In cases when the number of attributes representing datais large, feature extraction can extract attributes more meaningful for learning (e.g., usingtechniques borrowed from computer vision [96]).The choice of attributes is very important for learning. Attributes create an a-dimensionalspace, where a is the number of attributes describing examples. For IBL or CBR, determininga metric on this space is critical to operation. Euclidean metric is not always the optimal one.Neural networks can be viewed as creating a metric on this space [62]. A wrong choice of thetype of attributes can contribute to poor performance (e.g., if using continuous instead ofbinary attributes [51]). Also, the discretization of continuous attributes and class values [96]may result in coarse models or introduce noise due to imperfect discretization boundaries.Good representations are key to problem solving in general and certainly for learning.Problems that do not seem to be easily solvable can become such if clever representationsare devised that capture the essence of the data with minimal schema complexity (e.g.,description of processes [49, 86], or path dependent data [32]). In modeling path or timedependent data, if regular propositional attribute-value representation is used, the represen-tation can become speci�c to the topology of the particular problem [4] and not general asit could be [32].When learning synthesis knowledge a n�to�m mapping needs to be created between nspeci�cation attributes into m design description attributes. Concept formation is suitablefor this purpose because it creates one structure that captures the interaction between theattributes [77]. In learning bridge synthesis knowledge, concept formation has been used [69,79]. In another study on learning bridge synthesis knowledge, m separate k�to�1 mappingswere created, where k ranged from n to n+m�1 [20]. The �rst n�to�1 mapping predictedone design description attribute which was in turn use as input in the next n+1� to�1mapping. This scheme introduced ordering on the design decisions but also could capturesome interaction between the design description attributes.So far we mentioned propositional attribute-value representations. However, this is nota good representation for many problems that require relational or �rst-order logic (FOL)representations. For example, bridges are better described in a structured representation,10



Reich (1996) Machine Learning Applications in Civil Engineering Practicehowever, in studies on learning bridge synthesis knowledge (e.g., Bridger, [20]) the problemwas simpli�ed into propositional attribute-value representation. This transformation lostsome information. Very few civil engineering learning problems were actually representedwith relational (e.g., [47], [86]) or FOL representations (e.g., [22]).As shown in Figure 2 Step 3, if no good representation can be found the process must re-iterate. The reasons underlying the failure might be that the problem is misunderstood, thatthe data and domain knowledge are insu�cient, or that the problem does not �t availablerepresentations in which case it needs to be coerced to �t the most applicable representation.4.4 Selecting solution methods and/or ML programsThe selection of solution methods or learning programs should be based on the properties ofthe learning problem formulated in previous steps. We have already mentioned studies thatattempted to give guidelines for such selection through conducting cross-validation (CV)testing of di�erent techniques [91] (see further in subsection 4.6); by meta-learning fromprevious comparative testing [30, 55]; by building an expert system [85]; or by describingselection guidelines [41]. In subsection 3 we mentioned characteristics of learning systemsthat determine their capabilities and applicability. We now elaborate on them.� The complexity of representing input data and learned knowledge. This dimensionranges from propositional attribute-value representation in most ML applications,structured or relational in some applications (e.g., [47], [49], and [86]), to �rst-orderlogic (e.g., [22]). Rules, decision trees, hierarchical classi�cations, or memories of IBLare all propositional attribute-value representations. Memories of cases in CBR canbe complex (e.g., relational in FABEL), but not always are they manipulated by thelearning mechanisms.Complex representations allow to handle complex domains more naturally, and mightbe able to handle background domain knowledge better. In contrast, complex repre-sentations complicate the learning process.� The mechanisms for learning knowledge (or models) and the functional form of thesemodels. There are many such mechanisms including various greedy search techniques asin recursive partitioning tree building, beam search as in CN2 or AQ, or hill climbing asin Ecobweb. The type of search determines the size of problem that can be addressedby the approach and the ability to approximate the globally optimal model.Viewed as mappings, learned models can be linear or non-linear; they can map adescription of an entity onto one attribute as in classi�cation, or map n input attributesonto m output attributes as would be required in synthesis [77].� The mode of learning whether batch or incremental. When dealing with small datasetsthis dimension is unimportant. However, when dealing with large practical datasets,and especially those that evolve with time, it is important to learn incrementally.All rule or decision tree learning programs used in civil engineering have been batchlearners, whereas CBR or IBL are naturally incremental. Neural networks can alsolearn incrementally although this has not been used in civil engineering applications.� The amount of background knowledge employed while learning. In most ML systemsbackground knowledge is implicit in the description language. Some systems allow toincorporate constraints on the learned models such as required attributes (e.g., IILS11



Reich (1996) Machine Learning Applications in Civil Engineering Practice[38]), or precedence between attributes (e.g., CN2 as in [81]) when learning rules.Logical inference systems allow the incorporation of diverse knowledge (e.g., [11, 22]).Domain knowledge can constrain the search of the learning system. In addition, iflearned knowledge is used as background knowledge, the learning system can be usedto mimic an incremental mode.� The ability to handle missing values, noisy, or numeric data. In all the representations,the type of attributes, whether input or output can be discrete, ordered, structured,or numeric. It is better to handle di�erent attribute types without modi�cations toprevent from losing information. Indeed there are many techniques that handle suchdata. However, in situations where systems are selected based on availability thoseabilities may be lacking, requiring using default for missing values, discretizing numericattributes, or ignoring noise. Such modi�cations to data may deteriorate learningperformance from the level that might have been attained by learning from the originaldata.Another issue is the representation of the \class" attribute when learning classi�cationmodels. In many cases this attribute is originally numeric and cannot be handled bymany ML techniques and thus is been discretized (e.g., [96]). Example techniquesthat can handle numeric class attributes are IBL or CBR techniques (e.g., [40] orEcobweb), regression trees (e.g., CART [12]), few decision tree induction programs(e.g., NewID [10]), and some types of neural networks.� The computational complexity of the algorithm. This dimension is tied to the modedimension. For batch learners the complexity issue is more acute since any additionof data requires re-starting the learning process. Approaches vary considerably alongthis dimension, often in relation to the complexity of representing input data andknowledge. Below are the computational complexities of learning from a dataset, ofvarious techniques [3, 21, 27]:� O(a2n) for tree induction with discrete attributes (e.g., ASSISTANT [19]);� approximately O(a2n log n) for tree induction with some numeric attributes (e.g.,C4.5 [64], IND, NewID);� O(ab2n logb n) for Ecobweb, but each incremental step costs only O(ab2 logb n);� roughly O(a2sn2) in CN2 or AQ-type [53] algorithms;� O(anm) for IBL, but each incremental step costs only O(am); and� exponential in the number of states for inducing relational grammar [47];where, a is the number of attributes describing examples, n is the number of examples,s is the maximum star size for CN2 or AQ, b is the branching factor of Ecobweb'sclassi�cation hierarchy (usually 3 or 4), and m is the number of examples retained inIBL memory (which can be as large as n).For many ML systems, especially those newly developed in civil engineering research,the complexity �gure is not given and it is unclear whether these systems can scale tohandle real domains.� The learner user interaction. In most ML systems there is little interaction betweenthe user and the program, although, such interaction is critical when addressing realproblems. It is often necessary to manually guide the search of the learning system orinput new data to guide it (e.g., [6], [86]). Systems that do provide such interactionoften originate from knowledge acquisition research but also from ML research (e.g.,12



Reich (1996) Machine Learning Applications in Civil Engineering PracticeProtos [8]/Eprotos, MLT, IND).In most applications, ML programs are selected because of availability and not becausethey are actually the best for the particular task with respect to the aforementioned dimen-sions [68]. Often, the choice between one of the three clusters of approaches in Figure 1is based on researchers inclination and not applicability. In such cases, the representation\supposedly natural" to the domain, is selected to �t the learning program of choice.Even if programs are selected based on steps 1 to 3, it is rare that the reasons underlyingthis selection are well articulated or that their validity is reviewed by testing the learningsystem after its deployment. Of course there are exceptions to the above practice (e.g., [38],[43], [9], [83], and [68]). One particular example discusses the process of building a learningsystem (i.e., Bridger) by going through the evolution of selecting programs, evaluatingthem, and �nally developing an approach to handle the complexities discovered in previoustests. The cycles through problem analysis and system testing improved the understandingof the learning task. Such a record of longitudinal study is necessary to appreciate theprogram selection step and its relation to problem analysis.When modeling data with ML this step may be less critical. Instead of creating the bestpossible model, it is more important to create di�erent models that can provide di�erentperspective of the data [81].As shown in Figure 2 Step 4, if no good method exists, the process needs to re-iterate.The reasons for this failure might be that the problem is misunderstood, that the wrongrepresentation was selected, or that there is no available ML technique that is applicable tothe problem.4.5 Selecting program operational parameters or optionsThe use of most ML programs involves setting up various parameters or selecting betweenvarious options. Di�erent parameters give rise to di�erent performance levels of these pro-grams. In a recent study comparing 23 ML programs on 22 datasets, programs defaultparameters were used [55]. Other studies selected tuning parameters according to generalrecommendations and attempted to con�rm them (e.g., [7] according to [61]). However,these examples are exceptions to a common practice among researchers who tune opera-tional parameters to obtain the best possible performance of their learning program on theirdemonstration problems. For neural networks, parameters selection is more critical sincesome parameters determine the topology of the network while others tune the performance.These selections, together with selecting the learning rule and the activation function, areaimed at leading to good network convergence and generalizability of results.In general, the selection of parameters do not generalize to new learning contexts. Thereason underlying this unfortunate problem is that di�erent parameters control di�erentaspects of programs behavior (e.g., the complexity of the schema, the handling of noisydata, or the amount of searching allowed) and it is not easily discerned which ones contributeto good or bad performance in a particular learning context. In consequence, the a prioriselection of parameters that will result in good performance in a particular learning contextremains non-trivial.Some programs such as IND are suites of many techniques whose behavior can be con-�gured by selecting di�erent options and not only operational parameters. Selecting among13



Reich (1996) Machine Learning Applications in Civil Engineering Practicethese options is as di�cult as the setting of operational parameters. Over the last few yearsthere have been an increase in the number of studies dealing with selecting between di�erentoptions. In particular, studies on decision tree induction explored the selection between treepruning strategies [56] and the selection between attribute splitting rules (e.g., [57], [17],[46]).A better appreciation of the di�culty of these issues can be gained by following theevolving understanding of tree splitting rules in its relevant references, showing a reversal inthe conclusions derived in those studies. The cause of the reversal was the methodologicallywrong use of the option selection procedure in the �rst study (i.e., ref. [57]) [17, 46]. Theinability to verify the origin of the �rst conclusion was due to insu�cient data about thetesting procedure employed in that study. This example demonstrates that great care shouldbe exercised in experimental testing of programs if these tests are expected to lead to someoperational conclusions.Similar to the selection between di�erent programs, the importance of selecting programparameters or options is di�erent depending on the role assigned to ML techniques [81]. Inany case, an appropriate selection of operational parameters can be done using various testingprocedures that are discussed in the next section. It is hoped that gradually, experience inusing ML tools in practice would lead to formulating guidelines for the a priori selection ofoperational parameters [85].The selection of operational parameters is the �rst step that employs quantitative eval-uation of learned models. If the goal of learning is automated knowledge generation, thisevaluation is critical. If no parameter combination leads to good performance of the ML pro-gram selected in the previous step, there is a mismatch between the data, its representation,and the ML program. As shown in Figure 2 Step 5, the process can re-iterate by select-ing another program, revising the representation, or collecting additional data and domainknowledge. If all these fail, the problem might be misunderstood or beyond the capabilitiesof existing ML techniques.If the goal of learning is modeling for the purpose of understanding, the critical evaluationis deferred to the next step. In this case, better understanding can sometimes be gained evenby using imprecise or inaccurate models [81, 87].4.6 Testing, evaluating, and interpreting resultsThis stage is the least attended to by the research community although it is the foundation ofall scienti�c and practical work. To illustrate, consider a recent study that detailed minimumrequirements for evaluating neural networks [28]. One interesting part in this study was anexamination of publications in two leading neural networks journals discovering the poorevaluation practice they exercised. The status of testing in civil engineering applicationsof ML is similar and sometimes worse. In some studies, no report on testing is mentioned.Other studies provide one anecdotal example showing what the technique might be doingin a particular situation. Even studies that perform some testing may be de�cient if theirtests are methodologically wrong, or if they do not complete the testing procedure, leavingreaders to interpret the results.The testing of ML techniques involves assessing the quality of knowledge or models theycreate. This assessment is inherently multi-dimensional and includes quantitative and qual-14



Reich (1996) Machine Learning Applications in Civil Engineering Practiceitative aspects such as:(1) quantitative estimation of model accuracy;(2) quantitative comparison between the predictive accuracy of one ML technique andsome base-line performance which may be: another ML technique, other computationaltools such as expert systems (e.g., [39]; although the statistical test in this reference isincorrect), default rules, or expert judgment;(3) qualitative experts' interpretation of learned knowledge or models (e.g., [20] and [81])or qualitative comparison with expert generated rules (e.g., [94]);(4) qualitative improvement in understanding the data used to train the ML technique byexperts or users of the learned models (e.g., [81]); and(5) practical bene�ts of the deployed system.We now elaborate on this list.Quantitative estimation of model accuracy. There are several methods that have beenused to estimate the performance of ML techniques. They are summarized in Table 1. Inthe Table, the number of internal iterations denotes the number of times a basic procedureis executed in order to obtain one estimation, �̂, of the true accuracy �. The number ofiterations denotes the number of times the complete process is performed. The two iteration�gures inuence the computational cost of the method, although for special cases such asdecision trees, there are ways to reduce this cost by dynamically creating only the path inthe tree that is needed in each testing [46].Table 1: Properties of performance estimation methodsEstimation Size of Size of Number of Number of Method Methodmethod training testing internal iterations variability biasset set iterationsResubstitution n n 1 1 very high veryoptimisticHold-out 70-80% n 20-30% n 1 I (O(10)) high pessimisticCross-validation (k-1)/k n 1/k n k (�10) 1 high nearlyunbiasedBootstrap see text see text see text I (�200) low slightlyoptimisticThe method variability reects the estimated error of the method when applied to di�erentdatasets drawn from the same distribution of the present dataset. Given a sample of Iindependent estimations, �̂i, i = 1 : : : I, each calculated in one iteration, this variability iscalculated byvuutPIi=1(�̂i � �̂�)2(I � 1)I ;where �̂� is the average of the estimations. However, as we see later, when using any of themethods, the I estimations are not independent thus the above formula is incorrect andestimating the variability is not trivial.The estimation bias reects the di�erence between the expected value of the estimation,E(�̂), and the parameter being estimated, �, i.e., bias = E(�̂) � �. The bias is important15



Reich (1996) Machine Learning Applications in Civil Engineering Practicewhen estimating the absolute accuracy of a ML technique. It is less critical when comparingbetween two techniques since both can be assessed by the same biased method. For suchcomparison, method variability is more critical.The common methods used to estimate the performance of ML techniques are:� Resubstitution: In this method, all the examples in the dataset are used for trainingas well as for testing the model. This method produces a very optimistic upper-boundestimation of accuracy, i.e., its error estimation is biased downward. Assuming thatthe dataset is sampled from a large population, the performance of resubstitution ishighly dependent on this sampling, i.e., it has high variability.� Hold-out: In this method, the data is randomly divided into a training (about 70-80%of the examples) and a testing set (remaining 20-30%). In order to produce resultswith a con�dence interval of about 95%, the testing set should include more than 1000examples; otherwise, this method may produce poor results. In smaller datasets, thismethod is often repeated several tenth of times, but the results have high variabilitythat is dependent upon the initial random subdivision, in addition to the variability dueto the sampling of the dataset from the larger population. Note that these repetitionsare not independent, having used the same dataset. The results of this method may bepessimistic because not all available data is used for training. The majority of studiesin civil engineering have used these inferior performance estimation techniques evenwhen the testing data were small.� k-fold cross-validation (CV) or leave-one-out: In order to remedy the problems in thehold-out method, a di�erent method for using the data for training and testing isemployed. Figure 3 illustrates a k-fold CV method. It has been common in generalML studies to use a 10-fold CV method when the number of examples, n, exceeds100, or a leave-one-out method (i.e., k = n) for small datasets [36, 55, 92]. Severalcivil engineering studies have also used CV [4, 5, 72, 79, 81, 82]. In order to obtaingood results, a strati�ed CV method should be used [26] in which each subset containsexamples with the same class distribution as in the complete set. Similar practice canbe used in the hold-out method. CV has high variability with respect to the sampling ofthe dataset. Furthermore, its estimation is signi�cantly dependent on the subdivisioninto subsets.� Bootstrap: This estimation method reduces the variability observed in previous meth-ods and are only slightly optimistic [23]. In the bootstrap, a sample of n examples isdrawn with replacement from the original n examples. On an average, 1�1=e = 0:63of the original examples are drawn into this sample. The new sample is used for train-ing and the old sample for testing. The result of this testing provides a measure ofthe optimism of resubstitution. I such samples are drawn and their optimism mea-sure is calculated. The �nal estimation is the average of these measures added to theresubstitution estimation.In cases where program parameters are optimized for some database, there is a need totest the accuracy of the method on an independent test set that was not used to tune theparameters in order to prevent obtaining too optimistic estimations. Figure 4 illustrates such16
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Legend

1. Subdivide the data into k subsets.
2. Perform k folds such that for each fold j:
    a. Learn a model from the (k- 1) training
         subsets (all but the jth subset).
    b. Test the model performance on the jth
         subset and record the accuracy.
3. Calculate the average accuracy over the k folds. 

Procedure

k subsets

k foldsFigure 3: Performance accuracy estimation using a k-fold cross-validation methodan estimation procedure that can be used for tuning operational parameters and options ofprograms, and �nally, estimating the performance accuracy of the learned knowledge. Inthe �rst step, the data is subdivided into data for model learning and model testing. Inthe second step, the data for model learning is used to select the best model (i.e., learningapproach) and operational parameters. In the third step a model is created from the completemodel learning set by the best approach and best operational parameters. This model istested on the testing set. Obviously, the �nal experiment is a hold-out estimation methodwith its above limitations.Quantitative comparison between the predictive accuracy of one ML technique and somebase-line. In order to conduct such comparison it is useful to develop sets of benchmarkproblems. The general ML community collects such problems in a database repository. Oneexample of such a simple set was used in [90], [34], and subsequently in [2] to compare theperformance of di�erent neural networks approaches and illustrate some modeling issues.Each study replicated earlier results to get an appropriate base-line for its version of theprevious approaches: an important activity that is rarely practiced. Note that such replica-tion is easily done when dealing with neural networks since it is easy to reconstruct and testthem. Also note that the particular set of problems was easy to solve and thus their use asbenchmark problems might not reveal the \true" comparative behavior of the approacheson larger scale problems.It has been common to compare between di�erent programs by calculating their perfor-mance accuracy using CV without performing any statistical analysis. This procedure maylead to wrong conclusions due to the high variability of CV. Similarly to executing a hold-outmethod several times one should consider doing the same for CV with di�erent subdivisions.This can control the variability due to subdivision but not the variability due to the sam-pling of the original dataset. Since di�erent iterations of hold-out or even internal iterations17
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Figure 4: Three-stage performance accuracy estimationof CV use almost the same data, they are not independent. Therefore, common statisticaltests for small samples such as the standard t-test, for testing whether the di�erence betweenthe means of two independent distributions is statistically signi�cant, have to be modi�edto take care of this dependence [26]. One modi�cation is the use of a paired sample t-test.This requires that all programs use the same training and testing data in parallel. It posesa problem because one cannot use published results that do not specify how to replicate thedata subdivisions for the purpose of employing this statistical test.Moreover, it is even inappropriate to use this modi�ed test when several ML techniquesare comparatively tested on several databases [26] because there is a chance that some ofthose many comparisons will yield unwarranted results. Thus, if no correction is performedto common tests to account for this chance, their conclusions may be wrong. This problemhas been termed the multiplicity e�ect and it can even be manifested during the internaloperation of ML programs (e.g., when determining which rules generated in a rule learningprogram are signi�cant [31]).Qualitative evaluation of learned knowledge. This evaluation is subjective and has to beperformed with care. It is critical to exercise multiple comparisons or evaluate models byseveral experts to get an inter-subjective opinion. If an evaluation involves comparing learnedmodels with other rules or models, a particular set-up should be followed in which one groupof experts evaluates the learned models with respect to a base-line and another group |serving as the control group | evaluates another arbitrary set of rules (i.e., \placebo" rules)compared to the same base-line. The experts must not know to which of the groups theybelong. Furthermore, the models and base-line rules need to be presented to experts in abalanced manner: some experts will see the learned models �rst and others the base-linerules �rst. It is outside the scope of this paper to discuss statistical experimental designin depth; nevertheless, it is important to understand the necessity of carefully exercising18



Reich (1996) Machine Learning Applications in Civil Engineering Practicequalitative evaluations of models. Without such care, the results might be anecdotal.Assessment of the practical bene�ts of the deployed system. There is no example of anapplication of ML in civil engineering that proved successful in practice. In such assessment,as in assessing the introduction of any new technology, care should be exercised to makesure that the bene�ts observed do indeed follow from the deployed system and not fromthe \excitement" with the new technology. Often such excitement leads to temporarilypaying additional attention to some work aspects thus displaying apparent bene�ts. Suchimprovements, however, fade away quickly.As shown in Figure 2 Step 6, if the evaluation results are negative, the process needs tore-iterate. The reasons for a failure can be problem misunderstanding, wrong selection ofprogram, wrong use of representation or missing data and domain knowledge.4.7 Solution deploymentThere are virtually no practical solutions developed using ML for real civil engineeringproblems. However, some experience with �elded applications of ML exist elsewhere andalso the assimilation in civil engineering of computer systems in general provides insight onthis issue [71].As far as the technical details are concerned, it turns out that many general practicalapplications of ML used the simplest and most robust ML techniques, namely, tree or ruleinduction programs. The product of the application ranged from manual use of learnedmodels for improving understanding or for manual execution (e.g., [24] and [81]) to the em-bedding of the learned models in large software systems (e.g., SKICAT) [44]. The particulartechnical details are inuenced by the many issues that were outlined in the problem analysisstep, in particular, the human and organizational aspects. These aspects mandate that aninfrastructure is built around the technical product that will address training users, prepar-ing usable manuals, and building mechanisms for maintaining the product until it maturesand later on, during its life-cycle.In some sense, this stage constitutes the real testing of an application. It validates thatthe technical solution, be it learned models or software are used to the advantage of users,and that the solution deployed addresses the original problem as formulated in the �rststep and as may have evolved during development. A practical application can fail due toany of the above mentioned issues and other unnoticed factors. Hence, all issues beyondthe technical aspects need to be given utmost attention. Any failure, can trigger iteratingthrough the seven-step process.5 Discussion and SummaryBuilding practical applications of ML requires competence in dealing with the many issuesdiscussed in this paper. They can be summarized in several key points:� Better understanding of the nature of di�erent learning problems is critical and canbe improved by studying previous applications and trying to form characterizationsof engineering domains [30]. Any characterization must be built to evolve continually.This requires establishing a repository of ML programs and civil engineering datasets or19



Reich (1996) Machine Learning Applications in Civil Engineering Practiceproblem de�nitions similar to the repository established by the general ML community.� Careful task analyzes and clever problem formulations can transform di�cult to man-ageable problems (e.g., [48], [66], and [83]).� Intimate understanding of ML techniques can be used to map problem characteristicsinto ML techniques that can address them. This requires that researchers continuallyupdate themselves with state-of-the-art ML research.� In order to perform comparative studies or when the learning role is modeling, itshould be easy to employ several ML techniques simultaneously on learning problems.This can be facilitated by building toolboxes (e.g., MLT and IND). In neural networksapplications this has been practiced due to the relative ease of implementation orthe availability of neural network tools in commercial software such as MATLAB.Comparative studies can lead to improving ML techniques (e.g., as in the StatLogproject [55]).� We elaborated on the issue of evaluation due to its poor status yet critical importance.Any evaluation, whether it involves a single or several ML techniques, and whether it isquantitative or qualitative, requires careful attention in its design, analysis, and inter-pretation. Without such attention, conclusions may be anecdotal, caused by randomfactors, or simply incorrect.� In order to improve the understanding of the seven-step CMLM process and evolvingit, longitudinal contextual studies must be performed and documented. The documen-tation must include the di�culties and failures encountered and not only the successes.Gradually this data will lead to creating rules for the \routine" use of ML techniquesand later will provide some insight about \innovative" or \creative" uses.� In order to succeed in applying ML in practice there is a need for an information man-agement system to support the application process [73, 80]. This system must supportbalanced interaction between users and ML programs and other utility functions. Suchan interaction ability has been realized in systems such as MOBAL, MLT, or IND toa small extent.Most of the studies with ML techniques in civil engineering have employed supervisedconcept learning tools. The same situation has been observed in relation to practical ap-plications of ML in general [44]. Given the general potential of these techniques, we havebarely started to use them in solving problems. The many studies referenced in this paperpoint to many opportunities.We believe that these opportunities could be materialize into practical systems if theapplication process is carefully executed following the seven-step CMLM process. We alsointend to continuously update this process using feedback from future ML applications.References[1] Adeli, H., and Balasubramanyam, K. V. A novel approach to expert systems fordesign of large structures. AI Magazine 9, 4 (1988), 54{63.[2] Adeli, H., and Park, H. S. Counterpropagation neural networks in structuralengineering. Journal of Structural Engineering 121, 8 (1995). 20
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