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Abstract

The growing volume of information databases presents opportunities for advanced
data analysis techniques from machine learning (ML) research. Practical applications
of ML are very different from theoretical or empirical studies, involving organizational
and human aspects, and various other constraints. Despite the importance of applied
ML, little has been discussed in the general ML literature on this topic. In order to
remedy this situation, we studied practical applications of ML and developed a proposal
for a seven-steps process that can guide practical applications of ML in engineering.
The process is illustrated by relevant applications of ML in civil engineering. This
illustration shows that the potential of ML has only begun to be explored, but also
cautions that in order to be successful, the application process must carefully address
the issues related to the seven-step process.

1 Introduction

Over the last several decades we have witnessed an explosion in information generation
related to all aspects of life including all engineering disciplines. There has been an increase
in active information collection to be used for solving critical engineering problems such
as infrastructure management [89]. One notable example of data collection is the National
Bridge Inventory in the US. In most information collection cases, information has been
accumulated without knowing how it will be analyzed or used, and to date, no major practical
benefit has been gained from these data collection endeavors.

Recently, a new set of techniques for knowledge extraction from data has emerged from
machine learning (ML), which is a branch of artificial intelligence (AI). The original objective
of ML techniques was the automated generation of knowledge for its incorporation in expert
systems. This generation was expected to alleviate the knowledge acquisition bottleneck
often associated with the construction of expert systems. While there have been demon-
strations of knowledge acquired by single ML techniques (e.g., [52]), there has not been
significant practical progress in using single ML techniques as regular tools by engineers due
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mainly to two reasons. First, practical problems are often too complex to be handled by
a single method and second, the task of applying ML techniques in engineering practice is
much more complex than described in those early studies; it is not simply a matter of taking
a program and applying it to data.

To overcome the limitations of existing learning techniques with respect to the first reason,
ML researchers postulated that the solution to diversity and complexity in learning situations
requires the use of multiple ML techniques. Such multistrategy learning [54] would enable
the variety of information available for learning to be taken into account.

In general, two levels can be identified within the multistrategy approach to learning [70]:
the macro and the micro. The macro level deals with the use of a collection of learning
programs, each addressing a separate learning problem even though they interact. It is the
non-trivial task of the user to assemble these techniques and resolve their interactions. The
micro level deals with the development of new learning programs that employ a variety of
fine-grained learning strategies for solving a specific learning task.

An example of a multistrategy learning program is BRIDGER, an experimental system
developed to explore the extent to which ML can aid in the creation of design support
systems [68, 79]. At the macro level, BRIDGER’s learning task was manually decomposed
into two subtasks, learning synthesis knowledge and learning redesign knowledge, with a pre-
defined interaction scheme. Each of these tasks was assigned to a different learning program:
EcOoBWEB and EPROTOS (these are enhancements of COBWEB [27] and PROTOS [8], that
among other improvements, can handle continuous-valued attributes). At the micro level,
each of these programs used several learning strategies to accomplish its subtask. Other
examples of multistrategy systems are MOBAL (micro and macro, [59]), MLT (macro, [42]),
and MCS (micro, [13]).

ML techniques can be viewed not only as knowledge generation tools but more generally,
as data analysis or information modeling tools similar to traditional statistical techniques.
Both statistical and ML techniques can be viewed as approximating functions. Nevertheless,
ML (and some recent statistical) techniques are non-parametric, making fewer assumptions
about the data, at the expense of additional computations which became possible due to the
increase in the power of computers.

One example of using ML techniques for modeling involved the modeling of a decision
procedure (DP) for selecting among mathematical models that simulate ground water con-
taminant transport processes [81]. The modeling employed two ML programs: CN2 [21] and
IND [16]. Training examples for these programs were generated by simulating the DP. The
programs created different models of the DP that led to its better understanding, which in
turn, led to the detection of errors and to the subsequent improvement of the DP. The new
DP was then subjected to the same modeling procedure.

The aforementioned projects, one for the knowledge acquisition role and one for the in-
formation modeling role, suggest that solutions to practical ML problems require the use
of multiple ML methods for providing different and complementary functionalities and per-
spectives. A successful application requires matching the scope of applicability of ML tools
to the nature of the application. This matching requires an intimate understanding of ML
techniques and being creative in their operation.

But there is more to successful applied ML than using multiple ML techniques; the
whole application process needs to studied. This paper addresses this issue in the context
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of civil engineering. The state of applied ML in civil engineering is reviewed (section 2)
and the status of preliminary guidelines for using ML techniques is summarized (section 3).
A seven-stage process, called Contextualized ML, Modeling (CMLM), is developed from an
earlier version [67] (section 4). The utility of this process needs to be tested and its future
improvement depends on using it in developing practical ML applications. The stages are
explained using the studies reviewed and other ML sources. Section 5 summarizes the key
points and presents some future work.

2 State of the art of using ML in civil engineering

The first uses of ML programs in civil engineering involved testing different existing tools
on simple problems (e.g., [6, 50, 74, 86]), gradually, more difficult problems were addressed
(e.g., [32, 65, 96]), and recently, the solution of few complex practical problems have been
explored (e.g., planning wastewater treatment plant operation [83], and architectural design
9)).

In many early studies, as well as many contemporary, a single ML technique has been
employed. By and large, the selection of these techniques was based on availability and not
necessarily applicability of the ML technique to the target problem. Often, the problem rep-
resentation used was a simplification driven by the limitation of the available ML technique.
There have been exceptions to this practice. In some cases, new techniques or modifications
of existing techniques were developed to expand the applicability of ML techniques (e.g., for
learning synthesis knowledge in BRIDGER [78], for architectural design in FABEL [9], or for
monitoring water treatment plants [43, 83]). In other cases, several methods and creative
knowledge representations were used to address different variations of learning problems
(e.g., modeling material stress-strain relations [32]).

While addressing increasingly complex problems, the necessity to integrate several ML
techniques for solving them was recognized and an initial theoretical foundation for such
integration was developed [75]. Several subsequent systems that dealt with large problems
employed multiple methods (e.g., BRIDGER, FABEL, [83]). These systems also incorporated
new or significantly adapted ML tools.

The role assigned to ML techniques in civil engineering applications varied significantly.
There have been studies on knowledge extraction (e.g., feasibility of wind bracing [6] and
environmental impact assessment [38]); studies solving complete problems in which learning
played a major role (e.g., cable-stayed bridge design [68] and monitoring water treatment
plants [83, 43]); and studies that employed learning as part of their operation (e.g., steel
bridge design [1], highway truck load monitoring [29], transmission line towers design [60],
and architectural design [9]).

In addition, there have been studies directed at information modeling for creating estima-
tion models (e.g., material stress-strain relations [32] and properties of composite materials
[15]) and studies on modeling aimed at improving the understanding of a phenomenon (e.g.,
decision procedures [81] and material corrosion behavior [82]). The latter studies employed
multiple ML techniques.

There are two issues that put work on ML in civil engineering into perspective. First,
studies to date on ML applications in civil engineering have explored a small number of ML
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techniques, most notably supervised concept learning with few exceptions employing unsu-
pervised learning (e.g., BRIDGER) or other techniques. This is in contrast to the potential
that many other ML techniques offer [76]. Thus, the use of ML in civil engineering is only at
its infancy. Second, many previous studies contained little or no systematic testing and have
had little or no follow-up work. This suggests that many of these studies were preliminary
and did not mature. It also cautions us to critically review the conclusions of these studies.

3 Preliminary guidelines for using ML techniques

ML techniques and problems can be characterized along many dimensions that influence
the applicability of the techniques and thus should be consulted when selecting between
them. These dimensions include: (1) the complexity of representing input data and learned
knowledge; (2) the mechanisms for learning knowledge (or models) and the functional form
of these models; (3) the mode of learning whether batch or incremental; (4) the amount
of background knowledge employed while learning; (5) the ability to handle missing values,
noisy, or numeric data; (6) the computational complexity of the algorithm; and (7) the
learner user interaction.

In addition to these dimensions we stress two additional dimensions because they create
clusters that somewhat correspond to three classical approaches to ML (see Figure 1). These
dimensions are: comprehensibility and timing. The comprehensibility dimension ranges from
(1) elear—in systems that create clear, comprehensible knowledge (e.g., rule induction);
to (2) opaque—for example, in black-box systems such as neural networks. The timing
dimension ranges from (1) early in systems that learn pro-actively by receiving data, learning
and storing knowledge that can subsequently be used for problem solving; to (2) late in
systems that learn reactively by storing data and subsequently retrieve it, learn from it
(locally), and adapt it to solve problems. Note that the task of storing the data may involve
learning to index the data efficiently.

Most ML systems learn pro-actively except for instance-based learning (IBL) systems
(e.g., [97]) or case-based reasoning (CBR) systems (e.g., [9], [43], or [83]) that are reactive
learners. On the comprehensibility dimension, IBL. or CBR are placed in the middle, some-
what closer to symbolic learning because while their description might be clear, it might
contain irrelevant data and the knowledge embedded in them might not be so clear. Deci-
sion trees might be clear or difficult to understand depending on their size and nature of
data.

The comprehensibility and timing dimensions create three clusters of ML approaches
shown in Figure 1. Most studies on ML in civil engineering can be classified into one of
these clusters. Particular systems will be placed along these dimensions depending on the
specific mechanisms that they employ. For example, ECOBWEB mainly learns pro-actively
by creating a hierarchical classification of designs; this hierarchy is less comprehensible than
rules or decision trees.

From the previous paragraphs we see the many dimensions influencing the behavior of ML
techniques. To be successful, the application of ML to engineering practice requires careful
and systematic analysis that identifies appropriate ML techniques for solving the learning
tasks we wish to perform. This requirement has begun to be addressed in various studies

4
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Figure 1: Key dimensions of learning systems

including:

Developing a method for the contextual use of ML for solving complex engineering
problems [67, 68, 73].

An analysis of the difficulty and importance of various stages in the process of applying
ML in engineering and a proposal to support these difficulties [80].

Developing guidelines for the selection of ML techniques to match the characteristics of
learning problems [41]. (We borrow some details from this paper in the present study.)
An analysis of the process, issues, and steps involved in applying classification tech-
niques in practice [14]. (We borrow some details from this paper in the present study.)

e Developing guidelines for using back-propagation neural networks in applications [35].
o The development of a system that selects the best model among three available for

learning classification knowledge in a divide-and-conquer strategy [13].

A comparison between several ML programs recommending an order for using them
on classification problems [91].

A study comparing between 23 ML classification programs on 22 datasets to derive
various guidelines for their practical use [55]. This comparison is significantly different
from the one in the previous item or from other comparisons in the literature. It
included testing many state-of-the-art programs, sometimes several from each type;
the comparison was carried out on many databases rather than one or several, thus
reducing a potential bias in favor of some programs.

A characterization of classification programs to permit selecting among them for a given
learning task properties [30]. The process is driven by meta-learning from previous test
results including those from the previous item.

The development of a consultant expert system to aid practitioners in using the ma-
chine learning toolbox (MLT) [42] which includes 10 ML programs integrated together
[85]. This system is based on knowledge acquired from ML users and experts. The
system evolved in a longitudinal study through several versions used in practice.

In civil engineering, there have been other studies that briefly mentioned a sequence of steps
for applying ML techniques (e.g., [45] or [94]). In spite of all the above studies, the complexity
of applying ML techniques to practical problems is not well appreciated or understood. The

following section discusses the process of applying ML to practical problems in detail, using
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examples from studies on applying ML in civil engineering.

4 Using ML programs: Contextualized ML modeling

Solutions to many problems follow several steps leading from problem analysis to solution
deployment (see Figure 2). Some of these steps (e.g., 1 and 2, or 2, 3, and 4) may be
executed in parallel or even in reverse order and the process may iterate before a successful
and acceptable solution is obtained. As in many sequential procedures (even if iterative),
the initial steps are the most influential on the success of the overall process but the least
understood, structured, or appreciated. There are many constraints that may be imposed
on this process including: time, availability of tools or information, or a required solution
quality. To each practical problem, there may be several candidate solutions satisfying the
requirements and the constraints. The application of ML to solving practical engineering
problems follows similar steps and share similar characteristics.
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Figure 2: A model of engineering problem solving

Practical experience in solving problems using ML techniques and knowledge about the
properties of these techniques can uncover characteristics of problems and their mapping to
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suitable ML techniques. Such a mapping can be used to select and apply ML techniques in
a routine fashion. We already mentioned several studies directed at creating such a mapping
(e.g., [30], [41], and [85]), but in most cases, a straight forward selection and application
will not suffice. Problems will be simplified to match the capabilities of ML techniques (e.g.,
in BRIDGER as well as in most other studies), solution methods will be adapted (e.g., in
BRIDGER) or newly developed (e.g., [38], [43], and [83]), and their use may therefore be
termed as innovative or creative.

The following subsections detail seven steps that systematically address the critical issues
involved in building ML applications. These steps together is a proposed procedure expected
to lead to the development of successful ML applications.

4.1 Problem analysis

Engineering problems are hard to formulate and what needs to be learned may often be
unclear or poorly understood. Although good formulations are very critical to the success of
learning, little has been done to address the problem analysis step in the context of using ML
or other data analysis tools [14, 80, 85]. When addressing real world engineering problems,
the learning task cannot be formulated precisely at the beginning of a project since the task
must be based on deep understanding of and involvement in this project. Thus, as shown
in Figure 2, problem analysis may have to be executed iteratively and continually. These
observations also hold in research projects [68], but it is rare that the evolution of ideas in
such projects is reviewed. Included in the problem analysis are the following aspects:

o The data and domain knowledge availability. Good data and domain knowledge are key
to successful application of ML. Often data is unavailable or is in insufficient quantity.
Problem analysis should identify the status of data. The access to domain experts
is critically important to successful ML applications. Domain experts are needed for
assisting developers in better understanding the problem, in data preparation, and in
result interpretation and evaluation.

o Time constraints. This aspect influences the availability of experts and data and the
number of iterations through the steps in Figure 2 possible in a particular project.

o The human and organizational aspects. This aspect is critically important because if
potential users are not involved in the application development, the proposed solution
will probably fail even if preliminary studies show significant potential [71]. Successful
real world applications of ML were developed collaboratively by ML researchers and
users (e.g., SKICAT [25], MLT).

o The status of a project. Part of the problem analysis deals with classifying the status
of the ML application. There can be several status classifications: (1) Proving of or
illustrating concepts (e.g., [6], [34], [82], [86], and [96]); this requires a focused effort
to yield convincing results that point to a new research or development direction. (2)
Conducting preliminary studies (e.g., BRIDGER, [15], [29], [32], [38], and [93]) that
deal with several steps but do not attempt to build a practical system. (3) Developing
practical systems (e.g., [83]); these projects must follow the seven steps including users
feedback.

The status of a project determines the focus on some aspects of the problem. Never-
theless, it is important not to make choices in proof-of-concept or preliminary studies
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that might prevent them from scaling to deal with the real problems from which they
emerged.

o The goal of learning. This goal can be automated knowledge creation or modeling in
general. For each of these types, there can be several variations. A diagnosis problem
will require learning predictive knowledge (e.g., [6], [38], [94], and [95]); an evaluation
or estimation problem may require learning a continuous-valued function (e.g., [15],
[29], [32], and [93]); and a synthesis problem will need generative knowledge (e.g., [37]
and [77, 79]). While the previous problems require the use of the most applicable ML
technique, modeling problems that focus on understanding (e.g., [81] and [82]) can
benefit from the use of diverse techniques.

The importance of problem analysis cannot be over-emphasized. Careful problem anal-
ysis can lead to: addressing complex problems (e.g., prove the concept of learning design
knowledge [66]); isolating parts of complex problems that can be solved by ML (e.g., prelim-
inary study of improving finite element mesh [48]); and identifying sets of practical problems
that can benefit from ML (e.g., modeling problems [81], damage detection [7, 88, 93], and
estimation problems [15, 29, 32]).

In order to benefit from the collective experience of problem analysis conducted in many
studies, it is critical that over time, more longitudinal studies are performed that document
the evolution in problem understanding and proposed solutions. Beside [68], this topic has
been neglected in civil engineering research.

4.2 Collecting data and knowledge

This stage is intertwined with problem analysis. Often the data improves the problem
understanding and often no reasonable understanding is possible until data has been collected
and studied. Data can be collected from various sources including:

e Fuperts can provide domain knowledge (e.g., [51] and [58]), case data or description
language (e.g., [6], [78], [83], and [94]), and can evaluate the results of learning (e.g.,
[6], [22], [58], [81], and [94]). Experts can also assist in interactive learning (e.g., [6],
[58], and [86]).

o Historical records include data available or scattered in old records or in the literature
(e.g., bridge design data [78, 79], design failure data [86]) as well as more recent repos-
itories of collected information (e.g., plant operation data [83], or accident records [5,
97]). Such data is often incomplete or inhomogeneous, requiring pre-processing or even
the development of new ML techniques to handle it.

o Published experimental data include tabulated data, usually created for analysis pur-
poses other than ML (e.g., material data [32, 82]). Similar to historical record data,
this data is often incomplete. When such data are collected from multiple sources it
require special treatment [82].

o Simulations can be used to generate data when ML techniques are used to solve inverse
problems such as (e.g., material modeling [15], error estimation of finite element anal-
ysis [96], debugging finite element input files [95], signal plan generation [84], bridge
loading identification [29], and damage detection [7, 88, 93]). Simulations can also be
used when ML is used to model analytical or other tools (e.g., decision procedures [81],
or expert systems [20]). Data created by simulating existing systems may leave many

8
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missing values in the data; these values require special treatment [81].

Several important issues influence the data and knowledge collection [41, 80]. We will
illustrate those related to learning classification models. Large datasets will often lead to
better covering of the domain thus result in learning more honest models. However, in
classification, not only is the size of the dataset important but also are the distribution of
data across the classes. Failing to obtain well distributed data or failing to treat such data
appropriately may lead to large errors [5, 63]. This has been termed the problem of small dis-
juncts [63]. Available data must be representative of the domain and should contain enough
contextual information (e.g., include all environmental conditions in empirical material data
82)).

In civil engineering applications, the size of data ranged from several examples in proof-
of-concept studies to several thousands when data were created by simulations. Data from
historical records ranged from several tens to several hundreds. The number of attributes
ranged from less than ten to 70-80. The number of classes ranged from two to 18. In one
study they were 17 classes and the problem of small disjuncts was manifested [5]. If negative
examples are unavailable, closed world assumption can sometimes be used to generate them
[22].

One critical and time consuming issue is the integration of multiple sources of information
and the processes integrating them, e.g., selecting the sources, reconciling their terminology,
and selecting the information that can best aid learning [80]. Creating terminology for use
in data and knowledge descriptions is a critical and non-trivial task [18]. In order that ML
users turn past cases into useful sources of information, these cases have to be described
meaningfully relative to the present problem and the knowledge associated with it. Even
when this is done, descriptions are always from the point of view of those recording them
and tend to incorporate only a partial understanding or partial information of the overall
problem [82]. This may require iterating to complete the data, and expert assistance in
data pre-processing. Few studies have recognized the terminology problem and designed
the learning approach to handle such diversity by processing sub-terms [49], by interactively
creating high level terms [86], or by planning to use natural language processing to create
terminological structures for data pre-processing [80].

As shown in Figure 2 Step 2, the data collection process may reveal that the problem
analysis was imperfect thus, requiring iterations through the problem analysis stage.

4.3 Creating representations for the problem, data, and knowl-
edge

Once cases are collected from various sources, a schema for representing them must be de-
vised. The schema determines much of the learning bias which significantly impacts learning.
Learning bias defines the search space for models that could fit the data. Incorrect bias leaves
the models that best explain the data or the more “natural” knowledge structure outside
the search boundaries. Through the collection of experience in applied ML and intimate
problem understanding, recent ML research has attempted to gather heuristics for selecting
appropriate learning bias [33].

The dimensionality of data as reflected by the number of attributes and classes highly
influences the ability to learn. Pre-processing of the data can reduce its dimensionality.
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In one study, a complex real domain described by 38 attributes was transformed into a
representation of 11 attributes which included numeric attributes discretized by experts and
few other discrete attributes [83]. Preliminary results of this study suggest that this pre-
processing captured sufficient information for learning. In another study, data described
by 20 original attributes was transformed into a description of 12 attributes where all the
numeric attributes have been discretized [5]. The large error rates (i.e., 63-78%) suggest
that this pre-processing might have lost information that otherwise could have been useful
for learning, that the original data was insufficient, or that the ML program employed was
not the best for the task.

Pre-processing can also change the “nature” of the data. Dimensional analysis can lead
to learning from information that is less dependent on the particular data measurements but
that captures more of the “internal structure” of the data and may lead to better models
[34]. Normalization of data that otherwise employ different scales can make the data more
“homogeneous” and improve the ability to learn from it [29]. Sometimes, domain knowledge
(and not dimensional or other analyzes) can suggest that the ratios between attributes
provide additional information that is useful for learning thus leading to the construction of
new ratio attributes [69, 79, 94]. In cases when the number of attributes representing data
is large, feature extraction can extract attributes more meaningful for learning (e.g., using
techniques borrowed from computer vision [96]).

The choice of attributes is very important for learning. Attributes create an a-dimensional
space, where a is the number of attributes describing examples. For IBL or CBR, determining
a metric on this space is critical to operation. FEuclidean metricis not always the optimal one.
Neural networks can be viewed as creating a metric on this space [62]. A wrong choice of the
type of attributes can contribute to poor performance (e.g., if using continuous instead of
binary attributes [51]). Also, the discretization of continuous attributes and class values [96]
may result in coarse models or introduce noise due to imperfect discretization boundaries.

Good representations are key to problem solving in general and certainly for learning.
Problems that do not seem to be easily solvable can become such if clever representations
are devised that capture the essence of the data with minimal schema complexity (e.g.,
description of processes [49, 86], or path dependent data [32]). In modeling path or time
dependent data, if regular propositional attribute-value representation is used, the represen-
tation can become specific to the topology of the particular problem [4] and not general as
it could be [32].

When learning synthesis knowledge a n—to—m mapping needs to be created between n
specification attributes into m design description attributes. Concept formation is suitable
for this purpose because it creates one structure that captures the interaction between the
attributes [77]. In learning bridge synthesis knowledge, concept formation has been used [69,
79]. In another study on learning bridge synthesis knowledge, m separate k—to—1 mappings
were created, where k ranged from n to n+m—1 [20]. The first n—to—1 mapping predicted
one design description attribute which was in turn use as input in the next n+1—to—1
mapping. This scheme introduced ordering on the design decisions but also could capture
some interaction between the design description attributes.

So far we mentioned propositional attribute-value representations. However, this is not
a good representation for many problems that require relational or first-order logic (FOL)
representations. For example, bridges are better described in a structured representation,

10
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however, in studies on learning bridge synthesis knowledge (e.g., BRIDGER, [20]) the problem
was simplified into propositional attribute-value representation. This transformation lost
some information. Very few civil engineering learning problems were actually represented
with relational (e.g., [47], [86]) or FOL representations (e.g., [22]).

As shown in Figure 2 Step 3, if no good representation can be found the process must re-
iterate. The reasons underlying the failure might be that the problem is misunderstood, that
the data and domain knowledge are insufficient, or that the problem does not fit available
representations in which case it needs to be coerced to fit the most applicable representation.

4.4 Selecting solution methods and/or ML programs

The selection of solution methods or learning programs should be based on the properties of
the learning problem formulated in previous steps. We have already mentioned studies that
attempted to give guidelines for such selection through conducting cross-validation (CV)
testing of different techniques [91] (see further in subsection 4.6); by meta-learning from
previous comparative testing [30, 55]; by building an expert system [85]; or by describing
selection guidelines [41]. In subsection 3 we mentioned characteristics of learning systems
that determine their capabilities and applicability. We now elaborate on them.

o The complexity of representing input data and learned knowledge. This dimension
ranges from propositional attribute-value representation in most ML applications,
structured or relational in some applications (e.g., [47], [49], and [86]), to first-order
logic (e.g., [22]). Rules, decision trees, hierarchical classifications, or memories of IBL
are all propositional attribute-value representations. Memories of cases in CBR can
be complex (e.g., relational in FABEL), but not always are they manipulated by the
learning mechanisms.

Complex representations allow to handle complex domains more naturally, and might
be able to handle background domain knowledge better. In contrast, complex repre-
sentations complicate the learning process.

o The mechanisms for learning knowledge (or models) and the functional form of these
models. There are many such mechanisms including various greedy search techniques as
in recursive partitioning tree building, beam search as in CN2 or AQ), or hill climbing as
in ECOBWEB. The type of search determines the size of problem that can be addressed
by the approach and the ability to approximate the globally optimal model.

Viewed as mappings, learned models can be linear or non-linear; they can map a
description of an entity onto one attribute as in classification, or map n input attributes
onto m output attributes as would be required in synthesis [77].

o The mode of learning whether batch or incremental. When dealing with small datasets
this dimension is unimportant. However, when dealing with large practical datasets,
and especially those that evolve with time, it is important to learn incrementally.
All rule or decision tree learning programs used in civil engineering have been batch
learners, whereas CBR or IBL are naturally incremental. Neural networks can also
learn incrementally although this has not been used in civil engineering applications.

o The amount of background knowledge employed while learning. In most ML systems
background knowledge is implicit in the description language. Some systems allow to
incorporate constraints on the learned models such as required attributes (e.g., 1ILS

11
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[38]), or precedence between attributes (e.g., CN2 as in [81]) when learning rules.
Logical inference systems allow the incorporation of diverse knowledge (e.g., [11, 22]).
Domain knowledge can constrain the search of the learning system. In addition, if
learned knowledge is used as background knowledge, the learning system can be used
to mimic an incremental mode.

o The ability to handle missing values, noisy, or numeric data. In all the representations,

the type of attributes, whether input or output can be discrete, ordered, structured,
or numeric. It is better to handle different attribute types without modifications to
prevent from losing information. Indeed there are many techniques that handle such
data. However, in situations where systems are selected based on availability those
abilities may be lacking, requiring using default for missing values, discretizing numeric
attributes, or ignoring noise. Such modifications to data may deteriorate learning
performance from the level that might have been attained by learning from the original
data.
Another issue is the representation of the “class” attribute when learning classification
models. In many cases this attribute is originally numeric and cannot be handled by
many ML techniques and thus is been discretized (e.g., [96]). Example techniques
that can handle numeric class attributes are IBL or CBR techniques (e.g., [40] or
ECOBWEB), regression trees (e.g., CART [12]), few decision tree induction programs
(e.g., NewlID [10]), and some types of neural networks.

o The computational complexity of the algorithm. This dimension is tied to the mode
dimension. For batch learners the complexity issue is more acute since any addition
of data requires re-starting the learning process. Approaches vary considerably along
this dimension, often in relation to the complexity of representing input data and
knowledge. Below are the computational complexities of learning from a dataset, of
various techniques [3, 21, 27]:

e O(a’n) for tree induction with discrete attributes (e.g., ASSISTANT [19]);
e approximately O(a?nlogn) for tree induction with some numeric attributes (e.g.,

C4.5 [64], IND, NewlD);

O(ab*nlog, n) for ECOBWEB, but each incremental step costs only O(ab?®log, n);

roughly O(a*sn?) in CN2 or AQ-type [53] algorithms;

O(anm) for IBL, but each incremental step costs only O(am); and
e exponential in the number of states for inducing relational grammar [47];

where, a is the number of attributes describing examples, n is the number of examples,

s 1s the maximum star size for CN2 or AQ, b is the branching factor of ECOBWEB’s

classification hierarchy (usually 3 or 4), and m is the number of examples retained in

IBL memory (which can be as large as n).

For many ML systems, especially those newly developed in civil engineering research,
the complexity figure is not given and it is unclear whether these systems can scale to
handle real domains.

o The learner user interaction. In most ML systems there is little interaction between
the user and the program, although, such interaction is critical when addressing real
problems. It is often necessary to manually guide the search of the learning system or
input new data to guide it (e.g., [6], [86]). Systems that do provide such interaction
often originate from knowledge acquisition research but also from ML research (e.g.,
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Protos [8]/EpProTOS, MLT, IND).

In most applications, ML programs are selected because of availability and not because
they are actually the best for the particular task with respect to the aforementioned dimen-
sions [68]. Often, the choice between one of the three clusters of approaches in Figure 1
is based on researchers inclination and not applicability. In such cases, the representation
“supposedly natural” to the domain, is selected to fit the learning program of choice.

Even if programs are selected based on steps 1 to 3, it is rare that the reasons underlying
this selection are well articulated or that their validity is reviewed by testing the learning
system after its deployment. Of course there are exceptions to the above practice (e.g., [38],
[43], [9], [83], and [68]). One particular example discusses the process of building a learning
system (i.e., BRIDGER) by going through the evolution of selecting programs, evaluating
them, and finally developing an approach to handle the complexities discovered in previous
tests. The cycles through problem analysis and system testing improved the understanding
of the learning task. Such a record of longitudinal study is necessary to appreciate the
program selection step and its relation to problem analysis.

When modeling data with ML this step may be less critical. Instead of creating the best
possible model, it is more important to create different models that can provide different
perspective of the data [81].

As shown in Figure 2 Step 4, if no good method exists, the process needs to re-iterate.
The reasons for this failure might be that the problem is misunderstood, that the wrong
representation was selected, or that there is no available ML technique that is applicable to
the problem.

4.5 Selecting program operational parameters or options

The use of most ML programs involves setting up various parameters or selecting between
various options. Different parameters give rise to different performance levels of these pro-
grams. In a recent study comparing 23 ML programs on 22 datasets, programs default
parameters were used [55]. Other studies selected tuning parameters according to general
recommendations and attempted to confirm them (e.g., [7] according to [61]). However,
these examples are exceptions to a common practice among researchers who tune opera-
tional parameters to obtain the best possible performance of their learning program on their
demonstration problems. For neural networks, parameters selection is more critical since
some parameters determine the topology of the network while others tune the performance.
These selections, together with selecting the learning rule and the activation function, are
aimed at leading to good network convergence and generalizability of results.

In general, the selection of parameters do not generalize to new learning contexts. The
reason underlying this unfortunate problem is that different parameters control different
aspects of programs behavior (e.g., the complexity of the schema, the handling of noisy
data, or the amount of searching allowed) and it is not easily discerned which ones contribute
to good or bad performance in a particular learning context. In consequence, the a prior:
selection of parameters that will result in good performance in a particular learning context
remains non-trivial.

Some programs such as IND are suites of many techniques whose behavior can be con-
figured by selecting different options and not only operational parameters. Selecting among
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these options is as difficult as the setting of operational parameters. Over the last few years
there have been an increase in the number of studies dealing with selecting between different
options. In particular, studies on decision tree induction explored the selection between tree
pruning strategies [56] and the selection between attribute splitting rules (e.g., [57], [17],
46))

A better appreciation of the difficulty of these issues can be gained by following the
evolving understanding of tree splitting rules in its relevant references, showing a reversal in
the conclusions derived in those studies. The cause of the reversal was the methodologically
wrong use of the option selection procedure in the first study (i.e., ref. [57]) [17, 46]. The
inability to verify the origin of the first conclusion was due to insufficient data about the
testing procedure employed in that study. This example demonstrates that great care should
be exercised in experimental testing of programs if these tests are expected to lead to some
operational conclusions.

Similar to the selection between different programs, the importance of selecting program
parameters or options is different depending on the role assigned to ML techniques [81]. In
any case, an appropriate selection of operational parameters can be done using various testing
procedures that are discussed in the next section. It is hoped that gradually, experience in
using ML tools in practice would lead to formulating guidelines for the a priori selection of
operational parameters [85].

The selection of operational parameters is the first step that employs quantitative eval-
uation of learned models. If the goal of learning is automated knowledge generation, this
evaluation is critical. If no parameter combination leads to good performance of the ML pro-
gram selected in the previous step, there is a mismatch between the data, its representation,
and the ML program. As shown in Figure 2 Step 5, the process can re-iterate by select-
ing another program, revising the representation, or collecting additional data and domain
knowledge. If all these fail, the problem might be misunderstood or beyond the capabilities
of existing ML techniques.

If the goal of learning is modeling for the purpose of understanding, the critical evaluation
is deferred to the next step. In this case, better understanding can sometimes be gained even
by using imprecise or inaccurate models [81, 87].

4.6 Testing, evaluating, and interpreting results

This stage is the least attended to by the research community although it is the foundation of
all scientific and practical work. To illustrate, consider a recent study that detailed minimum
requirements for evaluating neural networks [28]. One interesting part in this study was an
examination of publications in two leading neural networks journals discovering the poor
evaluation practice they exercised. The status of testing in civil engineering applications
of ML is similar and sometimes worse. In some studies, no report on testing is mentioned.
Other studies provide one anecdotal example showing what the technique might be doing
in a particular situation. Fven studies that perform some testing may be deficient if their
tests are methodologically wrong, or if they do not complete the testing procedure, leaving
readers to interpret the results.

The testing of ML techniques involves assessing the quality of knowledge or models they
create. This assessment is inherently multi-dimensional and includes quantitative and qual-
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itative aspects such as:

(1) quantitative estimation of model accuracy;

(2) quantitative comparison between the predictive accuracy of one ML technique and
some base-line performance which may be: another ML technique, other computational
tools such as expert systems (e.g., [39]; although the statistical test in this reference is
incorrect), default rules, or expert judgment;

(3) qualitative experts’” interpretation of learned knowledge or models (e.g., [20] and [81])
or qualitative comparison with expert generated rules (e.g., [94]);

(4) qualitative improvement in understanding the data used to train the ML technique by
experts or users of the learned models (e.g., [81]); and

(5) practical benefits of the deployed system.

We now elaborate on this list.

Quantitative estimation of model accuracy. There are several methods that have been
used to estimate the performance of ML techniques. They are summarized in Table 1. In
the Table, the number of internal iterations denotes the number of times a basic procedure
is executed in order to obtain one estimation, é, of the true accuracy 0. The number of
iterations denotes the number of times the complete process is performed. The two iteration
figures influence the computational cost of the method, although for special cases such as
decision trees, there are ways to reduce this cost by dynamically creating only the path in
the tree that is needed in each testing [46].

Table 1: Properties of performance estimation methods

Estimation Size of Size of Number of Number of Method Method
method training  testing internal iterations  variability bias
set set iterations

Resubstitution n n 1 1 very high  very
optimistic

Hold-out 70-80% n  20-30% n 1 I (O(10))  high pessimistic

Cross-validation (k-1)/kn 1/kn k (~10) 1 high nearly
unbiased

Bootstrap see text  see text  see text I (~200) low slightly
optimistic

The method variability reflects the estimated error of the method when applied to different
datasets drawn from the same distribution of the present dataset. Given a sample of [

independent estimations, #;, 1 = 1...1, each calculated in one iteration, this variability is
calculated by

\I ZZIZI(QAZ - 5)2

(I—nI1 ~’
where 0 is the average of the estimations. However, as we see later, when using any of the
methods, the [ estimations are not independent thus the above formula is incorrect and
estimating the variability is not trivial.
The estimation bias reflects the difference between the expected value of the estimation,

N

E(é), and the parameter being estimated, 6, i.e., bias = E(0) — 6. The bias is important
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when estimating the absolute accuracy of a ML technique. It is less critical when comparing
between two techniques since both can be assessed by the same biased method. For such
comparison, method variability is more critical.

The common methods used to estimate the performance of ML techniques are:

o Resubstitution: In this method, all the examples in the dataset are used for training
as well as for testing the model. This method produces a very optimistic upper-bound
estimation of accuracy, i.e., its error estimation is biased downward. Assuming that
the dataset is sampled from a large population, the performance of resubstitution is
highly dependent on this sampling, i.e., it has high variability.

e Hold-out: In this method, the data is randomly divided into a training (about 70-80%
of the examples) and a testing set (remaining 20-30%). In order to produce results
with a confidence interval of about 95%, the testing set should include more than 1000
examples; otherwise, this method may produce poor results. In smaller datasets, this
method is often repeated several tenth of times, but the results have high variability
that is dependent upon the initial random subdivision, in addition to the variability due
to the sampling of the dataset from the larger population. Note that these repetitions
are not independent, having used the same dataset. The results of this method may be
pessimistic because not all available data is used for training. The majority of studies
in civil engineering have used these inferior performance estimation techniques even
when the testing data were small.

e k-fold cross-validation (CV) or leave-one-out: In order to remedy the problems in the
hold-out method, a different method for using the data for training and testing is
employed. Figure 3 illustrates a k-fold CV method. It has been common in general
ML studies to use a 10-fold CV method when the number of examples, n, exceeds
100, or a leave-one-out method (i.e., k = n) for small datasets [36, 55, 92]. Several
civil engineering studies have also used CV [4, 5, 72, 79, 81, 82]. In order to obtain
good results, a stratified CV method should be used [26] in which each subset contains
examples with the same class distribution as in the complete set. Similar practice can
be used in the hold-out method. CV has high variability with respect to the sampling of
the dataset. Furthermore, its estimation is significantly dependent on the subdivision
into subsets.

e Bootstrap: This estimation method reduces the variability observed in previous meth-
ods and are only slightly optimistic [23]. In the bootstrap, a sample of n examples is
drawn with replacement from the original n examples. On an average, 1—1/e = 0.63
of the original examples are drawn into this sample. The new sample is used for train-
ing and the old sample for testing. The result of this testing provides a measure of
the optimism of resubstitution. [ such samples are drawn and their optimism mea-
sure is calculated. The final estimation is the average of these measures added to the
resubstitution estimation.

In cases where program parameters are optimized for some database, there is a need to
test the accuracy of the method on an independent test set that was not used to tune the
parameters in order to prevent obtaining too optimistic estimations. Figure 4 illustrates such
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Procedure

1. Subdivide the data into k subsets
2. Perform k foldssuch that for each fold j:
a. Learn amodel from the (k- 1) training
ubsets(all but thejth subset).
b. Tes the model performance on the jth
subset and record the accuracy.
3. Calculate the average accuracy over the k folds

L egend k subsets
[ k- 1 subsetsfor
learningthe
model k folds
1 subset for
testing the
model

Figure 3: Performance accuracy estimation using a k-fold cross-validation method

an estimation procedure that can be used for tuning operational parameters and options of
programs, and finally, estimating the performance accuracy of the learned knowledge. In
the first step, the data is subdivided into data for model learning and model testing. In
the second step, the data for model learning is used to select the best model (i.e., learning
approach) and operational parameters. In the third step a model is created from the complete
model learning set by the best approach and best operational parameters. This model is
tested on the testing set. Obviously, the final experiment is a hold-out estimation method
with its above limitations.

Quantitative comparison between the predictive accuracy of one ML technique and some
base-line. In order to conduct such comparison it is useful to develop sets of benchmark
problems. The general ML community collects such problems in a database repository. One
example of such a simple set was used in [90], [34], and subsequently in [2] to compare the
performance of different neural networks approaches and illustrate some modeling issues.
Each study replicated earlier results to get an appropriate base-line for its version of the
previous approaches: an important activity that is rarely practiced. Note that such replica-
tion is easily done when dealing with neural networks since it is easy to reconstruct and test
them. Also note that the particular set of problems was easy to solve and thus their use as
benchmark problems might not reveal the “true” comparative behavior of the approaches
on larger scale problems.

It has been common to compare between different programs by calculating their perfor-
mance accuracy using CV without performing any statistical analysis. This procedure may
lead to wrong conclusions due to the high variability of CV. Similarly to executing a hold-out
method several times one should consider doing the same for CV with different subdivisions.
This can control the variability due to subdivision but not the variability due to the sam-
pling of the original dataset. Since different iterations of hold-out or even internal iterations
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Data for model Datafor
Procedure learning testing
1. Divide the datainto I I/J\I
training and testing subsets. K SUbls

2. Select the best learner and
itsparameters

a. Tex eachcombinationof T T T T T T T T

learner and/or parameters

with ak- fold CV ted. k folds|

b. Select the combination L1

that leadstothebes CV L

performance. : :

3. Assessment of best learner:
a. Creat amodel from al training data using
the best learner and parameters.
b. Test the model on the testing set.

Figure 4: Three-stage performance accuracy estimation

of CV use almost the same data, they are not independent. Therefore, common statistical
tests for small samples such as the standard t-test, for testing whether the difference between
the means of two independent distributions is statistically significant, have to be modified
to take care of this dependence [26]. One modification is the use of a paired sample -test.
This requires that all programs use the same training and testing data in parallel. It poses
a problem because one cannot use published results that do not specify how to replicate the
data subdivisions for the purpose of employing this statistical test.

Moreover, it is even inappropriate to use this modified test when several ML techniques
are comparatively tested on several databases [26] because there is a chance that some of
those many comparisons will yield unwarranted results. Thus, if no correction is performed
to common tests to account for this chance, their conclusions may be wrong. This problem
has been termed the multiplicity effect and it can even be manifested during the internal
operation of MLi programs (e.g., when determining which rules generated in a rule learning
program are significant [31]).

Qualitative evaluation of learned knowledge. This evaluation is subjective and has to be
performed with care. It is critical to exercise multiple comparisons or evaluate models by
several experts to get an inter-subjective opinion. If an evaluation involves comparing learned
models with other rules or models, a particular set-up should be followed in which one group
of experts evaluates the learned models with respect to a base-line and another group —
serving as the control group — evaluates another arbitrary set of rules (i.e., “placebo” rules)
compared to the same base-line. The experts must not know to which of the groups they
belong. Furthermore, the models and base-line rules need to be presented to experts in a
balanced manner: some experts will see the learned models first and others the base-line
rules first. It is outside the scope of this paper to discuss statistical experimental design
in depth; nevertheless, it is important to understand the necessity of carefully exercising
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qualitative evaluations of models. Without such care, the results might be anecdotal.

Assessment of the practical benefits of the deployed system. There is no example of an
application of ML in civil engineering that proved successful in practice. In such assessment,
as in assessing the introduction of any new technology, care should be exercised to make
sure that the benefits observed do indeed follow from the deployed system and not from
the “excitement” with the new technology. Often such excitement leads to temporarily
paying additional attention to some work aspects thus displaying apparent benefits. Such
improvements, however, fade away quickly.

As shown in Figure 2 Step 6, if the evaluation results are negative, the process needs to
re-iterate. The reasons for a failure can be problem misunderstanding, wrong selection of
program, wrong use of representation or missing data and domain knowledge.

4.7 Solution deployment

There are virtually no practical solutions developed using ML for real civil engineering
problems. However, some experience with fielded applications of ML exist elsewhere and
also the assimilation in civil engineering of computer systems in general provides insight on
this issue [71].

As far as the technical details are concerned, it turns out that many general practical
applications of ML used the simplest and most robust ML techniques, namely, tree or rule
induction programs. The product of the application ranged from manual use of learned
models for improving understanding or for manual execution (e.g., [24] and [81]) to the em-
bedding of the learned models in large software systems (e.g., SKICAT) [44]. The particular
technical details are influenced by the many issues that were outlined in the problem analysis
step, in particular, the human and organizational aspects. These aspects mandate that an
infrastructure is built around the technical product that will address training users, prepar-
ing usable manuals, and building mechanisms for maintaining the product until it matures
and later on, during its life-cycle.

In some sense, this stage constitutes the real testing of an application. It validates that
the technical solution, be it learned models or software are used to the advantage of users,
and that the solution deployed addresses the original problem as formulated in the first
step and as may have evolved during development. A practical application can fail due to
any of the above mentioned issues and other unnoticed factors. Hence, all issues beyond
the technical aspects need to be given utmost attention. Any failure, can trigger iterating
through the seven-step process.

5 Discussion and Summary

Building practical applications of ML requires competence in dealing with the many issues
discussed in this paper. They can be summarized in several key points:

o Better understanding of the nature of different learning problems is critical and can
be improved by studying previous applications and trying to form characterizations
of engineering domains [30]. Any characterization must be built to evolve continually.
This requires establishing a repository of ML programs and civil engineering datasets or
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problem definitions similar to the repository established by the general ML, community.

e Careful task analyzes and clever problem formulations can transform difficult to man-
ageable problems (e.g., [48], [66], and [83]).

o Intimate understanding of ML techniques can be used to map problem characteristics
into ML techniques that can address them. This requires that researchers continually
update themselves with state-of-the-art ML research.

e In order to perform comparative studies or when the learning role is modeling, it
should be easy to employ several ML techniques simultaneously on learning problems.
This can be facilitated by building toolboxes (e.g., MLT and IND). In neural networks
applications this has been practiced due to the relative ease of implementation or
the availability of neural network tools in commercial software such as MATLAB.
Comparative studies can lead to improving ML techniques (e.g., as in the StatLog
project [55]).

e We elaborated on the issue of evaluation due to its poor status yet critical importance.
Any evaluation, whether it involves a single or several ML techniques, and whether it is
quantitative or qualitative, requires careful attention in its design, analysis, and inter-
pretation. Without such attention, conclusions may be anecdotal, caused by random
factors, or simply incorrect.

e In order to improve the understanding of the seven-step CMLM process and evolving
it, longitudinal contextual studies must be performed and documented. The documen-
tation must include the difficulties and failures encountered and not only the successes.
Gradually this data will lead to creating rules for the “routine” use of ML techniques
and later will provide some insight about “innovative” or “creative” uses.

e In order to succeed in applying ML in practice there is a need for an information man-
agement system to support the application process [73, 80]. This system must support
balanced interaction between users and ML programs and other utility functions. Such
an interaction ability has been realized in systems such as MOBAL, MLT, or IND to
a small extent.

Most of the studies with ML techniques in civil engineering have employed supervised
concept learning tools. The same situation has been observed in relation to practical ap-
plications of ML in general [44]. Given the general potential of these techniques, we have
barely started to use them in solving problems. The many studies referenced in this paper
point to many opportunities.

We believe that these opportunities could be materialize into practical systems if the
application process is carefully executed following the seven-step CMLM process. We also
intend to continuously update this process using feedback from future ML applications.
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