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ABSTRACT

A statistical model is proposed for the analysis of
errors in microarray experiments and is employed in
the analysis and development of a combined
normalisation regime. Through analysis of the
model and two-dye microarray data sets, this study
found the following. The systematic error intro-
duced by microarray experiments mainly involves
spot intensity-dependent, feature-speci®c and spot
position-dependent contributions. It is dif®cult to
remove all these errors effectively without a suitable
combined normalisation operation. Adaptive nor-
malisation using a suitable regression technique is
more effective in removing spot intensity-related
dye bias than self-normalisation, while regional
normalisation (block normalisation) is an effective
way to correct spot position-dependent errors.
However, dye-¯ip replicates are necessary to
remove feature-speci®c errors, and also allow the
analyst to identify the experimentally introduced
dye bias contained in non-self-self data sets. In this
case, the bias present in the data sets may include
both experimentally introduced dye bias and
the biological difference between two samples.
Self-normalisation is capable of removing dye bias
without identifying the nature of that bias. The per-
formance of adaptive normalisation, on the other
hand, depends on its ability to correctly identify the
dye bias. If adaptive normalisation is combined with
an effective dye bias identi®cation method then
there is no systematic difference between the out-
comes of the two methods.

INTRODUCTION

Microarrays are a technology for measuring the expression
levels of genes simultaneously, allowing the complete
transcriptome of a cell, tissue or organ to be de®ned.
However, microarray experiments generate data that contain
errors, which arise from various sources, such that the noise
may signi®cantly distort the real signal. Experimental error

can be classi®ed into two categories: systematic error and
random error. The former re¯ects the accuracy of measure-
ments, while the latter re¯ects the precision of measurements.
Obtaining data with satisfactory precision and accuracy has
been one of the biggest challenges in the application of
microarray technology.

In a typical spotted slide microarray experiment, two
mRNA samples are compared by reverse transcribing them
into cDNA, labelling using red and green ¯uorescent dyes,
respectively, and then hybridising these labelled targets
simultaneously to denatured PCR product or cDNA probes
spotted on a glass slide. The relative level of gene expression
in the two samples is then measured by determining the ratio
of ¯uorescence intensity of the two dyes. This technique is
very effective in overcoming the weak point of microarray
experiments, which is that their reproducibility in measure-
ment of absolute (as opposed to relative) expression level is
poor. However, associating two samples with two different
¯uorescent dyes introduces dye bias into the measurements.
Dye bias is a systematic error that should be removed before
any further analysis of microarray data is performed. To
remove systematic errors from microarray data one can
employ a normalisation method. A number of normalisation
approaches have been introduced for microarray data analysis,
which include the housekeeping gene approach (1), total RNA
approach (2), global normalisation (3), ANOVA (4), the
centralisation method (5), self-normalisation (6) and adaptive
normalisation involving regression techniques such as LOESS
(3).

The housekeeping gene approach builds on the assumption
that there are sets of genes in any genome that are
constitutively expressed at a relatively constant level under
any set of conditions. The total RNA approach is based on the
assumption that each cell carries the same amount of total
RNA at different times. Unfortunately, there is substantial
evidence that these assumptions are incorrect in many cases
(7,8). Global normalisation is based on two assumptions.
Firstly, that the centre (i.e. the mean or median) of the
distribution of gene expression ratios on a log scale is zero.
Secondly, that the systematic error makes the central line
move vertically, but otherwise leaves the distribution invari-
ant. Therefore, a global normalisation shifts the centre of the
log ratio distribution to zero. However, systematic error in
microarray data is often not constant (3,9). In this study, we
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will show that the log ratio distribution is not always centred to
zero. Therefore, the performance of global normalisation is
not satisfactory. Kerr et al. (4) proposed an ANOVA approach
for microarray data analysis, but this is also global in nature.
The dye bias contained in microarray data usually not only
varies from spot to spot over a slide, but also from replicate to
replicate for a given spot. Therefore, the interaction between
slide and spot should be considered, but this cannot be
achieved using the ANOVA approach. The centralisation
method of Zien et al. (5) was shown to provide improved
results; however, they discarded the data points whose
intensity was below 10 or above 1000 in their study. This
operation excluded 487 out of 1189 genes in their data sets. In
addition, the number of replicates used was very large and so
their approach may be dif®cult to apply in practice.

The self-normalisation method (6) assumes that experi-
mentally introduced error is multiplicative and that, for
corresponding spots in replicated measurements, it is consist-
ent. Based on this, the error on a log scale is additive and a
subtract operation applied to the data sets from two replicates
will remove this systematic error. However, this approach
requires the association of a dye-¯ip technique, as otherwise
the biological difference between two samples being meas-
ured will also be removed by the operation. The dye-¯ip (also
known as dye swap or reverse labelling) technique generates
paired slides where, on the ®rst slide, one mRNA sample is
labelled by Cy5 and the other mRNA sample is labelled by
Cy3, while, on the second slide, the labels for the two samples
are exchanged. Based on self-normalisation, the normalised
result (logged ratio of expression) for a measured spot is half
the difference between logged ratios measured from a pair of
dye-¯ipped replicates for this spot (6). Therefore, self-
normalisation has the property that it corrects feature-speci®c
(i.e. probe- or spot-speci®c) differences so that, for a feature
measuring the expression level of a given gene, the normalised
result only measures the relative abundance of the gene itself
and is not in¯uenced by the measurement of any other
features. Compared to global normalisation, in which the
normalised result for a given gene spot will depend on the
measurements of the whole set of genes, the self-normalisa-
tion approach goes to the other extreme and ignores all other
measurements. Self-normalisation typically performs much
better than global normalisation when dye-¯ip replicates are
available (6).

Adaptive normalisation is an approach that falls somewhere
between global normalisation and self-normalisation. The
approach employs the assumption that the bias introduced by
the experiment is dependent on a number of factors (spot
intensity, print tips, spot position, etc.) and employs regression
techniques to obtain a ®t of the speci®c relationship, and then
makes the correction. Because it takes systematic error as
neither a constant nor spot-speci®c, the method has the
advantages of both the global normalisation and the self-
normalisation approaches, but without their disadvantages.
Adaptive normalisation may perform differently for the
different regression techniques employed. Generally, the
regression can be either global or local. For global regression,
one can employ either a linear or a non-linear function for the
regression. For local regression, the LOESS (LOWESS)
regime (10) is currently the most popular (3), although some
basic knowledge of the method is required for the analyst to

choose appropriate values for the parameters involved in the
method.

Both self-normalisation and adaptive normalisation have
been shown to provide advantages over global normalisation.
Furthermore, adaptive normalisation may have advantages
over self-normalisation. Firstly, self-normalisation can only be
applied to dye-¯ip paired microarray slides. It cannot be
applied to single slides, in contrast to the adaptive approach.
Secondly, for spots whose systematic errors are not consistent
on a slide pair, adaptive normalisation may produce better
results because the correction of any gene spot is dependent on
the bias of all gene spots that have the same value of spot
intensity (i.e. the same value of the dependent variable used in
the regression). However, self-normalisation is much easier to
apply since it can be used without identifying the nature of the
experiment-introduced bias or the genuine difference between
two samples. In contrast, one must know, or estimate, at least
one of these two components in order to apply an adaptive
normalisation. Furthermore, for non-self-self slides, both of
these components are unknown.

Given the above complexity, researchers often ask which
currently used normalisation method performs better. Does the
dye-¯ip technique play an indispensable role in obtaining
better data quality? How does one improve the data quality
through more effective normalisation operations? This study
tries to answer these questions by a comparison of data quality
before and after normalisation. This has permitted an inves-
tigation of which type of replication (dye-¯ip or non-dye-¯ip)
will lead to better data quality and what normalisation
techniques can generate data with higher accuracy. In order
to compare the data quality obtained by different experimental
designs and different normalisation regimes under a given
number of replicates, we propose a method for assessing the
accuracy and precision of normalised data. The former
depends on our ability to remove the systematic error
contained in microarray data. For self-self hybridisations,
the data points should centre to the zero line on an M±A plot
(6) and this can be used for the assessment of the accuracy of
normalised data. In general, for non-self-self data, it is not
known to what line the data spots should centre. However,
self-normalisation has the intrinsic capacity to remove dye
bias without detection of that bias. Hence, accuracy can be
assessed by the systematic difference between normalised data
from self-normalisation and from other normalisation tech-
niques. The precision of normalised data can be assessed by
the data consistency, which is represented by the difference of
normalised data from replicate experiments, since this differ-
ence is only related to experimental noise and the performance
of the normalisation regime employed. Therefore, comparison
of this difference between a range of normalisation techniques
applied to the same data sets can answer the question of which
normalisation approach works better. Similarly, comparison
of data consistency corresponding to different experimental
designs shows which experimental design generates data of
higher quality.

In this study, a statistical model for microarray experiments
is proposed and used to investigate how systematic error is
removed by different normalisation operations under certain
simplifying assumptions. Deductions derived from the model
are tested on real data from a set of microarray experiments.
From analysis of the model and experiments, we make a
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number of useful conclusions. Firstly, we clarify the role of
dye-¯ip replicates for improving microarray data quality.
Secondly, we introduce a high performance normalisation
approach that involves up to three stages in the regime. Details
of the normalisation protocols and derivations of the results
are contained in the Appendix.

ANALYTICAL METHODS

A statistical model is employed to investigate the main sources
of systematic error and the effects of different normalisation
approaches on these terms. In the following discussion, we
consider log transformed data. Unless otherwise speci®ed, the
ratio (M) and spot intensity (A) are actually the ratio and mean
spot intensity on a log scale, i.e. M = logR/G and A = log

�������
RG
p

,
where R and G are measurements from the red and green
channels, respectively, and we use base 2 logarithms.

A statistical model of experimental error

Let n represent the number of replicates of an experiment, g
represent the number of the features (probes) on the slide, mj

( j = 1, 2, ¼, g) represent the true ratio of expression levels for
the gene measured by feature j, and Mjk ( j = 1, 2, ¼, g; k = 1,
2, ¼, n) represent the measured ratio of expression levels for
feature j on replicate k. The measurement Mjk will be modelled
as:

Mjk = mj + c + ck + e(Fj) + ek(Ajk) + ek(Pj) + ejk 1

withXg

j�1

e�Fj� � 0;
Xg

j�1

ek�Ajk� � 0 "k;
Xg

j�1

ek�Pj� � 0 "k;

where c represents the expected global measurement bias
between two channels, ck represents the variation of global
measurement bias shown on replicate k, e(Fj) represents
feature-speci®c bias for feature j, ek(Ajk) represents spot
intensity-dependent bias for feature j on replicate k, ek(Pj)
represents spot location-related bias for feature j on replicate k
and ejk represents zero mean random error introduced to
feature j on replicate k.

The global measurement bias c is a constant for the given
data sets of n replicates and ck is a constant which represents
the difference between the global bias of the kth replicate and
mean global bias of n replicates. The function e(Fj) depends
on the feature only, but the functions of spot intensity ek(Ajk)
and the spot position ek(Pj) depend on both the feature and
replicate indices. The global measurement bias has been
included in c and ck and we therefore take e(Fj), ek(Ajk) and
ek(Pj) to be centred to zero. We make simplifying assumptions
that the three systematic error terms are independent. This is
most likely sensible because their dependent factors are
expected to be unrelated or only very weakly related. The spot
intensity is mainly dependent on the expression of genes. The
spot position-speci®c term is mainly related to the heterogen-
eity of the experiment over a slide surface and the feature-
speci®c term mainly re¯ects the different performance of
different print tips and related factors. We also assume that the
function of intensity and function of spot position are

continuous functions of their independent variables, but that
the function of feature changes abruptly from feature to
feature.

The proposed model contains only multiplicative items and
is therefore additive on a log scale. Such a multiplicative
model appears to work very well on microarray data without
background correction. The use of background correction
introduces an additive error item into the data that can be
signi®cant for low expression levels and may make this model
unsuitable. Data that contain a mixture of additive and
multiplicative terms can be modelled using, for example, the
model introduced by Rocke and Durbin (11). For the
microarray data studied here we believe it to be most likely
that naõÈve background subtraction has more negative effects
than positive effects on microarray data quality and it is
therefore not used here. This point is illustrated by examining
some of our normalised self-self data (data measured from
self-self hybridisation chips). For self-self data, the genuine
log ratio of each data point should be zero and normalised self-
self data re¯ects the data quality of the corresponding
microarray experiment. A comparison of the outcomes from
applying the normalisation to background-corrected self-self
data and to the same data without background correction will
show the impact of background correction clearly. We have
done a few of these kinds of comparisons based on self-self
data from different microarray experiments and all of them
show that background correction decreases the data quality.
The plots presented in Figure 1 show normalised yeast data
from self-self hybridisation microarray slides (for protocols,
see 12,13). After normalisation, the background-corrected
data is much noisier than the data without background
correction.

Normalisation approaches and procedures

Our model contains three systematic error items which are
factor-speci®c [ek(Ajk), ek(Pj) and e(Fj)]. We employed an
approach that involves a number of normalisation stages in
order to remove these systematic effects wherever possible.
We outline our normalisation approach below and provide
further details in the Appendix.

If the data comes from an experiment with dye-¯ip
replicates, then normalisation can be conducted in two or
three steps. The ®rst step is to correct the intensity-dependent
dye bias. This task can be carried out by adaptive normalisa-
tion or self-normalisation. Self-normalisation simply involves
subtracting the results of each pair of dye-¯ipped replicates.
Adaptive normalisation involves the ®tting of a regression
function to the M±A plot for each slide and correcting
accordingly. In our experiments, we used a generalisation of a
standard polynomial ®t that includes fractional powers
(regression function M = b1 + å4

i = 1bi + 1A1/(i + 1) + bi + 5Ai

+ e). In some cases, it will be advantageous to identify the dye
bias using a pooled set of dye-swap replicates. The
parameterised regression function from the pooled data set
is then applied to each data set in the pool so as to correct its
dye bias. We call this technique `improved adaptive normal-
isation' (iAN) (see Appendix for details).

The second step is to remove the spot location-speci®c error
using regional normalisation. A two-dimensional regression
technique can be used to identify and correct the error in this
case. The regression can be applied to each block of a replicate
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separately or can be applied to an entire replicate. Block-based
regression is used in this study and is recommended for the
situation where different blocks are printed by different print
tips or are printed at different times. Figure 2 provides an
example of the outcome of applying a two-dimensional
quadratic polynomial regression [regression function f(x,y) =
a1 + a2x + a3y + a4x2 + a5xy + a6y2 + e, where x, y are spot
coordinates in a block on a microarray slide] to each block of a
yeast microarray data set (12,13). The plot shows that the
difference in print tips and printing time may cause an abrupt
change in spot position-dependent error (see border area of
adjacent blocks). However, if a border of two adjacent blocks
is in an area where the position-dependent error is dominated
by the heterogeneity of the experiment over a slide surface,
then the impact of difference in print tips and printing time
may not be seen clearly. If a two-dimensional ®t is applied to
an entire replicate, then the ®tted spot position-dependent
error will change smoothly across any borders of two adjacent
blocks, and this is usually not the case.

If we use self-normalisation as the ®rst step, then the
normalisation process only requires the two steps described
above. However, if we use adaptive normalisation then a third
normalisation step is required in order to remove any
remaining feature-speci®c bias. This can be done using
feature normalisation, which is essentially identical to self-
normalisation. We simply subtract the values (after adaptive
and regional normalisation) of each dye-¯ipped pair. The only
difference between this and self-normalisation is that we carry
out feature normalisation after the other normalisation
methods have been applied.

If dye-¯ip replicates are not available, then self-normalisa-
tion and feature normalisation are not possible. In this case, we
can only carry out adaptive and regional normalisation. If the

intensity-dependent bias contains genuine biological signal,
then there is no effective way to identify these two items
separately and it is dif®cult to achieve satisfactory normal-
isation results, as we will demonstrate in the forthcoming
sections.

To summarise, we will consider several normalisation
methods involving combinations of the following normalisa-
tion steps: AN, adaptive normalisation; iAN, improved
adaptive normalisation; SN, self-normalisation; RN, regional
normalisation; FN, feature normalisation.

Combinations of these abbreviations will be used to denote
different normalisation regimes. For data sets with dye-
swap replicates we will use SN+RN, AN+RN, iAN+RN,
AN+RN+FN and iAN+RN+FN, as outlined above. For data
sets without dye swap replicates we will use AN+RN.

ANALYTICAL DEDUCTIONS

The analytical deductions given in this section are based on
the statistical model previously described (1). The analysis is
applied to four different situations: (i) data from self-self
replicates (where they are treated as replicates without dye-
¯ip); (ii) data from self-self replicates (where they are treated
as replicates with dye-¯ip); (iii) data from non-self-self
replicates without dye-¯ip; (iv) data from non-self-self
replicates with dye-¯ip. We should emphasise that treating
self-self replicates as dye-¯ipped replicates or as non-dye-
¯ipped replicates is only a technique of data analysis and not a
real experimental technique, because in a self-self microarray
experiment the dye-¯ip is meaningless.

In the following analysis, we make the simplifying
assumption that the dependent terms can be identi®ed by
regression without error. This is a fairly gross assumption, but

Figure 1. Plots of the estimated log ratio (base 2) after normalisation of four self-self replicates from a yeast microarray experiment. Red spots show results
from data sets with background correction and green spots show results from data sets without background correction.
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we believe that the main differences between normalisation
approaches can be more easily illustrated in this way.
Identifying error introduced by the particular regression
technique will be more dependent on details of the methods
used. We are assuming that this source of error is less
signi®cant than the terms identi®ed below. In the remainder of
this section, only the results and the conclusions based on
those results are provided, while details of the analyses are
contained in the Appendix.

Self-self replicates without dye-¯ip

For this situation, the model is:

Mjk = c + ck + e(Fj) + ek(Ajk) + ek(Pj) + ejk. 2

The genuine log ratio for each spot on each replicate is zero, so
that we have set mj = 0 in equation 1. The normalisation
process for these data involves two steps: adaptive correction
of dye bias and regional normalisation (AN+RN). Let mj

represent the estimated log ratio for feature j after normalisa-
tion, which is given by equation 3 below

mj � e�Fj� � ej where ej � 1

n

Xn

k�1

ejk: 3

Self-self replicates with dye-¯ip

For this situation, we can take the n replicated measurements
as s pairs (n = 2s). The statistical model can then be shown
to be:

Mjk = c + ck + e(Fj) + ek(Ajk) + ek(Pj) + ejk

Mjk + s = c + ck + s + e(Fj) + ek + s(Ajk + s) + ek + s(Pj) + ejk + s

for k = 1, 2, ¼, s. 4

Normalisation of this data set can be carried out by two
different approaches. The ®rst approach includes the adaptive
correction of dye bias, regional normalisation and the
correction of feature-speci®c error (AN+RN+FN). The second
approach involves self-normalisation and regional normalisa-
tion (SN+RN). After AN+RN+FN the estimated log ratio mj

can be shown to be:

mj � eej � 1

n

Xs

k�1

ejk ÿ
Xn

k�s�1

ejk

 !
; 5

where the random error term eej has equal variance to e and has
an identical distribution if the error is symmetrically distrib-
uted. After SN+RN the estimated log ratio mj can be shown to
be:

mj � 1

n

Xs

k�1

�ek�Ajk� ÿ ek�s�Ajk�s�� � eej: 6

Non-self-self replicates without dye-¯ip

For this situation the genuine log ratio mj may contain a spot
intensity-dependent bias that will be removed by intensity-
dependent regression. Therefore, we split mj into two parts: a

Figure 2. We show the spot position-dependent error contribution from one of the yeast microarray chips used in this study. The data set has 6400 (80 3 80)
data points grouped as 16 (4 3 4) blocks. Graduated colours are used to show the spatially averaged log ratio (base 2) obtained by ®tting a 2D quadratic
regression function to the log ratios from each block. Calibration of the colour scheme is shown by the bar on the right in log ratio units.
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spot intensity-independent term, mj*, and a spot intensity-
dependent component, m(Aj), where Aj can be thought of as
the expectation value of the spot intensity for gene j over many
replicates. We substitute mj = mj* + m(Aj) into equation 1 and
get the appropriate statistical model below:

Mjk = mj* + m(Aj) + c + ck + e(Fj) + ek(Ajk) + ek(Pj) + ejk. 7

Self-normalisation is unusable since no dye-¯ipped measure-
ment is available. Furthermore, when the dye bias is corrected
by employing regression to the M±A plot, the ®t will contain
m(Aj) and the dye bias cannot be singled out from the ®t. The
most common current practice is to assume that m(Aj) is
negligible, take the whole ®t as dye bias and remove it from
the data. In this case, we apply adaptive and regional
normalisation (AN+RN), and mj can be shown to be:

mj = mj ± m(Aj) + e(Fj) + ej. 8

Here, we have made a simplifying approximation that m(Aj)
would be completely removed by regression against Ajk. The
main point of equation 8 is that the expression ratio estimate
will be biased if the true expression ratio includes an intensity-
dependent contribution, and this will hold in general.

Non-self-self replicates with dye-¯ip

In this situation, we can take the n replicated measurements as
s pairs (n = 2s) and the statistical model is:

Mjk = mj* + m(Aj) + c + ck + e(Fj) + ek(Ajk) + ek(Pj) + ejk

Mjk + s = mj* ± m(Aj) + c + ck + s + e(Fj) + ek + s(Ajk + s)
+ ek + s(Pj) + ejk + s, 9

where k = 1, 2, ¼, s. In this case, we consider three
normalisation approaches. After AN+RN+FN, the estimated
log ratio mÅ j can be shown to be:

mj = mj ± m(Aj) + eej, 10

after iAN+RN+FN, mÅ j can be shown to be:

mj = mj + eej, 11

and after SN+RN, mÅ j can be shown to be:

mj � mj � 1

n

Xs

k�1

�ek�Ajk� ÿ ek�s�Ajk�s�� �eej : 12

Conclusions based on analytical deductions

From the analytical deductions given by equations 3, 5, 6, 8
and 10±12, we make the following conclusions. (i) Equations
3 and 8 show that the normalised results from non-dye-¯ip
replicates contain the feature-speci®c error term, while
normalised results from dye-¯ip replicates (equations 5, 6,
11 and 12) do not. Therefore, dye-¯ip replication is an
effective way of removing feature-speci®c bias introduced by
the experiment and we can make use of it to achieve better
data quality. (ii) Compared to the normalised results from
approaches using adaptive normalisation (equations 5 and
11), the results from approaches using self-normalization

(equations 6 and 12) contain a term which arises from
differences in spot intensity and dye response between
replicates. Hence adaptive normalisation is usually more
effective in removing dye bias than self-normalisation. (iii) In
the right-hand side of equations 8 and 10 there is a ±m(Aj) term
which re¯ects the intensity-dependent biological bias. This
means that the dye bias will be overcorrected by a normal-
isation approach that includes adaptive normalisation if there
is an intensity-dependent biological bias between two
samples. In this case, the traditional adaptive normalisation
technique is not suitable and iAN is required. (iv) From the
normalised results (equations 10±12), we can see clearly that
there will be an intensity-dependent systematic difference,
m(Aj), between the results from the AN methods and the
results from the SN method. However, there is no such bias
between the normalised results from the iAN method and the
results from the SN method. This provides a way to identify
the intensity-dependent biological difference between two
mRNA samples.

EXPERIMENTAL METHODS

To test conclusions 1 and 2 (above), we will compare the
outcome of normalising self-self data sets using the different
methods introduced. It is worth remembering that we can take
self-self replicates as replicates with or without dye-¯ip. For
testing conclusions 3 and 4, we will use data from reference
treatment replicates with and without dye-¯ip. In order to
determine that the biological bias can be identi®ed and
retained during normalisation, we compare the outcomes from
traditional adaptive normalisation methods and from self-
normalisation. Our model predicts that the systematic differ-
ence between the outcomes of these two approaches is just
equal to the spot intensity-dependent biological bias between
the two samples. The reason is that self-normalisation
removes the dye bias but not the biological bias, while
traditional adaptive normalisation removes both the dye bias
and the biological bias. The difference between them is the
biological bias between two measured samples. Finally, we
compare the outcomes from the improved adaptive method of
dye bias correction with self-normalisation so as to demon-
strate which method produces results with higher accuracy.

Data and analysis

Data from a microarray study on yeast was employed for our
analysis (12,13). The microarray study included four micro-
array slides and on each slide there were two sections, which
were actually two replicates. In each replicate, there are 16
blocks with 400 spots per block. Among 6400 spots in a
replicate, 6277 are spotted with gene products and the
remaining 123 are empty spots. Of the four slides, two are
self-self hybridisation slides, which provide four replicated
measurements. The remaining two are hybridisation slides of
reference versus heat shock samples. Each of the two slides
provides two replicates without dye-¯ip and, at the same time,
the two slides constitute two dye-¯ipped replicates. Though
the number of slides is small, they contain data from self-self
slides, reference heat shock slides, replicates in dye-¯ip form
and replicates in non-dye-¯ip form. This means that all
experimental combinations required for our analysis are
available from this set of slides.
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So far, we have assumed that a slide contains only one set of
measurements. However, the microarray experiments used for
this test have two duplicate sets of measurements on each slide
and, effectively, we treat these sets as separate slides.
Therefore, we have eight sets of measurements from these
slides. We denote the eight data sets as SS1A, SS1B, SS2A,
SS2B, RT1A, RT1B, RT2A and RT2B, where SS stands for
self-self slides, RT stands for reference treatment slides,
1 stands for the ®rst of two replicated slides and 2 stands for
the second of two replicated slides, A stands for the ®rst
section on one slide and B stands for the second section on one
slide.

Analysis of SS1 and SS2

We ®rst take the two slides as non-dye-¯ip replicates and
employ AN+RN normalisation. We then take the two slides as
dye-¯ip replicates and use the AN+RN+FN and SN+RN
normalisation approaches. Because the genuine log ratio is
zero (mj = 0) for self-self microarray data, the normalised
results provide a measure of the error contained in the data. If a
normalisation method can remove all systematic errors
contained in the data, then the normalised data contains only
the random error inherent in the corresponding microarray
experiment. However, if a normalisation approach cannot
remove all the systematic errors, then this will result in
increased errors, and if the systematic errors are not constant,
then the normalised data will show greater variation.
Therefore, a comparison of normalisation approaches can be
conducted by comparing the variation (standard deviation and
range) of self-self microarray data after normalisation. We
also measure the correlation between replicated data sets after
different normalisation approaches, since this also provides an
indication of any systematic variation. This correlation should
become weaker if a better normalisation approach is
employed.

Analysis of RT1 and RT2

Four different normalisation approaches are employed to
normalise the four data sets. They are iAN+RN, SN+RN,
AN+RN+FN and iAN+RN+FN. The outcomes are compared
to evaluate the performance of the approaches. It is necessary
to emphasise that we do not know the genuine log ratio (mj)
and, therefore, we cannot assess the performance of a
normalisation approach by observing the variation of a
normalised data set. For this reason, we used a method
different from that used in the analysis of SS1 and SS2. In this
experiment, we have four replicated measurements and each
replicate contains both random noise and systematic errors.
The random error is related to uncontrollable factors in the
microarray experiment and systematic error may be removed
by normalisation. If the systematic error can be removed
completely by a normalisation approach, then the consistency
(difference between two normalised results from two repli-
cates) re¯ects the random noise of the experiments. However,
if there is still a part of the systematic error in the normalised
data, then the consistency of the data will deteriorate.
Therefore, the performance of the normalisation approaches
can be assessed by comparison of the consistency of replicated
data after being normalised by different normalisation
approaches. In practice, the consistency of replicated data
should be equivalent to the random error contained in the data

set. We measure consistency using the standard deviation and
range of the difference between normalised replicates. We
also visually compare normalised results from different
normalisation approaches in order to identify any systematic
differences between normalisation approaches.

Additional data

The yeast data set contains all of the different types of
experiment required to test our theoretical predictions;
however, this data set is small and analysis of some additional
data is therefore desirable in order to con®rm our results. A set
of chips comparing tissue type in carp (mixed versus gill
tissue), with dye-¯ip biological replicates, was obtained from
A. Cossins, A. Gracey and J. Fraser of the University of
Liverpool. The data consist of eight chips comprising four
dye-¯ip biological replicate pairs, which we refer to as A, B, C
and D. Each pair provides results from the same ®sh, while the
four pairs are also biological replicates in the sense that they
are comparing the same tissue types. Each slide contains
14 112 spots, of which 13 440 are labelled with gene products.
The spots are arranged in 32 blocks, each containing 441
spots. The slides do not contain a large number of replicated
spots and therefore we cannot use within-chip consistency as a
measure of error for this data set. However, we would expect a
successful normalisation scheme to reduce the difference
between results derived from different replicate pairs.

EXPERIMENTAL RESULTS

The outcomes of normalisation from self-self slides SS1 and
SS2 are plotted in Figure 3. The three subplots in Figure 3
show the same results using different values on the x-axis: the
log intensity, the rank of intensity and the spot index. Spots are
indexed block by block and row by row, left to right and then
top to bottom in each case, e.g. the top left spot of the second
block from the left at the top of the slide would be indexed
401. In each subplot, results from three different normalisation
methods are plotted (AN+RN, AN+RN+FN and SN+RN). The
legend indicates which normalisation approach has been used
in each case. The data sets are measurements of self-self
data, so that the true log ratio for every spot should be zero
and the three plots show the experimental error after data
normalisation.

The normalised results of slides RT1 and RT2 are plotted as
Figures 4 and 5. Figure 4 shows the error contained in the
results from the three different normalisation approaches
iAN+RN, SN+RN and iAN+RN+FN. The error here is de®ned
as the difference in log ratio between the replicated spots on
each slide after normalisation. Figure 5 shows the mean and
the difference between the results (log ratios) from the three
normalisation approaches AN+RN+FN, iAN+RN+FN and
SN+RN. Figure 6 shows the same normalisation methods as in
Figure 4 applied to the carp data set. In this case the error is
de®ned as the difference between the estimated log ratios from
different dye-¯ip pairs.

Statistics of the normalised yeast data are presented in
Tables 1 and 2. Table 1 lists the range and standard deviation
of the normalized self-self replicated data using AN+RN,
SN+RN and AN+RN+FN. Table 2 lists the range and standard
deviation of errors after applying the AN+RN, SN+RN,
AN+RN+FN and iAN+RN+FN approaches to reference
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Figure 3. We plot the estimated log ratios for every spot after applying different normalisation approaches to self-self replicated microarray data sets from
yeast experiments (AN+RN, red crosses; SN+RN, blue diamonds; AN+RN+FN, green dots). In the top subplot the estimated log ratios (base 2) are plotted
against mean log intensity. In the middle and bottom subplots the estimated log ratios are plotted against spot index and rank, where the rank of spot intensity
is obtained by sorting the data set by mean log intensity.

Figure 4. We plot the estimated error for every spot after applying different normalisation approaches to reference treatment replicated yeast microarray data
sets (iAN+RN, red crosses; SN+RN, blue diamonds; iAN+RN+FN, green dots). The error is de®ned as the difference in estimated log ratio (base 2) between
replicated spots. In the top subplot the errors are plotted against mean log intensity. In the middle and bottom subplots the errors are plotted against spot
index and rank, where the rank of spot intensity is obtained by sorting the data set by mean log intensity.
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Figure 6. We plot the estimated error for every spot after applying different normalisation approaches to the carp microarray data sets (iAN+RN, red crosses;
SN+RN, blue diamonds; iAN+RN+FN, green dots). The error is de®ned as the difference in estimated log ratio (base 2) from two distinct dye-¯ip pairs after
normalisation. Other details are as in Figure 4.

Figure 5. Comparison of the results (estimated log ratios, base 2) after using three different normalisation approaches on reference treatment replicated yeast
microarray data sets (AN+RN+FN, res1; iAN+RN+FN, res2; SN+RN, res3). The mean of each pair of results are plotted as red crosses and the difference be-
tween each pair of results are plotted as green dots.
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treatment samples, where the error is de®ned as the difference
in log ratio between the replicated spots on each slide after
normalisation. In Table 3 we show results for these four
normalisation methods applied to all possible pairings of dye-
¯ip replicates available in the carp data set.

We also calculated the correlation of the normalised self-
self results. For the four self-self results (estimated log ratios)
after using the AN+RN approach, we found that the mean
value of the correlation coef®cients of replicated spots is 0.62.
Taking the four replicates as two pairs and conducting feature
normalisation, we obtained two sets of results with a mean
correlation coef®cient of 0.22.

DISCUSSION

There are three important points revealed by Figures 3 and 4.
The ®rst is that, through normalisation, we can get more
accurate results from dye-¯ip replicated experiments than
from non-dye-¯ip replicates. This point can also be demon-
strated by the summary statistics of the resulting data sets (see
Tables 1 and 2). In addition, based on our statistical model of
experimental errors and the corresponding analytical deduc-
tions, it is easy to understand why this conclusion is
reasonable, because the feature-speci®c bias introduced by
experiment cannot be removed if there is no dye-¯ip replicate

available. Furthermore, comparing the correlation of normal-
ised results shows the existence of feature-speci®c bias. For
self-self replicated data sets, our model predicts that there may
be a strong correlation among replicates after the AN+RN
normalisation approach where the feature-speci®c error is not
removed. In contrast, a much smaller correlation will be
shown after applying the AN+RN+FN approach to paired
replicates.

The second point revealed by Figures 3 and 4 is that
adaptive normalisation can achieve higher precision than self-
normalisation. This agrees with the inference based on our
model, and the statistics in Tables 1 and 2 also support this
point.

The third point revealed by these two ®gures is that the
random errors introduced by microarray experiments may be
different from spot to spot, but these differences can
reasonably be taken as independent of the spot intensity and
spot position (on a log scale). This can be seen clearly from the
subplots showing error versus spot index and error versus the
rank of spot intensity. At ®rst glance, the error versus log
intensity subplot seems to contradict this conclusion.
However, in this subplot, the spots are not plotted evenly
over the horizontal axis. It is clear that the error plotted in a
region will appear to show a larger range of variation if there
are more spots. Plotting against spot rank provides a better
visualisation of the range and variability of the data.

Figure 5 demonstrates an important point. Compared to the
reference sample, the up-regulation and down-regulation of
genes in the treatment sample may not be balanced.
Furthermore, the direction and degree of this imbalance may
relate to the spot intensity. If the AN method is employed in
this case, then the intensity-dependent imbalance between up-
and down-regulation will be removed. Therefore, the system-
atic difference between the outcome from the AN+RN+FN
and SN+RN methods (shown by the middle subplot) re¯ects
the intensity-dependent biological difference between two
samples. This demonstrates the necessity of identifying the
experimentally introduced bias and the intensity-dependent
biological bias [m(Aj) in our model]. Based on our analysis, if
we conduct a ®t of M versus A of a replicate, then both these
biases (as well as other global biases) will be contained in the
®tting. The biological bias should be retained and the other
items should be removed, but this ®t cannot single out the
biological bias. To achieve this, we proposed an improved
adaptive normalisation method. The top subplot in Figure 5
shows that the iAN method behaves differently from AN. The
bottom subplot provides strong evidence that this method

Table 3. Statistics measuring the difference between estimated results from distinct dye-¯ip pairs of carp slides after four different normalisation methods

Pair A±Pair B Pair C±Pair D Pair A±Pair C Pair B±Pair D Pair A±Pair D Pair B±Pair C

AN+RN Range 1.4917 1.2257 1.5175 1.3812 1.3124 1.4804
SD 0.0994 0.0891 0.0983 0.0864 0.0972 0.0942

SN+RN Range 1.3352 0.9798 1.4896 1.1591 1.1345 1.1549
SD 0.0652 0.0475 0.0783 0.0618 0.0726 0.0549

AN+RN+FN Range 1.0460 0.8125 0.8994 0.9876 0.6851 1.0098
SD 0.0524 0.0455 0.0534 0.0547 0.0502 0.0464

iAN+RN+FN Range 1.0526 0.8245 1.0571 1.0515 0.8896 1.0982
SD 0.0549 0.0468 0.0556 0.0482 0.0521 0.0481

We show the range and standard deviation of the difference between log ratios (base 2) estimated from the same spot in different dye-¯ip pairs.

Table 1. Statistics measuring the experimental error of self-self yeast
slides after three different normalisation methods

AN+RN SN+RN AN+RN+FN

Range 1.9200 1.1219 0.7805
Standard deviation 0.2124 0.1046 0.0865

We show the range and standard deviation of estimated log ratios (base 2)
of all spots.

Table 2. Statistics measuring the experimental error of reference heat
shock yeast slides after four different normalisation methods

AN+RN SN+RN AN+RN+FN iAN+RN+FN

Range 2.0263 1.5939 0.9725 0.9964
Standard deviation 0.1970 0.0838 0.0682 0.0758

We show the range and standard deviation of the difference between log
ratios (base 2) estimated from replicated spots.
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performs well as it shows no systematic difference from the
SN+RN method. Therefore, we conclude that the
iAN+RN+FN method removes systematic bias effectively,
while retaining the improved dye-bias correction displayed by
the adaptive method.

Results from the additional carp data set are shown in
Table 3 and Figure 6 and are consistent with our results using
the yeast data set. The iAN+RN+FN approach provides a
greater reduction in variation in log ratio after normalisation
when compared to the AN+RN, iAN+RN and SN+RN
approaches. We have also con®rmed that there is no system-
atic difference between results from the SN+RN and
iAN+RN+FN methods, which shows that the improved
adaptive normalisation method is not introducing any bias
into the results.

From the above discussion, we can see that the experimental
results strongly support all the analytical deductions based on
our statistical model of experimental error. However, we have
also made a few observations from the experimental results
that cannot be obtained through model-based analyses. Firstly,
from comparison of Tables 1 and 2, we can see that the data
quality of reference heat shock replicates may be as good as
the data quality of self-self replicates. In fact, the random error
of RT (reference treatment) replicates has a slightly smaller
standard deviation than that of SS (self-self) replicates. In
contrast, the former has a larger range of variation; this means
it has more notable outliers. Secondly, we can see from
Figure 5 that heat shock treatment makes a number of genes
become differentially expressed. Furthermore, it appears that
more highly expressed genes are more highly regulated since
they tend to show a systematic increase in log ratio on average
as intensity increases. It would be interesting to see whether
this is true of other organisms. Thirdly, the feature-speci®c
error is the dominant error item in normalised yeast
microarray data from the AN+RN approach (see Tables 1
and 2). This is clear evidence of the impact of feature-speci®c
error and it also reveals that using dye-¯ip replicates is crucial
for improving the performance of microarray data normalisa-
tion. Finally, Figure 4 shows that the error contained in the
®nal results from the iAN+RN+SN method is bounded in the
interval (±0.5, 0.5). This means that we can generate
microarray data with such a level of quality comfortably
(only two dye-¯ip pairs were used in the experiment) if dye-
¯ip replicates and proper normalisation approaches are
employed. Therefore, the genes with 2-fold or larger changes
in expression level can be identi®ed very con®dently (we
employed base 2 log transformations in this study so that a
2-fold change corresponds to a log ratio of 1 or ±1).

SUMMARY AND CONCLUSIONS

Microarray data contains different sources of variation, which
can be classi®ed as systematic and random errors. Removal of
systematic error items is a key issue for the improvement of
microarray data quality. Though increasing the number of
replicates can reduce random error in the data set, it can do
nothing to reduce the systematic error. From consideration of
the statistical model proposed in this study, we demonstrate
that removing systematic error is not only the business of the
data analyst but is also greatly in¯uenced by experimental
design. Employment of dye-¯ip replicates is critical for

obtaining better results through normalisation. In addition,
dye-¯ips provide the precondition for the analyst to identify
the experiment-introduced systematic bias effectively. In
comparison to non-dye-¯ip replicates, the use of dye-¯ip
replicates associated with a suitable normalisation method can
generate much improved results.

The statistical model of experimental errors introduced in
this study provides useful guidance for microarray data
analysis. Based on the model, we know why better results
can be obtained from dye-¯ip replicates and we know why
adaptive normalisation can achieve higher precision than self-
normalisation. We also developed an improved method for
identifying the experiment-introduced bias correctly. Using
the model, we adopted suitable methods for removal of error
items from different sources and so achieved very promising
results. In turn, all the inferences from the model have been
con®rmed experimentally by analysis of real data sets.

This study provides a sound basis for microarray data
analysis. The approach proposed can be used to perform not
only a data normalisation, but also a data quality assessment.
The data quality assessment method is potentially useful for
data ®ltering and experimental quality control. For data ®lter
purposes, we suggest that one could classify the replicated
measurements of a given gene spot into good measurement
and poor measurement subsets, based on the error contained in
each of the measurements, and then discard the poor
measurements of the gene spot, while retaining the good
replicates of the gene spot for use in further analysis. To
discard any gene spot being measured is a method that has
been adopted by some researchers (5,9); however, there is
typically no evidence that the gene spots being discarded are
not of biological importance. We leave the testing of this
approach and the details of the method for microarray data
quality control for further study.

The main conclusions of our study appear to be robust with
respect to the particular regression method used, e.g. using
locally weighted regression in our adaptive normalisation
method gives very similar errors after normalisation (results
not shown). However, the analytical deductions presented in
this paper are based on the assumption that all the normal-
isation processes involved can be carried out perfectly (the
relevant error item can be identi®ed and removed exactly), and
this is clearly an idealisation. For example, in the adaptive
normalisation process, the dye bias may not be identi®ed and
removed exactly. One problem with doing standard regression
on an M±A plot is that both variables contain experimental
error. In this case, it may be better to use a total least squares
method in which both variables are modelled as variables that
depend on some latent independent variable. Since the noise in
M and A is correlated, it may be better to carry out this analysis
using the original channel intensities. We leave the analysis of
improved regression methods for future study.
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APPENDIX: AN ANALYSIS OF THE PERFORMANCE
OF NORMALISATION APPROACHES

In adaptive normalisation (AN), we conduct a regression to an
M±A plot of a replicate and then take the ®tting as the dye bias
and remove it from the data. The ®tting is obtained by taking
the spot intensity A as the independent variable and log ratio M
as the dependent variable. The method for obtaining this ®t
can be either global linear regression or local regression. In
this study, we used a non-linear regression method which is a
generalisation of a standard polynomial ®t. We followed the
model in equation 1 and used fk(Ajk) to represent the ®tted
value for spot j on slide k after carrying out regression, i.e. fk(.)
was the ®tted function from the kth replicate and Ajk was the
intensity of the jth spot on the kth replicate. The correction was
achieved by subtracting the ®tted value from Mjk,

Mjk ¬ Mjk ± fk(Ajk). A1

It is easy to see that AN performs a slide-speci®c correction,
i.e. for different slides, the correction may be different. The
method can be applied to any type of microarray data set.

Improved adaptive normalisation (iAN) is similar to AN.
However, a general function of dye bias is used for all n
replicates. Although the function for n replicates stays
unchanged, the correction for a given gene spot may be
different from replicate to replicate because the spot intensity
on different replicates will be measured as a different value.
We propose a technique for obtaining this general function for
replicates with dye-¯ip. The technique includes four steps:
Firstly, we conduct a scale and location adjustment of spot
intensity so that the intensity distribution of n replicated data
sets has the same range and location. Secondly, we pool the
data from all replicates together into one big data set. Thirdly,
we make an M±A plot of this pooled data. Finally, we carry out
regression on the M±A plot and obtain the parameterised
regression function. The correction is then carried out for each
of the replicates and the amount of adjustment of each data
point is computed by substituting the spot intensity into the
regression function. Therefore, the dye bias correction
performed by iAN is:

Mjk ¬ Mjk ± f(Ajk), A2

where f(.) is the regression function which has been
parameterised by the pooled data.

The pooled data set contains both measurements from
forward labelling slides and reverse labelling slides and they
are matched into pairs, hence the in¯uence of m(Aj) (in
forward labelled measurements) and ±m(Aj) (in reverse
labelled measurements) cancels out. Therefore, the ®tting of
the iAN technique only picks up the systematic error items
ek(Ajk) and c and not the terms m(Aj) and ck. Another basic
point of the iAN method is the commonly used assumption
that dye bias is spot intensity-dependent. We further assume
that the dye bias function for a pool of replicated data sets and
for a single data set will behave similarly. Based on these

assumptions, the main reason for a given spot being measured
with a different dye bias contribution is that the spot intensity
will differ between replicates. The in¯uence of the difference
between dye bias functions (for pooled replicates and for each
of the replicates) will be much weaker. This point has been
con®rmed by analysis of the yeast data described in the main
text. The variation (measured by variance) of dye bias caused
by spot intensity differences is about 100 times as large as that
caused by differences due to changes in the form of dye bias
function between replicates. Therefore, iAN can be expected
to perform well.

Self-normalisation (SN) can only be applied to data from a
dye-¯ipped pair of slides as otherwise the operation will
remove any genuine expression ratio. We assume that the
number of replicates is an even number n = 2s. Let slide k and
k + s be a dye-¯ip pair. A single measurement is obtained from
a pair of replicates:

Mjk ¬ (Mjk ± Mj,k + s)/2 for k = 1, 2, ¼, s. A3

Regional normalisation (RN) is applied to each block of a
replicate. The position-dependent error is identi®ed by a 2D
regression that takes the spot position as the independent
variable and M as the dependent variable. Let fk(Pj) represent
the ®t for feature j on slide k from the regional ®tting. The
correction is:

Mjk ¬ Mjk ± fk(Pj) for k = 1, 2, ¼, s. A4

Feature normalisation (FN) is identical to SN except that it is
carried out after AN and RN (or after iAN and RN). The
transformation is identical to equation A3 except that Mjk in
the right hand side has been transferred by the other
normalisations before this transformation.

In the following sections we consider the process and
performance of different normalisation approaches in remov-
ing the experimental error contained in microarray data.

Self-self replicates without dye-¯ip

For this situation, the statistical model is shown by equation 2
in the main text; iAN, SN and FN are not usable, and so we use
AN+RN (adaptive normalisation plus regional normalisation)
to normalise the data.

In the AN process, the ®t is fk(.) = c + ck + ek(Ajk). Therefore,
after transformation A1, the measured expression ratio
becomes:

Mjk = e(Fj) + ek(Pj) + ejk. A5

In the RN process, the ®t is fk(Pj) = ek(Pj) and, after
transformation A4, we get:

Mjk = e(Fj) + ejk. A6

Finally, it is sensible to take the mean of the n replicates as the
®nal result. Let mÅ j represent the mean of the log ratio for a
gene on spot j. After normalisation, mÅ j can be represented by
equation 3 in the main text.

Self-self replicates with dye-¯ip

For this situation, we can take the n replicated measurement as
s pairs (n = 2s). The model is then given by equation 4 in the
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main text. The two normalisation approaches AN+RN+FN
and SN+RN are considered below.
AN+RN+FN. The outcome of AN and RN can still be
represented by equation A6. Moreover, because dye-¯ip
replicates are available, we can apply FN to the outcome in
equation A6, and using the transformation in equation A3 we
get:

Mjk = [e(Fj) ± e(Fj) + ejk ± ej,k + s]/2 = (ejk ± ej,k + s)/2 A7

Finally, we take the mean of the s outcomes as the normalised
result shown by equation 5 in the main text.
SN+RN. The SN process performs the transform A3, after
which we have:

Mjk = (ck ± ck + s)/2 + [ek(Ajk) ± ek + s(Aj,k + s) + ek(Pj) ±
ek + s(Pj) + ejk ± ej,k + s]/2 A8

after the FN transformation in A4 and, taking the mean of s
sets of results as the normalised result, the ®nal result is shown
by equation 6 in the main text.

Non-self-self slides without dye-¯ip

We split mj into an intensity-independent term mj* and an
intensity-dependent term m(Aj) so that mj= mj* + m(Aj). The
statistical model is then shown by equation 7 in the main text.
We consider the AN+RN approach. For AN the ®t fk(.) will
pick up the terms m(Aj), c, ck and ek(Ajk) and the expression
ratio after transformation A1 becomes:

Mjk = mj* + e(Fj) + ek(Pj) + ejk. A9

For the RN process, the ®t fk(.) will pick up the term ek(Pj) and
after the correction based on equation A4 the outcome can be
shown to be:

Mjk = mj* + e(Fj) + ejk. A10

Finally, we make use of the relationship mj* = mj ± m(Aj) and
the mean of the n replicated measurements is represented by
equation 8 in the main text.

Non-self-self slides with dye-¯ip

The model of the data set is then given by equation 9 in the
main text. We consider the three different normalisation
approaches AN+RN+FN, SN+RN and iAN+RN+FN.
AN+RN+FN. It is easy to see that the outcome of AN is:

Mjk = mj* + e(Fj) + ek(Pj) + ejk A11
Mj,k + s = ±mj* + e(Fj) + ek + s(Pj) + ej,k + s

RN will pick up ek(Pj) and the transformation A4 will remove
it, so we obtain:

Mjk = mj* + e(Fj) + ejk A12
Mj,k + s = ±mj* + e(Fj) + ej,k + s.

Finally, applying FN to each pair of slides and computing the
mean of the s measurements we obtain equation 10 in the main
text.

iAN+RN+FN. As before, iAN removes the error terms ek(Ajk)
and c, but leaves m(Aj) and ck untouched, so that:

Mjk = mj + ck + e(Fj) + ek(Pj) + ejk A13
Mj,k + s = ±mj + ck + s + e(Fj) + ek + s (Pj) + ej,k + s

RN removes the terms ck and ek(Pj) and we ®nd:

Mjk = mj + e(Fj) + ejk A14
Mj,k + s = ±mj + e(Fj) + ej,k + s

Finally, use of the FN process removes the term e(Fj), and
taking the mean of the outcomes we obtain equation 11 in the
main text.
SN+RN. The result is similar to the self-self case and the
result is given by equation 12 in the main text.
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