Actions of lead on transmitter release at mouse motor nerve terminals

Yong-Xiang Wang and David M. J. Quastel

Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3

Received October 30, 1990/Received after revision April 29, 1991/Accepted May 14, 1991

Abstract. The actions of lead (Pb²⁺) on transmitter release were studied at neuromuscular junctions in mouse diaphragm in vitro. The quantal content of end-plate potentials (EPPs) was reduced by Pb^{2+} in a dose-related manner consistent with inhibition of Ca^{2+} entry into nerve terminals, with a half-maximal effect at 1.4 μ M (in 0.5 mM Ca²⁺ and 2 mM Mg²⁺). Pb²⁺ also inhibited the increased frequency of MEPPs (f_{MEPP} where MEPPs denotes miniature EPPs) produced by Ba²⁺ in the presence of raised K^+ , blocking the calculated Ba^{2+} entry half-maximally at 170 μ M. However, at concentrations of 50-200 nM, Pb²⁺ often increased f_{MEPP} in 20 mM K⁺ in the presence of Ca²⁺ and acted to promote the irreversible effect of lanthanum (La³⁺) to raise f_{MEPP} . In nominally Ca²⁺-free solution with 20 mM K⁺, brief (1 min) application of Pb²⁺ (20-320 μ M) caused rapid dose-dependent reversible rises in f_{MEPP} . With prolonged exposure to Pb^{2+} , f_{MEPP} rose and then slowly declined; after removal of Pb^{2+} , once f_{MEPP} had fallen to low levels, f_{MEPP} responded nearly normally to Ca^{2+} or ethanol, but not to Pb^{2+} itself. In 5 mM K⁺, 0 mM Ca²⁺ and varied $[Pb^{2+}]$ (where [] denotes concentration), nerve stimulation caused no EPPs, but prolonged tetanic stimulation produced increases in f_{MEPP} graded with [Pb²⁺] that persisted as a "tail"; results were consistent with growth of f_{MEPP} with the 4th power of intracellular Pb²⁺ and removal of intracellular Pb^{2+} with a time constant of about 30 s. These results suggest that Pb^{2+} acts to block the entry of Ca^{2+} and Ba^{2+} into the terminal via voltage-gated Ca^{2+} channels through which Pb^{2+} , at higher concentrations, also penetrates and then acts as an agonist at intracellular sites that govern transmitter release.

Key words: Lead – Nerve terminal – Transmitter release – Calcium channels

Introduction

It is now well established that at the neuromuscular junction Ca²⁺ enters the nerve terminal via voltage-gated channels and functions to link transmitter release to nerve terminal depolarization [22]. However, many ions that block depolarization/Ca²⁺ transmitter release, apparently by blocking Ca²⁺ entry, themselves induce or enhance release at depolarized terminals. These include manganese (Mn²⁺, [3]), cobalt (Co²⁺, [24]), lanthanum (La³⁺, [6]), cadmium (Cd²⁺, [9, 15]) and zinc (Zn²⁺, [12, 14, 23]). Silbergeld et al. [20] found that Pb²⁺ decreased the force of contraction and increased the latency between nerve stimulation and contraction in mouse and rat in vitro; a blocking activity of Pb²⁺ was subsequently demonstrated at neuromuscular junctions of frog [5, 13] and of rat diaphragm [2]. In addition, Pb²⁺ can also act to increase "spontaneous" transmitter release [1, 2, 5].

The experiments described here were carried out to investigate further the interaction of Pb²⁺ and Ca²⁺ at both extracellular and intracellular sites. The results indicate that Pb²⁺ has several effects on transmitter release, acting, not only as a competitive blocker of Ca²⁺ (and Ba²⁺) entry at extracellular sites, but also as a substitute for Ca²⁺ in supporting depolarization-induced release. In addition, at a very low concentration range (nanomolar), Pb²⁺ enhances the effectiveness of Ca²⁺ or La³⁺ to raise the frequency of miniature end-plate potentials (f_{MEPP}) in high K⁺.

Materials and methods

Experiments were performed upon hemidiaphragms from anaesthetized mice. The techniques used for the mounting and superfusion of the preparation that allowed switching of the bathing solution in a few seconds have been described elsewhere [4]. Intracellular recording of MEPPs and EPPs at end-plates was conventional, using microelectrodes filled with 3 M KCl. Because Pb²⁺ precipitates in bicarbonate/phosphate buffered solutions, experiments were carried out in solutions buffered with 4-(2hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES) and

Offprint requests to: D. M. J. Quastel

bubbled with 100% O₂. As in previous work [9, 23] the standard solution for most experiments using raised K⁺ had the following composition (mM): NaNO₃ 100, KCl 20, MgCl₂ 1, glucose 11, HEPES 3, pH 7.3. Sucrose (60 mM) provided isotonicity with solutions containing 150 mM Na⁺ and 5 mM K⁺. Lowered Na⁺ concentration raises the apparent potency of Ca²⁺ for extracellular sites so that half-maximal responses of f_{MEPP} to raised Ca²⁺ are obtained at lower concentrations [8]. Replacement of Cl⁻ by NO₃⁻ improves signal/noise ratio for recording MEPPs, which does not significantly affect presynaptic mechanisms [19]. In experiments using nerve stimulation Cl⁻ was used rather than NO₃⁻ and [K⁺] (where [] denotes concentration) was 5 mM. To remove Pb²⁺ the preparation was washed with solution containing Ca-EDTA [usually using 0.15 mM Ca²⁺ and 0.1 mM ethylenediaminetetraacetic acid (EDTA)]. Silen and Martell [21] quote the dissociation constant of the Pb-EDTA complex as $10^{-18.04}$, about 7 orders of magnitude smaller than that for Ca-EDTA ($10^{-10.6}$).

MEPPs were counted by a microcomputer using a program that provided sequential displays of 0.4-s portions of the recorded signal, with lines indicated each MEPP that was counted by the computer; this permitted continuous monitoring of the accuracy of the count. To follow the time course of changes in f_{MEPP} , MEPPs were either recorded continuously at individual junctions or muscle fibres were penetrated randomly and the time of penetration and the f_{MEPP} for each junction recorded. For assessment of quantal content of EPPs we used a computer program that "deconvolutes" the EPP into quantal components, and counts MEPPs at all points in the record. This program will be described elsewhere.

Results

Blockade by Pb^{2+} of Ca^{2+} -dependent release

Pb²⁺ has previously been reported to inhibit Ca²⁺-induced release of transmitter at neuromuscular junctions of frog [5] and rat [2]. The same phenomenon at a mouse junction is illustrated in Fig. 1a. In the presence of 0.5 mM Ca^{2+} and 2 mM Mg^{2+} , nerve stimulation produced EPPs with a quantal content of 1.5, which was reversibly diminished by $0.5-16 \mu M Pb^{2+}$ in a doserelated manner. By interpolation, the half-maximal effect was at 0.24 µM. If transmitter release is proportional to the 4th power of intracellular Ca^{2+} [10] inhibition of Ca^{2+} entry can be calculated from the reduction of the 4th root of the release rate corresponding to the quantal content of the EPP (cf. [23]). On this basis the halfmaximal effect of Pb^{2+} to reduce Ca^{2+} entry in this experiment was $1.4 \ \mu M \ Pb^{2+}$. The reduction in quantal content by Pb²⁺ was associated with a loss of "facilitation" in short trains, as described by Zengel et al. [25] for Cd^{2+} , the facilitation not being restored with addition of Ca^{2+} . This is illustrated in Fig. 1b which shows, in control, typical facilitation of quantal content in trains of 7 pulses at 100 Hz. Here 100 μ M Pb²⁺ reduced the quantal content of EPPs to very low levels. Increasing Ca^{2+} to 2 mM restored the original quantal content but facilitation remained absent. It is notable that the restoration of quantal content by only a quadrupling of $[Ca^{2+}]$, in the presence of 100 μ M Pb²⁺, would appear to contradict the previous value of 1.4 μ M for the apparent dissociation constant of Pb^{2+} for block of Ca^{2+} channels. Previously, with Cd^{2+} [10] and with Zn^{2+} [23] it was found that the apparent potency of these ions is diminished by Ca²⁺ to an extent greater than expected

Fig. 1. A Inhibition by Pb^{2+} of end-plate potentials (EPPs) induced by 80-Hz trains in 5 mM K⁺, 0.5 mM Ca²⁺ and 2 mM Mg²⁺. The *line* is a theoretical curve for single-site action of Pb^{2+} to block Ca²⁺ entry, with a half-maximal effect at 1.4 μ M, assuming transmitter release is proportional to the 4th power of internal Ca²⁺. **B** Blockade by Pb^{2+} of facilitation in 100-Hz trains of 7 stimuli, in 5 mM K⁺ and 2 mM Mg²⁺. Open circles, (controls) 0.5 mM Ca²⁺; solid triangles, 1 mM Ca²⁺ and 100 μ M Pb²⁺; solid squares, 2 mM Ca²⁺ and 100 μ M Pb²⁺

Fig. 2. Inhibition by Pb^{2+} of the increase in the frequency of miniature EPPs (f_{MEPP}) produced by 0.3 mM Ba²⁺ in the presence of 20 mM K⁺; data from one junction. The *ordinate* represents the difference between f_{MEPP} in the presence of Ba²⁺ (f_m) and f_{MEPP} in the absence of Ba²⁺ (f_o) . Open circle, control; filled circles, with Pb²⁺

simply from competition of Ca^{2+} with the blocking ion at a single site.

Effect of Pb^{2+} to increase f_{MEPP} in high K^+

From the above result it would be expected that Pb^{2+} would block the enhanced f_{MEPP} , produced by Ca^{2+} or Ba^{2+} at end-plates depolarized by raised K⁺ [10]; with Ba^{2+} , in 20 mM K⁺, this was indeed always the case. In the example in Fig. 2 the effect at 50 nM Pb²⁺ is less than

Fig. 3A, B. Effect of Pb^{2+} to increase neurotransmitter release produced by Ca^{2+} in the presence of 20 mM K⁺. A f_{MEPP} was about 21 s⁻¹ in 0.4 mM Ca²⁺ (*open circles*). Addition of 100 nM Pb²⁺ (*filled circles*) caused a transient reduction followed by a rise. f_{MEPP} fell nearly to control values upon withdrawal of Pb²⁺. B f_{MEPP} was about 1 s⁻¹ before (*open circles*) and with 100 nM Pb²⁺ (*filled circles*). With 100 nM Pb²⁺ and 1 mM Ca²⁺ (*filled squares*) f_{MEPP} rose to 250 s⁻¹; it returned to control with "wash" with 50 μ M Ca²⁺ and 100 μ M Ca-EDTA (*open triangles*). 1 mM Ca²⁺ in the absence of Pb²⁺ (*open squares*) raised f_{MEPP} to 150 s⁻¹ and subsequent addition of 100 nM Pb²⁺ (*filled squares*) raised f_{MEPP} to 250 s⁻¹

expected from the effects at a higher concentration, but the data otherwise fit half blockade of Ba^{2+} entry at 170 nM (see [23] for method of calculation), if release is proportional to the 4th power of Ba^{2+} entry [17]. The relatively high potency of Pb^{2+} as a blocker when tested versus Ba^{2+} rather than Ca^{2+} was also seen with Zn^{2+} [23] and with Cd^{2+} [10].

The raised f_{MEPP} induced by Ca²⁺ in 20 mM K⁺ was also usually inhibited by Pb²⁺. However, this inhibition was often transient, followed by a rise in f_{MEPP} despite the continued presence of Pb²⁺. At relatively high concentrations of Pb²⁺ the rise in f_{MEPP} with Pb²⁺ also occurred in the absence of Ca²⁺ (see below) but at low concentrations, e.g. 100 or 200 nM (Fig. 3) the rise did not occur in the absence of Ca²⁺, but did occur in 0.4 mM Ca²⁺, 1 mM Ca²⁺, and sometimes in 2 mM Ca²⁺ (Fig. 3a, b).

To test the possibility that this phenomenon might be related to an effect of Pb²⁺ to enhance entry of other ions into the nerve terminal we examined the effect of Pb²⁺ on the development of the irreversible action of La³⁺ to raise f_{MEPP} ; Curtis et al. [6] found that small amounts of Ca²⁺ accelerate the irreversible development of a high f_{MEPP} in the presence of La³⁺ which is attributable to entry of La³⁺ into nerve terminals via Ca²⁺ channels. Preparations were incubated with 0.5 μ M La³⁺ (in 10 mM K⁺) together with different concentrations of

Fig. 4. Pb^{2+} increases the irreversible action of lanthanum (La³⁺) in 10 mM K⁺ to raise f_{MEPP} . Each *point* represents the geometric mean from 22–71 junctions (\pm S.E.) in a segment of a diaphragm, in 50 µM Ca²⁺ and 100 µM Ca-EDTA, following incubation for 30 min with 0.5 µM La³⁺ alone (control, *open symbol*) or with various concentrations of Pb²⁺ (*filled circles*), or Ca²⁺ (*filled triangles*). The experiment with Ca²⁺ was on a different diaphragm from that with Pb²⁺. Incubation with Pb²⁺ alone (200 nM, not shown) had no effect to raise subsequent f_{MEPP}

 Pb^{2+} for 30 min and f_{MEPP} recorded subsequently in the absence of La³⁺ or Pb²⁺ (with 0.1 mM Ca-EDTA to exclude extracellular Pb^{2+} and La^{3+}). The results (Fig. 4) show that concurrent exposure to Pb^{2+} , in the range of 50-200 nM, increased the effect of exposure to 0.5 μ M La^{3+} , with much greater potency, and perhaps more efficacy than Ca^{2+} . In control experiments exposure of preparations for 30 min to Pb²⁺ (200 nM) alone caused no increase in the subsequent f_{MEPP} . Moreover, the effect of Pb²⁺ depended upon its simultaneous presence with La^{3+} ; exposure to 200 nM Pb²⁺ for 30 min, followed by "wash" with 0.1 mM Ca-EDTA and subsequent exposure to 0.5 μ M La³⁺ gave a maintained f_{MEPP} in the absence of Ca²⁺ [mean $\log_{10} f_{\text{MEPP}} = 0.37 \pm 0.09 \ (\pm \text{ S.E.}, n =$ 35)] the same as exposure to only $0.5 \,\mu\text{M} \,\text{La}^{3+}$ [mean $\log_{10} f_{\text{MEPP}} = 0.40 \pm 0.09, (\pm \text{S.E.}, n = 43)$]. Thus, Pb²⁺ at about 100 nM, apparently promotes the entry of La³⁺ into nerve terminals, in the same way as Ca²⁺ at about 100 µM, perhaps by promoting opening of channels. A similar action exerted on entry of Ca2+ would account for the enhancement by 100 nM Pb²⁺ on f_{MEPP} induced by Ca^{2+} in raised K⁺ (Fig. 3), but only if Ca^{2+} itself has less efficacy then Pb²⁺ for this action.

In 20 mM K⁺ in the absence of Ca²⁺, Pb²⁺ at sufficiently high concentrations produced an increase in f_{MEPP} that developed within about 30 s and subsided quickly upon removal of Pb²⁺. In the example in Fig. 5a, 160 μ M Pb²⁺ caused f_{MEPP} to rise from less than 1 s⁻¹ to 100 s⁻¹ with most of the rise complete in 30 s; upon "washing" with solution containing 0.1 mM Ca-EDTA f_{MEPP} returned to control values in about 1 min. In Fig. 5b average data from 6 junctions are plotted as $f_{\text{MEPP}}^{(1/4)}$. $f_o^{(1/4)}$ (i.e., the increment in the 4th root of f_{MEPP} , which, see below, should be proportional to internal Pb²⁺) versus external Pb²⁺. The half maximally effective [Pb²⁺] in terms of rise of the 4th root of f_{MEPP} was at 85 μ M; in terms of f_{MEPP} , the half maximally effective [Pb²⁺] was at 135 μ M. Thus, saturation of this effect of Pb²⁺ occurred at

Fig. 5A, B. Rapid and reversible effect of Pb²⁺ to raise f_{MEPP} in the presence of 20 mM K⁺ and 0 mM Ca²⁺. A Example of 1-min application of 160 μ M Pb²⁺ (*solid circles*) raising f_{MEPP} , with reversal upon removal of Pb²⁺ using 0.1 mM Ca-EDTA (*open triangles*). Open circles represent control (no Pb²⁺). B Dose/response curve, where the points represent mean $f_{\text{MEPP}}^{1/4}$ at 0–60 s after applying Pb²⁺, minus 4th root of spontaneous f_{MEPP} in 0 mM Ca²⁺ ($f_0^{1/4}$). Each point represents an average from 6 junctions \pm S.E.

concentrations very much higher than the concentrations that block Ca^{2+} entry.

With prolonged exposure to Pb^{2+} , at 10 µM or greater, f_{MEPP} rose to levels higher than obtained with 1-min exposures, followed by a slow decline despite the continued presence of Pb^{2+} . The effect of Pb^{2+} to raise f_{MEPP} remained reversible; f_{MEPP} rapidly fell to control levels or lower with removal of Pb^{2+} and "wash" with solution containing 0.1 mM Ca-EDTA, even during the declining phase (Fig. 6a). However, once f_{MEPP} had declined in the continued presence of Pb^{2+} , washing with Ca-EDTA and reexposure to Pb^{2+} did not restore the high f_{MEPP} found after the initial exposure to Pb^{2+} . Data obtained by multiple sampling in a diaphragm continuously exposed to 100 µM Pb²⁺ (in 20 mM K⁺ and 0 mM Ca²⁺), is shown in Fig. 6b illustrating the large variations in frequencies attained at different junctions.

Even in nominally Ca^{2+} -free solution, the possibility exists that the effect of Pb²⁺ of increasing f_{MEPP} might be secondary to increase in intracellular Ca²⁺. Therefore, the effect of Pb²⁺ in 20 mM K⁺ was tested in preparations incubated for 5 h in 20 mM K⁺ in very low buffered Ca²⁺ (0.1 mM EDTA plus 10 μ M Ca²⁺); responses to 100 μ M Pb²⁺ (Fig. 6c) were unaffected.

Although brief (1 min) exposure to 10 μ M Pb²⁺ had little effect to raise f_{MEPP} in 20 mM K⁺ (Fig. 5b) with more prolonged exposure there was generally a rise that was complete within about 10 min, to about 30 s⁻¹, followed by a fall over the next hour (Fig. 7a, b). In 5 mM

Fig. 6A – C. Response of f_{MEPP} to 100 µM Pb²⁺ in 20 mM K⁺ and 0 mM Ca²⁺. A Addition of Pb²⁺ (solid circles) caused a rapid increase in f_{MEPP} followed by a decline. f_{MEPP} fell to control or lower upon "wash" with Pb²⁺, 50 µM Ca²⁺ and 100 µM Ca-EDTA (open circles). Repeated applications of Pb²⁺ caused progressively less effect. Data from one junction. B Variation between junctions of the effect of 100 µM Pb²⁺ (filled circles) to raise f_{MEPP} in 20 mM K⁺ and 0 mM Ca²⁺. C Increase of f_{MEPP} by 100 µM Pb²⁺ (solid circles) at a junction in a preparation previously incubated for 5 h in 20 mM K⁺, 0.1 mM EDTA plus 10 µM Ca²⁺ (open circles)

K⁺, the rise was less and developed more slowly (Fig. 7a), in contrast to the observation of Anwyl et al. [1], suggesting that the effect of Pb²⁺ is secondary to entry into the nerve terminal cytoplasm via voltage-gated channels, presumably those that normally admit Ca²⁺. In support of this, the response to Pb²⁺ was inhibited by 4 mM Mg²⁺ (Fig. 7b). Following such long exposures to Pb²⁺, f_{MEPP} fell to control levels after withdrawal of Pb²⁺.

Effect of Pb^{2+} on f_{MEPP} induced by nerve stimulation

In the presence of Pb²⁺ and absence of Ca²⁺ (5 mM K⁺ and 1 mM Mg²⁺), nerve stimulation caused a rise in f_{MEPP} , much greater than occurred in the absence of Pb²⁺; this persisted after a train as a "tail" that declined over a

Fig. 7. A The rise in f_{MEPP} produced by 10 μ M Pb²⁺ in 0 mM Ca²⁺ and 20 mM K⁺ (solid triangles) or 5 mM K⁺ (solid circles). **B** Inhibition by 4 mM Mg²⁺ (solid triangles) of the rise of f_{MEPP} produced by 10 μ M Pb²⁺ (20 mM K⁺ and 0 mM Ca²⁺), compared with 1 mM Mg²⁺ (solid circles). In both graphs, each point represents the mean from about 20 junctions \pm S.E.

period of seconds. The maximum f_{MEPP} attained grew with the number of impulses applied.

An example of time course of development and decline of f_{MEPP} during and after nerve stimulation is shown in Fig. 8a. With nerve stimulation in the presence of Pb^{2+} , the rise and fall of f_{MEPP} were asymmetrical in time course when data were plotted either linearly or semilogarithmically versus time. Here, in 100 µM Pb²⁺, during a 40-Hz train f_{MEPP} rose from the control value (f_{o}) with a time constant (τ) of 64 s (by non-linear least squares fitting) but after that the train fell with a τ of 16 s. Plots of $f_{\rm m}^{1/n}$ versus time (where $f_{\rm m}$ denotes mean $f_{\rm MEPP}$) became increasingly symmetrical with increasing *n* up a value equal to 4, at which τ for growth of $f_m^{1/4}$ was 34 s, while τ for decay of $f_{\rm m}^{1/4}$ was 32 s; at *n* equal to 5, τ values were 32 and 33 s, respectively. This corresponds to what would be expected if f_{MEPP} is proportional to the 4th or 5th power of internal Pb²⁺, which rises with each "injection" of Pb^{2+} by a nerve impulse and is disposed of by a 1st order process with a τ value of 33 s. Graphs (not shown) of the \log_{10} of the absolute value of $(f_m^{1/4}-f_f^{1/4})$ versus time, $f_{\rm f}$ being maximum $f_{\rm m}$ value for the rising phase and f_0 for the falling phase, showed good fits of both phases to a single exponential with a time constant of 33 s.

An example of the relation of "tail" intensity to number of stimuli in 30-s trains, in 100 μ M Pb²⁺, is shown in Fig. 8b. Designating the f_m value over the period of 30 s after the last pulse in the train as f_t , $f_t^{1/4}$ (or $f_t^{1/5}$, not shown) varied linearly with the stimulation frequency, i.e. with the number of impulses in the train, in the same way as "tails" of raised f_{MEPP} produced by stimulation in

Fig. 8A – C. The rise of f_{MEPP} produced by nerve stimulation in the presence of 100 μ M Pb²⁺, 1 mM Mg²⁺, 0 mM Ca²⁺ and 5 mM K⁺. **A** Time course of the rise and fall of f_{MEPP} before (*open circle*) during (*filled circles*) and after (*open circle*) nerve stimulation for 2 min at 40 Hz. **B** Linearity with number of stimuli in 30-s trains of the 1/4 power of the "Pb²⁺ tail" intensity, estimated as the average f_{MEPP} in the 1st 30 s after the train. In the absence of Pb²⁺ such trains caused much smaller increases in f_{MEPP} . **C** Gradation of apparent Pb²⁺ entry with external [Pb²⁺]. Stimuli were given in 30-s trains at a [Pb²⁺] of 25-200 μ M in 0 mM Ca²⁺ and 1 mM Mg²⁺. "Pb²⁺ entry" per pulse was calculated as the increment of f_{MEPP} raised to the power 1/4 caused by each train of number k as $(f_t^{r1/4}-f_0^{r1/4})/k$, where f_0 is control value of f_{MEPP} and f_t is the f_{MEPP} just after the train by extrapolation (using a 30-s time constant) from the average f_{MEPP} at 0-30 s after the train

the presence of Ba^{2+} and attributable to accumulation of Ba^{2+} in the nerve terminal [17]. The calculated per pulse increment of $f_{MEPP}^{1/4}$ in this example is much the same as that found with 50 μ M Ba^{2+} [18] but, in contrast to what was found with Ba^{2+} , this could not be much increased by increase of Pb^{2+} above 100 μ M (Fig. 8c).

Corresponding to the low effectiveness (or low entry) of Pb^{2+} , nerve stimulation did not induce any noticeable EPP, even with $[Pb^{2+}]$ raised up to 1 mM; latency histograms of quanta released after nerve stimuli showed no consistent increase in frequency in the period of 0.8-2.5 ms, in which the EPP normally occurs.

Possible intracellular effect on release

After prolonged exposure to Zn^{2+} there occurs a complete blockade of the response of f_{MEPP} to ethanol (cf. [18]) and to Ca^{2+} in raised K⁺ [23]. To determine whether a similar effect might be exerted by Pb²⁺, as suggested by the decline in f_{MEPP} that occurred in the continued presence of Pb²⁺ (Fig. 6), f_{MEPP} was measured in 20 mM K⁺ with either added ethanol or Ca²⁺, before and after a 1-h exposure to 100 μ M Pb²⁺. To ensure the absence of extracellular Pb²⁺, 0.15 mM Ca²⁺ and 0.1 mM EDTA was added to all solutions except that containing Pb^{2+} . After Pb²⁺ exposure, f_{MEPP} (about 0.7 s⁻¹) was not significantly changed in 0 mM Ca²⁺ but there was a tendency to a lower f_{MEPP} than in the controls, with Ca²⁺ and ethanol. In 2 out of 3 preparations f_{MEPP} in 1 mM Ca²⁺ (normally about 100 s^{-1}) was reduced relative to the controls (to 45% and 54%) and in both preparations tested with 0.8 M ethanol (producing f_{MEPP} of about 50 s⁻¹ in controls) f_{MEPP} was reduced after exposure to Pb²⁺, to 70.5% and 52% of control values. These reductions are small compared to the effects of Ca^{2+} and ethanol to raise f_{MEPP} . This result suggests that there is relatively little (if any) long term accumulation of Pb²⁺ and "toxic" action, in contrast to Zn^{2+} .

Discussion

The present results concur with previous observations that Pb^{2+} , like some other divalent ions, not only inhibits Ca²⁺-mediated transmitter release, presumably by blocking entry of Ca²⁺ into nerve terminals via voltagesensitive channels, but also can itself promote release [1, 2, 5]. The effect to inhibit release resembles that shown by Cd^{2+} [10] and Zn^{2+} [23] in that the apparent potency of the blocking ion is much greater when tested versus Ba^{2+} in raised K⁺ than when tested versus Ca^{2+} (giving a similar f_{MEPP}) and apparent potency is reduced by Ca²⁺ much more than is compatible with simple competition of the ions at a single site. The action of Pb^{2+} rapidly to promote release in raised K^+ , in the absence of Ca^{2+} , resembles that of Zn^{2+} in that it is evident only at concentrations much higher than those that apparently block Ca^{2+} or Ba^{2+} entry by 50%, i.e. it appears that a concentration of Pb²⁺ which blocks entry of other ions does not block its own entry. This phenomenon may be the same as that seen in cardiac Ca^{2+} channels where Ca^{2+} blocks Na⁺ flux in the micromolar range but Ca²⁺ flux grades with $[Ca^{2+}]$ in the millimolar range, which is explicable if channels have more than one binding site [11]. Complexity of ion interaction with presynaptic Ca^{2+} channels is also indicated by the sensitivity to Ca^{2+} of the inhibi-tory effect of Pb²⁺, Zn²⁺, and Cd²⁺, on release mediated by Ca²⁺ or Ba²⁺. Pb²⁺ contrasts with Zn²⁺ in its much greater potency

Pb²⁺ contrasts with Zn²⁺ in its much greater potency and effectiveness in producing a rapid increase in f_{MEPP} in raised K⁺, and with Cd²⁺, for which no such effect is visible, and in the apparently complete reversibility of this effect. Moreover, the long term effects seen with Cd²⁺ and Zn²⁺, apparently due to irreversible sequelae

of ion entry into the nerve terminal, are nearly absent; there is little if any tendency for release to be reduced after prolonged exposure to Pb^{2+} . The effect to raise f_{MEPP} in raised K⁺ is consistent with Pb²⁺ acting within the nerve terminal, after entry via voltage-gated channels, in the same way as occurs with tetanic stimulation. The effect of Pb²⁺ to support the temporarily raised f_{MEPP} during and after tetanic stimulation closely resembles the effect seen with Ba²⁺ [16], the only differences being a more prolonged time course and apparent saturation at more than 100 µM or so. Notably, the Hill coefficient for cooperativity of Pb^{2+} to induce release, once inside the terminal, appears to be 4 (or 5) which is the same as for Ba^{2+} [16, 17] and for Ca^{2+} [10]. The lack of an EPP with Pb^{2+} (in contrast to Ba^{2+}) follows from the rather small effect of Pb^{2+} (per pulse) that is attainable in comparison to that with Ba^{2+} . However, we cannot rule out the possibility that the intracellular effect of Pb²⁺ to induce release might be secondary to intracellular release of Ca^{2+} .

The action of Pb²⁺ to block facilitation has been observed previously with Cd²⁺ and Zn²⁺ [25], and presumably reflects the same phenomenon for all three ions. It is not impossible that this action could be secondary to block of Ca²⁺ entry, although restoration of quantal content by added Ca^{2+} in the continued presence of Pb²⁺ does not restore facilitation, since the effect of Pb^{2+} to block Ca^{2+} entry might grow with repetitive stimulation. Alternatively, it is conceivable that Pb^{2+} is much more effective than Ca²⁺ in activating an intracellular mechanism that produces facilitation, and saturates at moderate intracellular Ca^{2+} [7], and therefore obviates the normal facilitation produced by Ca^{2+} entering with each impulse. The action of Pb^{2+} at very low concentrations to increase Ca²⁺-mediated release, and to promote the development of a high f_{MEPP} in the presence of La³⁺ presumably reflects an increase in the rate of opening of presynaptic Ca²⁺ channels, and supports the idea that the opening of these channels may normally be governed partially by Ca^{2+} [6].

Acknowledgements. This work was supported by grants from the Muscular Dystrophy Association of Canada and the Medical Research Council of Canada. We thank Allen I. Bain for his assistance with computer programming.

References

- Anwyl R, Kelly T, Sweeney F (1982) Alterations of spontaneous quantal transmitter release at mammalian neuromuscular junction induced by divalent and trivalent ions. Brain Res 246:127-132
- Atchison W, Narahashi T (1984) Mechanism of action of lead on neuromuscular junctions. Neurotoxicology 5:267-282
- 3. Balnave RJ, Gage PW (1973) The inhibitory effect of manganese on transmitter release at the neuromuscular junction of the toad. Br J Pharmacol 47:339-352
- Cooke JD, Quastel DMJ (1973) Transmitter release by mammalian motor nerve terminals in response to focal polarization. J Physiol (Lond) 228:377-405
- 5. Cooper GP, Suszkiw JB, Manalis RS (1984) Heavy metals: effects on synaptic transmission. Neurotoxicology 5:247-266

- Curtis MJ, Quastel DMJ, Saint DA (1986) Lanthanum as a surrogate for calcium in transmitter release at the neuromuscular junction. J Physiol (Lond) 373:243-260
- Dudel J (1989) Calcium and depolarization dependence of twin pulse facilitation of synaptic release at nerve terminals of crayfish and frog muscle. Pflügers Arch 415:304-309
- Gage PW, Quastel DMJ (1966) Competition between sodium and calcium ions in transmitter release at mammalian neuromuscular junctions. J Physiol (Lond) 185:95-123
- 9. Guan YY, Quastel DMJ, Saint DA (1987) Multiple actions of cadmium on transmitter release at the mouse neuromuscular junction. Can J Physiol Pharmacol 65:2131-2136
- Guan YY, Quastel DMJ, Saint DA (1988) Single Ca²⁺ entry and transmitter release systems at the neuromuscular synapse. Synapse 2:558-564
- Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature 309:453-456
- 12. Lin-Shiau SY, Fu WP (1980) Effects of divalent cations on neuromuscular transmission in the chick. Eur J Pharmacol 64:259-269
- Manalis RS, Cooper GP, Pomeroy L (1984) Effects of lead on neuromuscular transmission in the frog. Brain Res 294:95– 109
- Nishimura M (1987) Zinc competitively inhibits calcium-dependent release of transmitter at the mouse neuromuscular junction. Pflügers Arch 410:623-626
- 15. Nishimura M (1988) Zn²⁺ stimulates spontaneous transmitter release at mouse neuromuscular junctions. Br J Pharmacol 93:430-436

- 16. Quastel DMJ, Saint DA (1986) Calcium cooperativity in calcium entry and calcium action, and its implications with regard to facilitation, at the mouse motor nerve terminal. In: Rahamimoff R, Katz B (eds) Calcium, neuronal function and transmitter release. Martinus Nijhoff, Boston, p 141
- Quastel DMJ, Saint DA (1988) Transmitter release at mouse motor nerve terminals mediated by temporary accumulation of intracellular barium. J Physiol (Lond) 406:55-73
- Quastel DMJ, Hackett JT, Cooke JD (1971) Calcium: Is it required for transmitter secretion? Science 172:1034-1036
- Saint DA, McLarnon JG, Quastel DMJ (1987) Anion permeability of motor nerve terminals. Pflügers Arch 409:258-264
- Silbergeld EK, Fales JT, Goldberg AM (1974) The effect of inorganic lead on the neuromuscular junction. Neuropharmacology 13:795-801
- Silen L, Martell AE (1971) Stability constants. The Chemical Society, special publication 25 [suppl 1], London, p 623
- 22. Silinski EM (1985) The biophysical pharmacology of calciumdependent acetylcholine secretion. Pharmacol Rev 37:81-132
- Wang YX, Quastel DMJ (1990) Multiple actions of zinc on transmitter release at mouse end-plates. Pflügers Arch 415:582-587
- Weakly JN (1973) The action of cobalt ion on neuromuscular transmission in the frog. J Physiol (Lond) 234:597-612
- Zengel JE, Lee DT, Van Veelen ML, Moser DR (1988) Effects of divalent cations on stimulation-induced changes in transmitter release at the frog neuromuscular junction (abstract). Biophys J 53:363