
Yong-Lu Li- Ph.D.
- Assistant Professor at Shanghai Jiao Tong University
Yong-Lu Li
- Ph.D.
- Assistant Professor at Shanghai Jiao Tong University
Lab: https://mvig-rhos.com/
About
83
Publications
8,689
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,183
Citations
Introduction
My primary research interests are machine learning, computer vision, and intelligent robots. Now we are building HAKE, a knowledge-driven system that enables intelligent agents to perceive human activities, reason human behavior logics, learn skills from human activities and interact with objects and environments.
Skills and Expertise
Current institution
Education
June 2017 - June 2021
September 2014 - July 2017
Institution of Automation, Chinese Academy of Science
Field of study
- Computer Vision
Publications
Publications (83)
Self-improvement requires robotic systems to initially learn from human-provided data and then gradually enhance their capabilities through interaction with the environment. This is similar to how humans improve their skills through continuous practice. However, achieving effective self-improvement is challenging, primarily because robots tend to r...
Spatio-temporal Human-Object Interaction (ST-HOI) understanding aims at detecting HOIs from videos, which is crucial for activity understanding. However, existing whole-body-object interaction video benchmarks overlook the truth that open-world objects are diverse, that is, they usually provide limited and predefined object classes. Therefore, we i...
Reconstructing human-object interactions (HOI) from single images is fundamental in computer vision. Existing methods are primarily trained and tested on indoor scenes due to the lack of 3D data, particularly constrained by the object variety, making it challenging to generalize to real-world scenes with a wide range of objects. The limitations of...
High-fidelity garment modeling remains challenging due to the lack of large-scale, high-quality datasets and efficient representations capable of handling non-watertight, multi-layer geometries. In this work, we introduce Garmage, a neural-network-and-CG-friendly garment representation that seamlessly encodes the accurate geometry and sewing patter...
Reconstructing human-object interactions (HOI) from single images is fundamental in computer vision. Existing methods are primarily trained and tested on indoor scenes due to the lack of 3D data, particularly constrained by the object variety, making it challenging to generalize to real-world scenes with a wide range of objects. The limitations of...
Mainstream visuomotor policies predominantly rely on generative models for holistic action prediction, while current autoregressive policies, predicting the next token or chunk, have shown suboptimal results. This motivates a search for more effective learning methods to unleash the potential of autoregressive policies for robotic manipulation. Thi...
Inferring object motion representations from observations enhances the performance of robotic manipulation tasks. This paper introduces a new paradigm for robot imitation learning that generates action sequences by reasoning about object motion from visual observations. We propose MBA (Motion Before Action), a novel policy module that employs two c...
Spatio-temporal Human-Object Interaction (ST-HOI) understanding aims at detecting HOIs from videos, which is crucial for activity understanding. However, existing whole-body-object interaction video benchmarks overlook the truth that open-world objects are diverse, that is, they usually provide limited and predefined object classes. Therefore, we i...
Sewing patterns, the essential blueprints for fabric cutting and tailoring, act as a crucial bridge between design concepts and producible garments. However, existing uni-modal sewing pattern generation models struggle to effectively encode complex design concepts with a multi-modal nature and correlate them with vectorized sewing patterns that pos...
Analyses of human motion kinematics have achieved tremendous advances. However, the production mechanism, known as human dynamics, is still undercovered. In this paper, we aim to push data-driven human dynamics understanding forward. We identify a major obstacle to this as the heterogeneity of existing human motion understanding efforts. Specifical...
Multimodal Large Language Models (MLLMs) have garnered significant attention recently and demonstrate outstanding capabilities in various tasks such as OCR, VQA, captioning, $\textit{etc}$. However, hallucination remains a persistent issue. While numerous methods have been proposed to mitigate hallucinations, achieving notable improvements, these m...
Inferring object motion representations from observations enhances the performance of robotic manipulation tasks. This paper introduces a new paradigm for robot imitation learning that generates action sequences by reasoning about object motion from visual observations. We propose MBA (Motion Before Action), a novel module that employs two cascaded...
Inverse dynamics (ID), which aims at reproducing the driven torques from human kinematic observations, has been a critical tool for gait analysis. However, it is hindered from wider application to general motion due to its limited scalability. Conventional optimization-based ID requires expensive laboratory setups, restricting its availability. To...
Multi-modal Large Language Models (MLLMs) have exhibited impressive capability. However, recently many deficiencies of MLLMs have been found compared to human intelligence, $\textit{e.g.}$, hallucination. To drive the MLLMs study, the community dedicated efforts to building larger benchmarks with complex tasks. In this paper, we propose benchmarkin...
Visual reasoning, as a prominent research area, plays a crucial role in AI by facilitating concept formation and interaction with the world. However, current works are usually carried out separately on small datasets thus lacking generalization ability. Through rigorous evaluation of diverse benchmarks, we demonstrate the shortcomings of existing a...
Building a general-purpose intelligent home-assistant agent skilled in diverse tasks by human commands is a long-term blueprint of embodied AI research, which poses requirements on task planning, environment modeling, and object interaction. In this work, we study primitive mobile manipulations for embodied agents, i.e. how to navigate and interact...
Physical Human-Scene Interaction (HSI) plays a crucial role in numerous applications. However, existing HSI techniques are limited to specific object dynamics and privileged information, which prevents the development of more comprehensive applications. To address this limitation, we introduce HumanVLA for general object rearrangement directed by p...
Employing a teleoperation system for gathering demonstrations offers the potential for more efficient learning of robot manipulation. However, teleoperating a robot arm equipped with a dexterous hand or gripper, via a teleoperation system poses significant challenges due to its high dimensionality, complex motions, and differences in physiological...
Though dataset distillation has witnessed rapid development in recent years, the distillation of multimodal data, e.g., image-text pairs, poses unique and under-explored challenges. Unlike unimodal data, image-text contrastive learning (ITC) data lack inherent categorization and should instead place greater emphasis on modality correspondence. In t...
Embedding Human and Articulated Object Interaction (HAOI) in 3D is an important direction for a deeper human activity understanding. Different from previous works that use parametric and CAD models to represent humans and objects, in this work, we propose a novel 3D geometric primitive-based language to encode both humans and objects. Given our new...
Recently, dataset distillation has paved the way towards efficient machine learning, especially for image datasets. However, the distillation for videos, characterized by an exclusive temporal dimension, remains an underexplored domain. In this work, we provide the first systematic study of video distillation and introduce a taxonomy to categorize...
With the surge in attention to Egocentric Hand-Object Interaction (Ego-HOI), large-scale datasets such as Ego4D and EPIC-KITCHENS have been proposed. However, most current research is built on resources derived from third-person video action recognition. This inherent domain gap between first- and third-person action videos, which have not been ade...
Predicting future actions is an essential feature of intelligent systems and embodied AI. However, compared to the traditional recognition tasks, the uncertainty of the future and the reasoning ability requirement make prediction tasks very challenging and far beyond solved. In this field, previous methods usually care more about the model architec...
Computer vision has emerged as a powerful tool to elevate behavioral research. This protocol describes a computer vision machine learning pipeline called AlphaTracker, which has minimal hardware requirements and produces reliable tracking of multiple unmarked animals, as well as behavioral clustering. AlphaTracker pairs a top-down pose-estimation s...
Data-efficient learning has drawn significant attention, especially given the current trend of large multi-modal models, where dataset distillation can be an effective solution. However, the dataset distillation process itself is still very inefficient. In this work, we model the distillation problem with reference to information theory. Observing...
Action understanding matters and attracts attention. It can be formed as the mapping from the action physical space to the semantic space. Typically, researchers built action datasets according to idiosyncratic choices to define classes and push the envelope of benchmarks respectively. Thus, datasets are incompatible with each other like "Isolated...
Yong-Lu Li Yue Xu Xinyu Xu- [...]
Cewu Lu
Understanding objects is a central building block of artificial intelligence, especially for embodied AI. Even though object recognition excels with deep learning, current machines still struggle to learn higher-level knowledge, e.g., what attributes an object has, and what can we do with an object. In this work, we propose a challenging Object Con...
Spatio-temporal Human-Object Interaction (ST-HOI) detection aims at detecting HOIs from videos, which is crucial for activity understanding. In daily HOIs, humans often interact with a variety of objects, e.g., holding and touching dozens of household items in cleaning. However, existing whole body-object interaction video benchmarks usually provid...
Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this paper, we present AlphaPos...
Long-tailed image recognition presents massive challenges to deep learning systems since the imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks. Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design, etc. In this wo...
Human-Object Interaction (HOI) detection plays a crucial role in activity understanding. Though significant progress has been made, interactiveness learning remains a challenging problem in HOI detection: existing methods usually generate redundant negative H-O pair proposals and fail to effectively extract interactive pairs. Though interactiveness...
Long-tailed image recognition presents massive challenges to deep learning systems since the imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks. Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design, etc.In this wor...
Human-Object Interaction (HOI) detection plays a crucial role in activity understanding. Though significant progress has been made, interactiveness learning remains a challenging problem in HOI detection: existing methods usually generate redundant negative H-O pair proposals and fail to effectively extract interactive pairs. Though interactiveness...
Human-Object Interaction (HOI) detection plays a core role in activity understanding. As a compositional learning problem (human-verb-object), studying its generalization matters. However, widely-used metric mean average precision (mAP) fails to model the compositional generalization well. Thus, we propose a novel metric, mPD (mean Performance Degr...
Human-Object Interaction (HOI) detection plays a core role in activity understanding. Though recent two/one-stage methods have achieved impressive results, as an essential step, discovering interactive human-object pairs remains challenging. Both one/two-stage methods fail to effectively extract interactive pairs instead of generating redundant neg...
Anticipating future events is an essential feature for intelligent systems and embodied AI. However, compared to the traditional recognition task, the uncertainty of future and reasoning ability requirement make the anticipation task very challenging and far beyond solved. In this filed, previous methods usually care more about the model architectu...
Human-Object Interaction (HOI) detection plays a core role in activity understanding. As a compositional learning problem (human-verb-object), studying its generalization matters. However, widely-used metric mean average precision (mAP) fails to model the compositional generalization well. Thus, we propose a novel metric, mPD (mean Performance Degr...
Human activity understanding is of widespread interest in artificial intelligence and spans diverse applications like health care and behavior analysis. Although there have been advances with deep learning, it remains challenging. The object recognition-like solutions usually try to map pixels to semantics directly, but activity patterns are much d...
Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this paper, we present AlphaPos...
Human activity understanding is of widespread interest in artificial intelligence and spans diverse applications like health care and behavior analysis. Although there have been advances with deep learning, it remains challenging. The object recognition-like solutions usually try to map pixels to semantics directly, but activity patterns are much d...
Soft-argmax operation is commonly adopted in detection-based methods to localize the target position in a differentiable manner. However, training the neural network with soft-argmax makes the shape of the probability map unconstrained. Consequently, the model lacks pixel-wise supervision through the map during training, leading to performance degr...
Yong-Lu Li Yue Xu Xinyu Xu- [...]
Cewu Lu
Attributes and objects can compose diverse compositions. To model the compositional nature of these concepts, it is a good choice to learn them as transformations, e.g., coupling and decoupling. However, complex transformations need to satisfy specific principles to guarantee rationality. Here, we first propose a previously ignored principle of att...
Yong-Lu Li Yue Xu Xinyu Xu- [...]
Cewu Lu
Attributes and objects can compose diverse compositions. To model the compositional nature of these concepts, it is a good choice to learn them as transformations, e.g., coupling and decoupling. However, complex transformations need to satisfy specific principles to guarantee rationality. Here, we first propose a previously ignored principle of att...
Human-object interaction (HOI) detection requires a large amount of annotated data. Current algorithms suffer from insufficient training samples and category imbalance within datasets. To increase data efficiency, in this paper, we propose an efficient and effective data augmentation method called DecAug for HOI detection. Based on our proposed obj...
Human-Object Interaction (HOI) detection is an important problem to understand how humans interact with objects. In this paper, we explore interactiveness knowledge which indicates whether a human and an object interact with each other or not. We found that interactiveness knowledge can be learned across HOI datasets and bridge the gap between dive...
Human-Object Interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore Interactiveness Knowledge which indicates whether human and object interact with each other or not. We found that interactiveness knowledge can be learned across HOI datasets and alleviate the gap between divers...
Keypoint detection is an essential component for the object registration and alignment. However, previous works mainly focused on how to register keypoints under arbitrary rigid transformations. Differently, in this work, we reckon keypoints under an information compression scheme to represent the whole object. Based on this, we propose UKPGAN, an...
3D object detection has attracted much attention thanks to the advances in sensors and deep learning methods for point clouds. Current state-of-the-art methods like VoteNet regress direct offset towards object centers and box orientations with an additional Multi-Layer-Perceptron network. Both their offset and orientation predictions are not accura...
Human-Object Interaction (HOI) consists of human, object and implicit interaction/verb. Different from previous methods that directly map pixels to HOI semantics, we propose a novel perspective for HOI learning in an analytical manner. In analogy to Harmonic Analysis, whose goal is to study how to represent the signals with the superposition of bas...
Human-object interaction (HOI) detection requires a large amount of annotated data. Current algorithms suffer from insufficient training samples and category imbalance within datasets. To increase data efficiency, in this paper, we propose an efficient and effective data augmentation method called DecAug for HOI detection. Based on our proposed obj...
Human-Object Interaction (HOI) detection lies at the core of action understanding. Besides 2D information such as human/object appearance and locations, 3D pose is also usually utilized in HOI learning since its view-independence. However, rough 3D body joints just carry sparse body information and are not sufficient to understand complex interacti...
Existing image-based activity understanding methods mainly adopt direct mapping, i.e. from image to activity concepts, which may encounter performance bottleneck since the huge gap. In light of this, we propose a new path: infer human part states first and then reason out the activities based on part-level semantics. Human Body Part States (PaSta)...
Attributes and objects can compose diverse compositions. To model the compositional nature of these general concepts, it is a good choice to learn them through transformations, such as coupling and decoupling. However, complex transformations need to satisfy specific principles to guarantee the rationality. In this paper, we first propose a previou...
Instance segmentation requires a large number of training samples to achieve satisfactory performance and benefits from proper data augmentation. To enlarge the training set and increase the diversity, previous methods have investigated using data annotation from other domain (e.g. bbox, point) in a weakly supervised mechanism. In this paper, we pr...
Human activity understanding is crucial for building automatic intelligent system. With the help of deep learning, activity understanding has made huge progress recently. But some challenges such as imbalanced data distribution , action ambiguity, complex visual patterns still remain. To address these and promote the activity understanding, we buil...
Human activity understanding is crucial for building automatic intelligent system. With the help of deep learning, activity understanding has made huge progress recently. But some challenges such as imbalanced data distribution, action ambiguity, complex visual patterns still remain. To address these and promote the activity understanding, we build...
Human-Object Interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore Interactiveness Prior which indicates whether human and object interact with each other or not. We found that interactiveness prior can be learned across HOI datasets, regardless of HOI category settings. Our co...
Human-Object Interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore \textbf{Interactiveness Prior} which indicates whether human and object interact with each other or not. We found that interactiveness prior can be learned across HOI datasets, regardless of HOI category setting...
Instance segmentation is a problem of significance in computer vision. However, preparing annotated data for this task is extremely time-consuming and costly. By combining the advantages of 3D scanning, reasoning, and GAN-based domain adaptation techniques, we introduce a novel pipeline named SRDA to obtain large quantities of training samples with...
Instance segmentation is a problem of significance in computer vision. However, preparing annotated data for this task is extremely time-consuming and costly. By combining the advantages of 3D scanning, physical reasoning, and GAN techniques, we introduce a novel pipeline named Geometry-guided GAN (GeoGAN) to obtain large quantities of training sam...