Yong LiuZhejiang University | ZJU · Institute of Cyber-Systems and Control
Yong Liu
Doctor of Philosophy
About
466
Publications
56,036
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,847
Citations
Introduction
Yong Liu currently works at the Institute of Cyber-Systems and Control , Zhejiang University. Yong does research in Artificial Intelligence, Data Mining and Artificial Neural Network. Their current project is 'Visual Object Tracking'.
Additional affiliations
January 2011 - December 2016
January 2017 - present
Publications
Publications (466)
Scene classification is a fundamental perception task for environmental
understanding in today's robotics. In this paper, we have attempted to exploit
the use of popular machine learning technique of deep learning to enhance scene
understanding, particularly in robotics applications. As scene images have
larger diversity than the iconic object imag...
In this paper, we present a stereo visual-inertial odometry (VIO) algorithm assembled with three separated Kalman filters, i.e. attitude filter, orientation filter, and position filter. Our algorithm carries out the orientation and position estimation with three filters working on different fusion intervals, which can provide more robustness even w...
Structured output support vector machine (SVM) based tracking algorithms have shown favorable performance recently. Nonetheless, the time-consuming candidate sampling and complex optimization limit their real-time applications. In this paper, we propose a novel large margin object tracking method which absorbs the strong discriminative ability from...
In this paper, we develop a robust efficient visual SLAM system that utilizes heterogeneous point and line features. By leveraging ORB-SLAM [1], the proposed system consists of stereo matching, frame tracking, local mapping, loop detection, and bundle adjustment of both point and line features. In particular, as the main theoretical contributions o...
While autonomous driving technology has made remarkable strides, data-driven approaches still struggle with complex scenarios due to their limited reasoning capabilities. Meanwhile, knowledge-driven autonomous driving systems have evolved considerably with the popularization of visual language models. In this paper, we propose LeapVAD, a novel meth...
Binary Neural Network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While binary neural networks are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are...
Visual Object Tracking (VOT) is an attractive and significant research area in computer vision, which aims to recognize and track specific targets in video sequences where the target objects are arbitrary and class-agnostic. The VOT technology could be applied in various scenarios, processing data of diverse modalities such as RGB, thermal infrared...
This work focuses on developing parameter-efficient and lightweight models for dense predictions while trading off parameters, FLOPs, and performance. Our goal is to set up the new frontier of the 5M magnitude lightweight model on various downstream tasks. Inverted Residual Block (IRB) serves as the infrastructure for lightweight CNNs, but no count...
To enhance the controllability of text-to-image diffusion models, current ControlNet-like models have explored various control signals to dictate image attributes. However, existing methods either handle conditions inefficiently or use a fixed number of conditions, which does not fully address the complexity of multiple conditions and their potenti...
Quadrupedal robots are highly regarded for their superior locomotion capabilities and terrain adaptability, making them competent in a wide range of applications. In autonomous navigation tasks, they are required to track upper-level trajectories to reach designated locations with flexible obstacle avoidance. This is typically achieved by a planner...
The time series self-supervised contrastive learning framework has succeeded significantly in industrial fault detection scenarios. It typically consists of pretraining on abundant unlabeled data and fine-tuning on limited annotated data. However, the two-phase framework faces three challenges: Sampling bias, task-agnostic representation issue, and...
Dense depth recovery is crucial in autonomous driving, serving as a foundational element for obstacle avoidance, 3D object detection, and local path planning. Adverse weather conditions, including haze, dust, rain, snow, and darkness, introduce significant challenges to accurate dense depth estimation, thereby posing substantial safety risks in aut...
Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an...
Text-guided diffusion models have significantly advanced image editing, enabling high-quality and diverse modifications driven by text prompts. However, effective editing requires inverting the source image into a latent space, a process often hindered by prediction errors inherent in DDIM inversion. These errors accumulate during the diffusion pro...
Cooperative path planning, a crucial aspect of multi-agent systems research, serves a variety of sectors, including military, agriculture, and industry. Many existing algorithms, however, come with certain limitations, such as simplified kinematic models and inadequate support for multiple group scenarios. Focusing on the planning problem associate...
Semantic scene completion (SSC) aims to predict the semantic occupancy of each voxel in the entire 3D scene from limited observations, which is an emerging and critical task for autonomous driving. Recently, many studies have turned to camera-based SSC solutions due to the richer visual cues and cost-effectiveness of cameras. However, existing meth...
Current diffusion-based face animation methods generally adopt a ReferenceNet (a copy of U-Net) and a large amount of curated self-acquired data to learn appearance features, as robust appearance features are vital for ensuring temporal stability. However, when trained on public datasets, the results often exhibit a noticeable performance gap in im...
Event cameras have garnered considerable attention due to their advantages over traditional cameras in low power consumption, high dynamic range, and no motion blur. This paper proposes a monocular event-inertial odometry incorporating an adaptive decay kernel-based time surface with polarity-aware tracking. We utilize an adaptive decay-based Time...
This letter presents a novel multi-robot task allocation and path planning method that considers robots' maximum range constraints in large-sized workspaces, enabling robots to complete the assigned tasks within their range limits. Firstly, we developed a fast path planner to solve global paths efficiently. Subsequently, we propose an innovative au...
Recent advances in diffusion models have significantly enhanced the cotrollable generation of streetscapes for and facilitated downstream perception and planning tasks. However, challenges such as maintaining temporal coherence, generating long videos, and accurately modeling driving scenes persist. Accordingly, we propose DreamForge, an advanced d...
Grasping detection from single images in robotic applications poses a significant challenge. While contemporary deep learning techniques excel, their success often hinges on large annotated datasets and intricate network architectures. In this paper, we present LiteGrasp, a novel semi-supervised lightweight framework purpose-built for grasp detecti...
Human-human motion generation is essential for understanding humans as social beings. Although several transformer-based methods have been proposed, they typically model each individual separately and overlook the causal relationships in temporal motion sequences. Furthermore, the attention mechanism in transformers exhibits quadratic computational...
Although the progress made by large models in computer vision, optimization challenges, the complexity of transformer models, computational limitations, and the requirements of practical applications call for simpler designs in model architecture for medical image segmentation, especially in mobile medical devices that require lightweight and deplo...
LiDAR panoptic segmentation, which jointly performs instance and semantic segmentation for things and stuff classes, plays a fundamental role in LiDAR perception tasks. While most existing methods explicitly separate these two segmentation tasks and utilize different branches (i.e., semantic and instance branches), some recent methods have embraced...
World models envision potential future states based on various ego actions. They embed extensive knowledge about the driving environment, facilitating safe and scalable autonomous driving. Most existing methods primarily focus on either data generation or the pretraining paradigms of world models. Unlike the aforementioned prior works, we propose D...
Visual Spatial Description (VSD) aims to generate texts that describe the spatial relationships between objects within images. Traditional visual spatial relationship classification (VSRC) methods typically output the spatial relationship between two objects in an image, often neglecting world knowledge and lacking general language capabilities. In...
This paper presented DriveArena, the first high-fidelity closed-loop simulation system designed for driving agents navigating in real scenarios. DriveArena features a flexible, modular architecture, allowing for the seamless interchange of its core components: Traffic Manager, a traffic simulator capable of generating realistic traffic flow on any...
Co-speech gesture generation is crucial for producing synchronized and realistic human gestures that accompany speech, enhancing the animation of lifelike avatars in virtual environments. While diffusion models have shown impressive capabilities, current approaches often overlook a wide range of modalities and their interactions, resulting in less...
Semantic Scene Completion (SSC) is pivotal in autonomous driving perception, frequently confronted with the complexities of weather and illumination changes. The long-term strategy involves fusing multi-modal information to bolster the system's robustness. Radar, increasingly utilized for 3D target detection, is gradually replacing LiDAR in autonom...
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing challenges due to ambiguous symptoms, high misdiagnosis r...
Binary Neural Networks~(BNNs) have been proven to be highly effective for deploying deep neural networks on mobile and embedded platforms. Most existing works focus on minimizing quantization errors, improving representation ability, or designing gradient approximations to alleviate gradient mismatch in BNNs, while leaving the weight sign flipping,...
Diffusion models have marked a significant breakthrough in the synthesis of semantically coherent images. However, their extensive noise estimation networks and the iterative generation process limit their wider application, particularly on resource-constrained platforms like mobile devices. Existing post-training quantization (PTQ) methods have ma...
Few-Shot Instance Segmentation (FSIS) requires detecting and segmenting novel classes with limited support examples. Existing methods based on Region Proposal Networks (RPNs) face two issues: 1) Overfitting suppresses novel class objects; 2) Dual-branch models require complex spatial correlation strategies to prevent spatial information loss when g...
Instance-incremental learning (IIL) focuses on learning continually with data of the same classes. Compared to class-incremental learning (CIL), the IIL is seldom explored because IIL suffers less from catastrophic forgetting (CF). However, besides retaining knowledge, in real-world deployment scenarios where the class space is always predefined, c...
Visual anomaly detection aims to identify anomalous regions in images through unsupervised learning paradigms, with increasing application demand and value in fields such as industrial inspection and medical lesion detection. Despite significant progress in recent years, there is a lack of comprehensive benchmarks to adequately evaluate the perform...
Autonomous driving has advanced significantly due to sensors, machine learning, and artificial intelligence improvements. However, prevailing methods struggle with intricate scenarios and causal relationships, hindering adaptability and interpretability in varied environments. To address the above problems, we introduce LeapAD, a novel paradigm for...
Open-vocabulary 3D scene understanding presents a significant challenge in the field. Recent advancements have sought to transfer knowledge embedded in vision language models from the 2D domain to 3D domain. However, these approaches often require learning prior knowledge from specific 3D scene datasets, which limits their applicability in open-wor...
Current face reenactment and swapping methods mainly rely on GAN frameworks, but recent focus has shifted to pre-trained diffusion models for their superior generation capabilities. However, training these models is resource-intensive, and the results have not yet achieved satisfactory performance levels. To address this issue, we introduce Face-Ad...
Video object segmentation (VOS) has made significant progress with matching-based methods, but most approaches still show two problems. Firstly, they apply a complicated and redundant two-extractor pipeline to use more reference frames for cues, increasing the models’ parameters and complexity. Secondly, most of these methods neglect the spatial re...
Motivated by biological evolution, this paper explains the rationality of Vision Transformer by analogy with the proven practical evolutionary algorithm (EA) and derives that both have consistent mathematical formulation. Then inspired by effective EA variants, we propose a novel pyramid EATFormer backbone that only contains the proposed EA-based t...
Recently, the rise of large-scale vision-language pretrained models like CLIP, coupled with the technology of Parameter-Efficient FineTuning (PEFT), has captured substantial attraction in video action recognition. Nevertheless, prevailing approaches tend to prioritize strong supervised performance at the expense of compromising the models' generali...
The target guarding problem (TGP) is a classical combat game where pursuers aim to capture evaders to protect a territory from intrusion. This paper proposes a distributed pipeline for multi-pursuer multi-evader TGP with the capability to accommodate varying numbers of evaders and criteria for successful pursuit. The pipeline integrates a cooperati...
Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-wo...
Model compression methods are being developed to bridge the gap between the massive scale of neural networks and the limited hardware resources on edge devices. Since most real-world applications deployed on resource-limited hardware platforms typically have multiple hardware constraints simultaneously, most existing model compression approaches th...
Multisensor fusion‐based localization technology has achieved high accuracy in autonomous systems. How to improve the robustness is the main challenge at present. The most commonly used LiDAR and camera are weather‐sensitive, while the frequency‐modulated continuous wave Radar has strong adaptability but suffers from noise and ghost effects. In thi...
Semantic Scene Completion (SSC) is pivotal in autonomous driving perception, frequently confronted with the complexities of weather and illumination changes. The long-term strategy involves fusing multi-modal information to bolster the system's robustness. Radar, increasingly utilized for 3D target detection, is gradually replacing LiDAR in autonom...
Cross-domain generalizable depth estimation aims to estimate the depth of target domains (i.e., real-world) using models trained on the source domains (i.e., synthetic). Previous methods mainly use additional real-world domain datasets to extract depth specific information for cross-domain generalizable depth estimation. Unfortunately, due to the l...
The canonical approach to video action recognition dictates a neural network model to do a classic and standard 1-of-N majority vote task. They are trained to predict a fixed set of predefined categories, limiting their transferability on new datasets with unseen concepts. In this article, we provide a new perspective on action recognition by attac...
In this paper, we propose an effcient continuous-time LiDAR-Inertial-Camera Odometry, utilizing non-uniform B-splines to tightly couple measurements from the LiDAR, IMU, and camera. In contrast to uniform B-spline-based continuous-time methods, our non-uniform B-spline approach offers signifcant advantages in terms of achieving real-time effciency...