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a b s t r a c t

In conventional sliding-mode control systems, the sliding-mode motion is of reduced order. Two main
problems hindering the application of the sliding-mode control are the singularity in terminal sliding-
mode control systems and the chattering in both the conventional linear sliding-mode and the terminal
sliding-mode control systems. This paper proposes a chattering-free full-order terminal-sliding-mode
control scheme. Since the derivatives of terms with fractional powers do not appear in the control law,
the control singularities are avoided. A continuous control strategy is developed to achieve the chattering
free sliding-mode control. During the ideal sliding-mode motion, the systems behave as a desirable full-
order dynamics rather than a desirable reduced-order dynamics. A systematic design method of full-
order sliding-mode control for nonlinear systems is presented, which allows both the chattering and
singularity problems to be resolved. Simulations validate the proposed chattering free full-order sliding-
mode control.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Sliding-mode control (SMC) has attracted significant amount of
interest due to its fast global convergence, simplicity of implemen-
tation, order reduction, high robustness to external disturbances
and insensitivity to model errors and system parameter variations
(Sabanovic, 2011; Utkin, 1992). Thanks to these advantages, SMC
has been widely used in many applications, including electrical,
mechanical, chemical, industrial, civil, military, aeronautical, and
aerospace engineering (Boiko, 2011; Meng, Ren, & You, 2010; Tan,
Yu, & Man, 2010).

SMC includes conventional linear sliding-mode (LSM) control
and terminal sliding-mode (TSM) control. The former is asymptot-
ically stable, while the latter is finite-time stable. The design of the
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SMC systemsmainly consists of two steps: the choice of the sliding-
mode surface, and the design of the sliding-mode controller. The
sliding-mode surface is chosen such that a SMC system can be-
have in a desirable fashion. The controller is designed to guarantee
the existence condition of the sliding mode, so the system can be
driven to reach the sliding-mode surface in finite-time and remain
on it thereafter.

Compared to conventional LSM control, TSM control exhibits
various superior properties such as fast and finite-time conver-
gence and smaller steady-state tracking errors (Feng, Zheng, Yu,
& Truong, 2009; Feng, Yu, & Man, 2013). However the singular-
ity and chattering problems need to be addressed appropriately.
A carefully designed switching scheme to avoid the singularity in
TSM control systems was proposed (Man & Yu, 1997). The sliding-
mode of the system is switched between the TSM and the LSM,
i.e., when a singularity appears, the sliding-mode is switched from
TSM to LSM; it is switched back fromLSM to TSMas soon as the sys-
tem trajectory passes the singularity area. The disadvantage of this
method is that the convergence time is extended. Transferring the
system states to a pre-specified nonsingular open regionwhere the
TSM control is executed was proposed (Wu, Yu, & Man, 1998). The
aforementioned two methods belong to the indirect approaches.
We presented a direct method of avoiding the singularity (Feng,
Yu, & Man, 2002). It resolved the singularity problem completely
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via the design of the TSMmanifold. However, its application is lim-
ited to the second-order systems and a special class of high-order
systems. In recent years, backstepping based nonsingular TSM con-
trol (Min&Xu, 2009), the derivative and integral TSMcontrol (Chiu,
2012) have been proposed for the purpose of avoiding the singular-
ity. Based on these results, we investigated the singularity problem
further (Feng, Yu, & Han, 2013) and showed that for the second-
order and higher-order TSM systems, the singularity areas always
exist in state space if the TSM manifold is chosen as the reduced-
order like in the conventional SMC systems.

Besides the singularity, the chattering is another issue that
needs to be addressed in both LSM and TSM control systems. The
control in these systems adopts a switching function, which can
cause high frequency oscillations in the system states, i.e. chat-
tering. A number of methods for attenuating chattering have
been proposed, such as boundary layer method (Utkin, 1992),
high-order sliding-mode method (Bartolini, Ferrara, & Usai, 1998;
Levant, 1998, 2001, 2005, 2007), and disturbance estimation
method (Shtessel, Shkolnikov, & Brown, 2003). The boundary layer
method includes the saturation function and the sigmoid func-
tion methods. But it can only guarantee the existence condi-
tion of the sliding-mode outside a small boundary layer around
the sliding-mode manifold, which will increase the steady-state
tracking errors. The high-order sliding-mode method is to hide
the discontinuity of control in its higher derivatives. The distur-
bance estimation method can also be used for attenuating chatter-
ing. In (Shtessel, Shkolnikov, & Brown, 2003), an asymptotic distur-
bance observer was designed to compensate the disturbance and a
smooth control strategy was developed.

In conventional SMC systems, the sliding-mode surface is cho-
sen so that it has desirable reduced-order dynamics when con-
strained to it, i.e., the ideal sliding-mode motion of SMC systems
is of reduced order. In this paper, a full-order sliding-mode man-
ifold is utilized, and a chattering free control is proposed. During
the ideal sliding-mode motion, the system behaves as a desirable
full-order dynamics, not a reduced-order dynamics. The proposed
control is smooth and no chattering phenomenon exists in the sys-
tem response. Both the LSM and TSM based control methods of
nonlinear systems are presented. Neither the chattering nor the
singularity problems appear in the system’s response. In conven-
tional sliding-mode design, e.g. in (Defoort, Floquet, Kokosy, & Per-
ruquetti, 2009), the sliding-modemanifold is either measurable or
computable, but the sliding-mode manifold in our paper is nei-
ther measurable nor computable. The benefit is that the proposed
SMChas no chattering phenomena,while the conventional sliding-
mode design has chattering phenomena.

2. Sliding-mode control of the nonlinear systems

Consider a high-order nonlinear system:
ẋ1 = x2
ẋ2 = x3
· · ·

ẋn−1 = xn
ẋn = f (x, t) + d(x, t) + b(x, t)u

(1)

where n is the order of the system, x = [x1, x2, . . . , xn]T ∈ Rn

represents the system state vector, f (x, t) and b(x, t) ≠ 0 are two
smooth nonlinear functions of x, u ∈ R is the control. The partially
known function d(x, t) : Rn

→ R, which represents the system
parameter uncertainties and the external disturbances, is assumed
to satisfy the following condition: |d(x, t)| ≤ ld, where ld > 0 is a
bounded constant.

The task of SMC for nonlinear system (1) is to design a con-
trol strategy which induces an ideal sliding-mode motion in the
prescribed sliding-mode surface and forces system (1) to the ori-
gin along the sliding-mode surface asymptotically (for LSM) or in
finite-time (for TSM).

It is assumed that all constants are known, as well as functions
f and b in system (1), and all coordinates are exactly measurable in
real time.

A TSM manifold for system (1) can be selected in the following
form:

s = x(n)
1 + cn sgn(x(n−1)

1 )

x(n−1)
1

αn
+ · · · + c1 sgn(x1) |x1|α1

= ẋn + cn sgn(xn) |xn|αn + · · · + c1 sgn(x1) |x1|α1 (2)

where ci and αi (i = 1, 2, . . . , n) are constants. ci can be selected
such that the polynomial pn + cnpn−1

+ · · · + c2p + c1, which
corresponds to system (2), is Hurwitz, i.e., the eigenvalues of the
polynomial are all in the left-half side of the complex plane. αi
can be determined based on the following conditions (Bhat &
Bernstein, 1997):

α1 = α, n = 1
αi−1 =

αiαi+1

2αi+1 − αi
, i = 2, . . . , n ∀n ≥ 2 (3)

where αn+1 = 1, αn = α, α ∈ (1 − ε, 1), ε ∈ (0, 1).
Once the ideal sliding-mode s = 0 is established, the nonlinear

system (1) will behave in an identical fashion, namely

ẋn + cn sgn(xn) |xn|αn + · · · + c1 sgn(x1) |x1|α1 = 0 (4)

or
ẋ1 = x2
ẋ2 = x3
· · ·

ẋn−1 = xn
ẋn = −cn sgn(xn) |xn|αn − · · · − c1 sgn(x1) |x1|α1 .

(5)

If αi in TSM manifold (2) are selected using (3) and ci in (2) are
determined to guarantee that the polynomial pn−1

+ cn−1pn−2
+

· · · + c2p + c1 is Hurwitz, system (4) or (5), which represents the
establishment of the ideal sliding-mode s = 0 for system (1),
can converge to its equilibrium point x = [x1, . . . , xn−1]

T
=

[0, . . . , 0]T fromany initial condition x(0) ≠ 0 along the TSMman-
ifold s = 0 in finite-time (Bhat & Bernstein, 1997, 2005; Hong, Xu,
& Huang, 2002; Hong, Yang, Cheng, & Spurgeon, 2004).

Assumption 2.1. Thederivative of d(x, t) in system (1) is bounded:ḋ(x, t) ≤ kd (6)

where kd > 0 is a constant.
Note that this assumption is realistic in practical applications.

For example, when a cutting tool or an end mill of a CNC machine
tool cuts a work-piece, the load torque may change as the cutting
thickness changes, but the change rate of the load torque is always
limited.

Theorem 2.2. The nonlinear system (1) will reach s = 0 in finite-
time and then converge to zero along s = 0 within finite-time, if the
sliding-mode surface s is selected as (2) and the control is designed as
follows:

u = b−1(x, t)

ueq + un


(7)

ueq = −f (x, t) − cn sgn(xn) |xn|αn − · · · − c1 sgn(x1) |x1|α1 (8)

u̇n + Tun = v (9)
v = −(kd + kT + η) sgn(s) (10)

where un(0) = 0; ci andαi (i = 1, . . . , n) are all constants, as defined
in (2); η is a positive constant; kd is a constant defined in (6); two
constants, T ≥ 0 and kT are selected to satisfy the following condition:

kT ≥ Tld. (11)
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Proof. From system (1), the sliding-mode manifold (2) can be
rewritten as follows:

s = ẋn + cn sgn(xn) |xn|αn + · · · + c1 sgn(x1) |x1|α1

= f (x, t) + d(x, t) + b(x, t)u
+ cn sgn(xn) |xn|αn + · · · + c1 sgn(x1) |x1|α1 .

Substituting the control (7) into above equation gives:

s = f (x, t) + d(x, t) + ueq + un

+ cn sgn(xn) |xn|αn + · · · + c1 sgn(x1) |x1|α1 . (12)

Further substituting (8) into (12) gives:

s = d(x, t) + un. (13)

The solution of (9) is given by

un(t) = (un(t0) + (1/T )(kd + kT + η) sgn(s)) et−t0

− (1/T )(kd + kT + η) sgn(s). (14)

From (11), (13) and (14), the following relationship under the
condition un(0) = 0 can be obtained:

kT ≥ Tld ≥ T |un(t)|max ≥ T |un(t)|

i.e. the following inequality will be kept forever:

T |un(t)| ≤ kT . (15)

The following Lyapunov function is considered: V = s2/2. For
TSMmanifold (2), its derivativewith respect to time t along system
(1) can be obtained from (13) as follows:

ṡ = ḋ(x, t) + u̇n = ḋ(x, t) + u̇n + Tun − Tun

= ḋ(x, t) + v − Tun.

Substituting (9) into above equation gives:

ṡ = ḋ(x, t) − (kd + kT + η) sgn(s) − Tun

hence

sṡ = ḋ(x, t)s − (kd + kT + η) |s| − Tuns
=


ḋ(x, t)s − kd |s|


+ (−Tuns − kT |s|) − η |s| .

From (6), (15) and above equation, we have

V̇ = sṡ ≤ −η |s| < 0 for |s| ≠ 0

which means that system (1) will reach to s = 0 in finite time. On
s = 0, system (1) behaves in an identical fashion, as shown in (4) or
(5), i.e., the systemwill converge to zero in finite-time along s = 0.
This completes the proof.

In fact the proposed control provides for the establishment of
the (n + 1)th-order sliding-mode x1 = ẋ1 = · · · = x(n)

1 = 0 in the
extended state space with coordinates t, x1, x2, . . . , xn, un.

Remark 2.3. In (7)–(10), all variables except s are available since
ẋn is not available in (2). For calculating sgn(s) in (10), a function
g(t) is defined as follows:

g(t) =

 t

0
s(t)dt

= xn+
 t

0
(cn sgn(xn) |xn|αn + · · · + c1 sgn(x1) |x1|α1) dt. (16)

sgn(s) can be obtained by the following equation:

sgns = sgn (g(t) − g(t − τ)) (17)

where τ is a time delay. Since s(t) = limτ→0 (g(t) − g(t − τ)) /τ ,
we can choose a fundamental sample time as τ . It should be noted
that we do not need the value of s, but only its sign, sgn(s), i.e., we
only need to know whether g increases or decreases. To obtain
sgn(s) is much easier than to obtain s.

Remark 2.4. In Theorem 2.2, the control signal (9) is equivalent to
a low-pass filter, where v(t) is the input and un(t) is the output of
the filter. The Laplace transfer function of the filter (9) is:

un(s)
v(s)

=
1

s + T
(18)

whereω = T is the bandwidth of the low-pass filter. Although v(t)
in (10) is non-smooth because of the switch function, un(t) in (7) is
the output of the low-pass filter (9) and is softened to be a smooth
signal by (9).

In the special case, T = 0, (9) and (10) become:

u̇n = v (19)
v = −(kd + η) sgn(s). (20)

If (9) and (10) are replaced with (19) and (20), Theorem 2.2
holds also and the control u in (7) is continuous aswell. In this case,
we do not need the condition (11) for Theorem 2.2 and its proof.
But (19) is a pure integrator and more difficult for hardware im-
plementation in practical applications than the low-pass filter (9).

Remark 2.5. We prevent differentiating terms ci sgn(xi) |xi|αi in
the TSMmanifold (2) from deriving the control laws. So singularity
can be avoided, and the ideal TSM, s = 0, is nonsingular.

Below are several controller design examples.
The first-order systems
ẋ1 = f (x1, t) + d(x1, t) + b(x1, t)u. (21)

Based on (2), a TSMmanifold for system (21) can be selected in
the following form:

s = ẋ1 + c1 sgn(x1) |x1|α1 (22)
where 0 < α1 < 1. The control strategy can be designed based on
(7)–(10), and the control signal ueq is:

ueq = −f (x1, t) − c1 sgn(x1) |x1|α1 . (23)

The second-order systems
ẋ1 = x2
ẋ2 = f (x, t) + d(x, t) + b(x, t)u (24)

where x = [x1, x2]T , u ∈ R.
Based on (2) and (8), a TSM manifold and the control signal ueq

for system (24) can be designed as follows:

s = ẍ1 + c2 sgn(ẋ1) |ẋ1|α2 + c1 sgn(x1) |x1|α1 (25)

ueq = −f (x, t) − c2 sgn(x2) |x2|α2 − c1 sgn(x1) |x1|α1 . (26)
The whole control strategies for system (24) are the same as

those in (7)–(10).
The third-order systemsẋ1 = x2
ẋ2 = x3
ẋ3 = f (x, t) + d(x, t) + b(x, t)u

(27)

where x = [x1, x2, x3]T , u ∈ R.
Based on (2) and (8), a TSM manifold and the control signal ueq

can be designed respectively as follows:

s=x1+c3 sgn(ẍ1) |ẍ1|α3 +c2 sgn(ẋ1) |ẋ1|α2 + c1 sgn(x1) |x1|α1 (28)

ueq = −f (x, t) − c3 sgn(x3) |x3|α3 − c2 sgn(x2) |x2|α2

− c1 sgn(x1) |x1|α1 . (29)
In these examples, only v in (10) contains switching terms,

while the actual control u does not contain these terms. Therefore
the proposed control is chattering-free.
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Fig. 1. System states of the second-order system.

Remark 2.6. Theorem 2.2 can be extended to the LSM control.
Unlike TSM manifold (2), the LSM manifold for the nth-order
systems (1) can be chosen as follows:

s = x(n)
1 + cnx

(n−1)
1 + · · · + c1x1 = ẋn + cnxn + · · · + c1x1 (30)

where ci > 0 (i = 1, 2, . . . , n) can be selected such that the
polynomial pn + cnpn−1

+ · · · + c2p + c1, which corresponds to
system (30), is Hurwitz. The difference between LSM (30) and TSM
(2) is that the systemwill converge to zero in finite-time along TSM
(2), but asymptotically converge to zero along LSM (30).

The LSM based controller for nonlinear system (1) can also be
designed based on Theorem 2.2 by assuming the parameters, αi =

1, i = 1, 2, . . . , n.

3. Simulations

To evaluate the effectiveness of the proposed method, two
examples are given below.

Example 1 (TSM Control of a Second-order System).
ẋ1 = x2
ẋ2 = x32 + 0.1 sin(20t) + u. (31)

A TSM manifold is chosen from (2) as follows:

s = ẍ1 + 7 sgnẋ1 |ẋ1|9/16 + 10x9/231

= ẋ2 + 7 sgnx2 |x2|9/16 + 10x9/231

where the parameters, 9/16 and 9/23 are chosen by using (3), and
theHurwitz polynomial is selected as p2+7p+10 = (p+2)(p+5).

Based on Theorem 2.2, u = ueq + un are designed as:

ueq = −x32 − 7 sgnx2 |x2|9/16 − 10x9/231 (32)

u̇n + 0.1un = v (33)
v = −10 sgn(s) (34)

where kd + kT + η = 10. In system (31), kd = 2 because ofḋ(x, t) ≤ 2. T is selected as 0.1, kT + η is selected as kT + η =

8. sgn(s) can be calculated using (16) and (17).
The simulation results are shown in Figs. 1 and 2. Two state

variables of the system are depicted in Fig. 1. The actual control
signal of the systemu in (31) is displayed in Fig. 2. It can be seen that
although there is a switching function in signal v (34), the actual
control signal u is soften to be smooth because of the low-pass filter
(33). In addition, no singularity occurs in the signal u. Therefore the
Fig. 2. Control of the second-order system.

proposed full-order sliding-mode control method in the paper can
resolve two main problems in the second-order TSM systems: the
singularity and the chattering.

Example 2 (TSM Control of a Third-order System).ẋ1 = x2
ẋ2 = x3
ẋ3 = x32 + 0.1 sin(20t) + u.

(35)

Based on (2), a TSM manifold is designed as follows:

s = x1 + 15 sgnẍ1 |ẍ1|7/10 + 66ẋ7/131 + 80 sgnx1 |x1|7/16

= ẋ3 + 15 sgnx3 |x3|7/10 + 66x7/132 + 80 sgnx1 |x1|7/16 (36)

where the parameters, 7/10, 7/13 and 7/16 are chosen by using (3),
and the Hurwitz polynomial is selected as p3 +15p2 +66p+80 =

(p + 2) (p + 5)(p + 8).
Based on Theorem 2.2, u = ueq + un are designed as:

ueq = −x32 − 15 sgnx3 |x3|7/10 − 66x7/132 − 80 sgnx1 |x1|7/16 (37)

u̇n + 0.1un = v (38)
v = −10 sgn(s) (39)

where kd + kT + η = 10. In system (35), kd = 2 because ofḋ(x, t) ≤ 2. T is selected as 0.1, kT + η is selected as kT + η = 8.
sgn(s) can be calculated using (16) and (17).

The simulation results are shown in Figs. 3 and 4. Fig. 3 depicts
the three system states, x1, x2, and x3 respectively. The actual
control of the system u in (35) is shown in Fig. 4. It can be seen that
although there is a switching function in v (39), the actual control
u is smooth, and no singularity occurs in u.

From the two examples above, it can be observed that the
proposed method can realize the globally finite-time stability of
the nth-order systems, and the singularity problem can be avoided.
In addition, the control signals are smooth, as shown in Figs. 2 and
4, which means that the chattering problem in SMC systems has
been eliminated.

4. Conclusions

In this paper, the chattering free full-order sliding-mode control
has been proposed. The main contributions can be summarized
as follows: (1) the singularity problem in TSM systems has been
avoided by preventing differentiating terms with fractional power
in sliding-mode manifold from deriving the control laws. (2)
The chattering in both LSM and TSM systems has also been
resolved by applying a continuous control strategy. During the
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Fig. 3. System states of the third-order system.

Fig. 4. Control of the third-order system.

ideal sliding-mode motion, the system behaves as a desirable full-
order dynamics rather than a desirable reduced-order dynamics
with the proposed control strategy in place. The proposed control
is smooth and no chattering phenomenon exists. The proposed
designmethod canbeused for both LSM- and TSM-basednth-order
systems.
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