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a b s t r a c t

This paper introduces a scalable “climate health justice” model for assessing and projecting incidence,
treatment costs, and sociospatial disparities for diseases with well-documented climate change linkages.
The model is designed to employ low-cost secondary data, and it is rooted in a perspective that merges
normative environmental justice concerns with theoretical grounding in health inequalities. Since the
model employs International Classification of Diseases, Ninth Revision Clinical Modification (ICD-9-CM)
disease codes, it is transferable to other contexts, appropriate for use across spatial scales, and suitable
for comparative analyses. We demonstrate the utility of the model through analysis of 2008e2010
hospitalization discharge data at state and county levels in Texas (USA). We identified several disease
categories (i.e., cardiovascular, gastrointestinal, heat-related, and respiratory) associated with climate
change, and then selected corresponding ICD-9 codes with the highest hospitalization counts for further
analyses. Selected diseases include ischemic heart disease, diarrhea, heat exhaustion/cramps/stroke/
syncope, and asthma. Cardiovascular disease ranked first among the general categories of diseases for
age-adjusted hospital admission rate (5286.37 per 100,000). In terms of specific selected diseases (per
100,000 population), asthma ranked first (517.51), followed by ischemic heart disease (195.20), diarrhea
(75.35), and heat exhaustion/cramps/stroke/syncope (7.81). Charges associated with the selected dis-
eases over the 3-year period amounted to US$5.6 billion. Blacks were disproportionately burdened by the
selected diseases in comparison to non-Hispanic whites, while Hispanics were not. Spatial distributions
of the selected disease rates revealed geographic zones of disproportionate risk. Based upon a down-
scaled regional climate-change projection model, we estimate a >5% increase in the incidence and
treatment costs of asthma attributable to climate change between the baseline and 2040e2050 in Texas.
Additionally, the inequalities described here will be accentuated, with blacks facing amplified health
disparities in the future. These predicted trends raise both intergenerational and distributional climate
health justice concerns.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The relationship between climate change and health is complex
and there remains uncertainty regarding specific health impacts of
climate change on human populations (Ebi et al., 2006; Hajat et al.,
2010; McMichael et al., 2006; Portier et al., 2010). Predictive
modeling is difficult due to limited availability of data and con-
founding factors such as individual behavior, human physiology,
and social institutions (Brown et al., 2012). Nonetheless, there is
scholarly consensus that climate change presents serious risks to
human health (Green et al., 2010; Portier et al., 2010). This
onald).
understanding stems in part from two decades of retrospective
time-series epidemiological studies, which have examined daily
changes in weather parameters and associated morbidities and
mortality (Turner et al., 2012). For example, researchers have
demonstrated that there is a positive relationship between daily
increases in temperature and cardiovascular hospital admissions
(Ebi et al., 2004; Kovats et al., 2004; Schwartz et al., 2004), as well
as respiratory hospital admissions (Michelozzi et al., 2009; Lin
et al., 2009). Overall, a review of the climate change/health litera-
ture reveals that cardiovascular, gastrointestinal, heat, respiratory,
vector-borne, and water-borne diseases are likely to be associated
with climate change (Hales et al., 2003; Portier et al., 2010) (see
Table 1).

While important, the climate change/health literature suffers
from several limitations. First, most studies examine impacts at a
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global scale (e.g., McMichael et al., 2006), with far fewer fine-scale
spatial analyses (Maantay and Becker, 2012). Second, analyses of
social inequalities in the projected health effects of climate change
have been largely missing from this literature (see Lin et al., 2012
for an exception). Third, even in the retrospective studies, mortal-
ity has been a primary focus as opposed tomorbidity outcomes (see
Ren and Tong, 2006; Knowlton et al., 2009; Madrigano et al., 2013
as exceptions). Fourth, there are few extant models for assessing
and projecting spatial patterns, on a regional scale, of diseases with
well-documented climate change linkages (see Lin et al., 2012 for
an exception), and none that are sensitive to social disparities in
disease outcomes.

The environmental justice and health inequalities literature
provide a basis for beginning to address these limitations. The
environmental justice (EJ) literature has documented that poor and
racial/ethnic minority groups often face disproportionate exposure
to environmental hazards (Brown, 1995; Brulle and Pellow, 2006;
Chakraborty et al., 2011; Mohai et al., 2009). Within that litera-
ture, a growing body of work on the “climate gap” is demonstrating
that socially marginalized groups face unequal and dispropor-
tionate exposure to climate change-related hazards (Grineski et al.,
2014, 2012; Kersten et al., 2012; Morello-Frosch et al., 2009; Pastor
et al., 2010; Shonkoff et al., 2009; Shonkoff et al., 2011). However,
few if any scholars have merged normative environmental justice
concerns with quantification of health impacts of climate change.
This lack of overlap has limited the development of more robust,
action-oriented understandings of the unequal health impacts of
climate change.

Social scientists have long recognized that patterns of disease
and death are shaped by social, economic, political, and cultural
factors. Decades of health inequalities studies have demonstrated
that persons of lower socioeconomic status (SES) and racial/ethnic
minority status tend to have greater morbidity (Nazroo, 2003).
These groups suffer from poorer health due to lower levels of ed-
ucation, higher rates of unemployment, less rewarding jobs,
reduced access to medical care, and less actual and perceived
control over life circumstances (Mirowsky et al., 2000). Those with
lower SES and racial/ethnic minorities have also been shown to be
more sensitive to environmental exposures, like day-to-day varia-
tions in air pollution, than their more affluent and white non-
Hispanic counterparts (Clougherty, 2011; Gwynn and Thurston,
2001; Hackbarth et al., 2011; O'Neil et al., 2003). Given this body
Table 1
Climate change-relevant disease category and disease impacts.

Disease categorya Disease impacts

Cardiovascular Cardiovascular diseases hospital admissions increase during extr
waves and during peaks in particulate matter.

Heat Extreme heat events are a leading cause of weather-related mor
mortality in North America. Prolonged heat exposure causes a va
related diseases, such as heat stroke, heat syncope, and heat exh

Gastrointestinal Diarrheal episodes in North America increase because of sewage
to flooding.

Respiratory An increase in respiratory diseases hospital admissions occur dur
higher temperatures. Respiratory diseases are intensified by pea
pollution due to changes in climate. Longer pollen seasons due t
climates may also intensify suffering for those with conditions li
asthma.

Vector-borne Vector-borne diseases increase due to increased temperatures, w
more suitable habitats for vectors.

Water-borne Water-borne diseases are associated extreme rainfall events, wh
expected to increase under climate change resulting in a contam
supply.

a Climate change-relevant disease category.
of knowledge, it is surprising that social inequalities have been so
underemphasized within the climate change health effects
literature.

This paper introduces a scalable “climate health justice” model
that addresses these limitations. This model is informed by the
retrospective time-series literature on weather parameter/health
relationships in that we are able to identify diseases likely to be
impacted by warming temperatures. Rooted in a perspective that
merges normative environmental justice concerns with theoretical
grounding in health inequalities, the model is designed to support
the use of low-cost secondary data for assessing and projecting
incidence, treatment costs, and sociospatial disparities for diseases
with well-documented climate change linkages. Since the model
employs International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) codes, it is transferable to other
contexts, appropriate for use across a range of spatial scales, and
suitable for comparative analyses of climate health justice.

We demonstrate the utility of the model through analysis of
2008e2010 hospitalization discharge data at state and county
levels in Texas (USA). To preview the analysis, we first identified
several disease categories with well-established climate change
linkages, and then selected corresponding ICD-9-CM disease codes
with the highest hospitalization counts for further analyses. Next,
we employed direct age-adjustment protocols to “control” for the
effect of age (Friis and Sellers, 2014) because age structures in Texas
vary significantly between counties based partly on differences in
racial/ethnic composition, and because the diseases analyzed do
not impact all age groups the same (e.g. ischemic heart disease is a
disease of older age while asthma is more prevalent among chil-
dren). We then employed the Wilcoxon signed-rank test and rela-
tive risk ratios to quantify impacts of the diseases in terms of
hospital admissions and sociospatial disparities, and we used
hospitalization discharge data to calculate direct dollar charges.
Finally, we estimated future incidence, treatment costs, and in-
justices for social sub-groups for the time period of 2040e2050
using a climate change health impact projection from the available
literature. The research questions we address are presented below.

Research Question 1. What are the numbers of hospitalization
cases for climate change-relevant diseases in Texas from 2008 to
2010?
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Research Question 2. What is the economic impact, based on
hospitalization dollar charges, for climate change-relevant diseases
in Texas from 2008 to 2010?

Research Question 3. What are the social and spatial distribu-
tional patterns of climate change-related diseases in Texas from
2008 to 2010? Are these diseases equally distributed across social
groups and spatially across counties? If not, what specific social and
spatial disparities in climate change-relevant diseases exist?

Research Question 4. What are predictions in terms of the inci-
dence, treatment costs, and social disparities for hospitalizations
due to asthma (a key climate change-related disease) for the time
period of 2040e2050?

We acknowledge the complexity of the relationship between
climate change and health. Our goal is not to present a model for
quantifying the proportion of health impacts directly attributable
to climate change. Instead, we offer a scalable climate health justice
model for quantifying current and future impact of diseases that
have been clearly established in the literature as linked to climate
change, which can provide a basis for systematically clarifying and
reducing the scope, costs, and uneven sociospatial effects of climate
change on population health.

2. Methods

2.1. Data source and selected diseases

The study area is Texas, a state with a population of 25,145,561
(US Census Bureau, 2010). While Texas covers 261,233 square miles
(Texas Counties: Land Area, Texas Association of Counties (2010)),
89% of the population resides within metropolitan statistical areas
(MSAs) that comprise only 25% of the state's land area (US Census
Bureau, 2010). Our analysis utilizes 2008e2010 state and county-
level hospital admissions data reported in the Texas Hospital
Inpatient Discharge Public Use Data File (PUDF). While we recog-
nize that hospital admissions data only partially measure overall
population morbidity (Kovats et al., 2006), they provide the most
comprehensive information on patterns of diseases currently
available statewide. The PUDF data were prepared by the Texas
Health Care Information Council (THCIC). This patient-level dataset
includes age; race; ethnicity; diagnosis codes (using the Interna-
tional Classification of Diseases, Ninth Revision, Clinical Modifica-
tion or ICD-9-CM classification system) for primary, secondary and
tertiary diseases; county of residence; payment source (e.g., in-
surance type); and financial charges associated with admission
(among other variables) on a case-by-case basis.

To create the dataset, we first conducted a comprehensive re-
view of the literature to identify disease categories (cardiovascular,
gastrointestinal, heat, respiratory, vector-borne, and water-borne)
that have well-documented links with climate change (Basu,
2009; Bosello et al., 2006; Costello et al., 2009; Epstein, 2005;
Haines and Patz, 2004; Hales et al., 2003; Portier et al., 2010).
Table 2
Specific conditions included in each category of climate change-relevant diseases based

Category ICD-9-CM code

Cardiovascular diseases 306.2, 402, 402.0, 402.1, 402.9, 405, 4
410, 410.0, 410.1, 410.2, 410.3, 410.4,

Gastrointestinal disease 787.91
Heat-related diseases 705.1, 992.0, 992.1, 992.2, 992.3, 992.
Respiratory diseases 416, 416.8, 416.9, 466, 466.0, 466.1, 4

493.12, 493.2, 493.20, 493.21, 493.22,
Vector-borne diseases 061, 066.4, 066.40, 066.41, 066.42, 06
Water-borne diseases 001, 001.9, 007.4, 007.9, 009.2, 009.3,
Then, we reviewed all ICD-9-CM codes in each category, removing
those that were obviously due to factors unrelated to climate
change (e.g., smoking, drug use, or occupation). For example, the
respiratory disease “pneumonopathy” (ICD-9 code 504), which can
occur during the cotton manufacturing process, was removed
(ICD9Data.com, 2008). This produced a list of disease codes by
category (see Table 2).

The inclusion criterion for the study was being admitted to a
hospital for one of the diseases in the six categories during the
three-year study period (2008e2010; see Table 2). A patient was
counted as having a disease if it was the principal, secondary, or
tertiary diagnosis. We selected from three diagnoses because a
patient may exhibit a variety of symptoms associated with multiple
conditions upon hospital admittance. The inclusion of three di-
agnoses captures the multiple dimensions of morbidity that may
affect the health status of an individual upon admission (e.g. an
underlying chronic condition, as well as a heat-related diagnosis).

While the literature suggests that climate change-relevant dis-
eases fall within six disease categories (i.e., cardiovascular, gastro-
intestinal, heat, respiratory, vector-borne, and water-borne), we
eliminated vector-borne and water-borne diseases due to nearly
zero counts of hospitalizations in Texas during 2008e2010. Even
though there were relatively low counts of heat-related diseases,
we included that category because there is a relatively high degree
of certainty about their increased occurrence due to elevated
temperatures associated with climate change (Brown et al., 2012).
Thus, we report the incidence and economic burden of heat dis-
eases in answer to research questions 1 and 2 but, due to small
counts, we do not disaggregate heat disease data for analysis and
spatial representation at the county level as per research question
3, nor do we project heat diseases into the future as per research
question 4.

Of the 254 counties in the state of Texas, therewere cases for 251
or 99% of the counties for cardiovascular diseases (3 non-reporting),
243 or 96% of the counties for gastrointestinal diseases (11 non-
reporting), 169 or 67% counties for heat diseases (85 non-
reporting), and 252 or 99% counties for respiratory diseases (2
non-reporting). Counties are non-reporting or “exempt”when they
have a population less than 35,000, have only a military hospital, or
are located in a non-urban county (based on US Census definitions)
with a population of more than 35,000 but with fewer than 100
licensed hospital beds (Texas Health Care Information Council,
2010). Even with the exclusion of sparsely populated/rural (non-
reporting) counties, the PUDF dataset represents 99.99% of the
Texas population. We used the “total charges” field to assess all
charges related to the hospitalization (as per research question 2),
which includes costs covered and not covered by insurance pro-
viders, and all expenses due to indigent admissions.

We used the disease categories to characterize the baseline
burden of climate change-related diseases in terms of the number
of hospital admissions and cost in each category (research
questions 1 and 2). Then, to better support the inferential
on ICD-9-CM codes.

05.0, 405.1, 405.9, 429.2, 429, 429.0, 429.1, 429.9, 414, 414.0, 414.2, 414.8, 414.9,
410.5, 410.6, 410.7, 410.8, 410.9

4, 992.5
66.11, 466.19, 491, 493, 493.0, 493.00, 493.01, 493.02, 493.1, 493.10, 493.11,
493.8, 493.82, 493.9, 493.90, 493.91, 493.92, 514, 518.4
6.49, 079.81, 084, 084.0, 084.1, 084.2, 084.3, 084.5, 084.9, 088.81
564.5
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analyses related to social and spatial disparities, we selected the
ICD-9-CM codes with the most numerous case counts (across pri-
mary, secondary and tertiary codes) within each disease category as
our selected diseases of focus. An ICD-9-CM code is defined as
having a three digit category code, and may have a fourth digit that
specifies a subcategory, and a fifth digit that indicates a sub-
classification. The selected diseases are: ischemic heart disease
(ICD-9-CM 414e414.9) (Portier et al., 2010); diarrheal disease (ICD-
9-CM 787.91) (Rosenthal, 2009); heat diseases, including heat
exhaustion, heat cramps, heat stroke, and heat syncope, herein
‘heat ECSS’ (ICD-9-CM 992e992.5) (Brown et al., 2012); and asthma
(493e493.92) (Tagaris et al., 2009). All of these selected diseases
have well-documented empirical links to climate change in the
extant literature.

2.2. Age-adjustment

We used the direct method to create separate age-adjusted
hospital admission rates per 100,000 people for each of the
selected diseases by six social groups: (1) all people, (2) black, (3)
Hispanic, (4)whitenon-Hispanic, (5)uninsured, and (6) insured. The
justification for selecting these social groupings is provided in the
next section. The age-adjustment was done at the state and county-
level (except heat-related,whichwas age-adjusted only at the state-
level as we did not conduct county-level analysis due to small
counts), and for each of the six groups, using age-stratum data.

The 2010 Decennial Census was the source of age-stratum data
for all people and it was used to calculate the state and county-level
admission rates. The ACS 2006e2010 (5-year estimates) was the
only available data source for black, Hispanic and white non-
Hispanic populations by age, and so it was used to calculate the
state and county-level rates. A 5-year ACS estimatewas not available
for the insured and uninsured variable, so we used the ACS
2008e2010 3-year estimate instead to calculate the rates at the state
and county-level. Because the ACS does not report data for every
county for each social group (to assure anonymity of respondents in
counties with small counts), we eliminated counties without data;
this corresponds to 19 counties for analyses using the black sub-
group, 1 for analyses using the Hispanic sub-group, and 135 for an-
alyses using the insured/uninsured sub-groups. Also, we eliminated
counties that had less than 25 cases for each selected disease per
social group because small health event occurrences will produce a
large amount of random variation (Curtin and Klein, 1995).

To age-adjust using the direct method, we applied observed
age-stratum disease rates for the population of interest (Texas
counties and the State of Texas) to the reference population, i.e., the
2000 US Standard Population. Use of the 2000 Standard Population
for age-adjustment is recommended by the National Center for
Health Statistics' age-adjustment guidelines (Friis and Sellers,
2014). Within that, we selected weight distribution #3 because
the age distribution structure aligned with the US Census Bureau
Decennial Census and American Community Survey (ACS) group-
ings (see Table 3). Direct age-adjustment was accomplished by
multiplying the age-stratum rates of disease for the population of
Table 3
Age-adjusted weighting, distribution#3.a

All ages 1.000000
Under 18 years .257,736
18e44 years .393,797
45e54 years .134,834
55e64 years .087,247
65e74 years .066,037
75 years and over .060,349

a Based upon 2000 projected population (Klein and
Schoenborn, 2001).
interest by the corresponding age-stratumweights for the 2000 US
Standard Population. The weighted rates are then summed across
the age-stratum groups to calculate the overall age-adjusted rate
(Szklo and Nieto, 2014).

Age-adjustment enabled us to remove effects based on varying
population structures at the state- and county-levels and allowed
us to compare selected diseases across geographic areas, i.e.
county-to-county (Rushton, 2003). While our study did not
compare Texas to other US states, it is possible to do so because we
age-adjusted to the 2000 US Standard Population. Crude disease
rate comparisons are not appropriate because diseases can have a
disproportionate impact on the old and/or young and areas may
have a large aging population or a high birth rate, resulting in over
and/or under representation of disease rates. For example, ischemic
heart disease disproportionately affects the elderly (Ang, 2013) and
asthma has a higher prevalence among children than adults
(Moorman et al., 2012). In essence, population age-adjustment
controls for the potentially confounding effects of varying age
structures across geographic units of analysis.

2.3. Social sub-group variables

Race/ethnicity and insurance status were examined. In terms of
race/ethnicity, each patient was designated as black (of Hispanic or
non-Hispanic origin), Hispanic (of any race), or white non-Hispanic
based on information provided in the PUDF. These three groupings
were selected to match population level estimates provided by the
American Community Survey (ACS), which is the most accurate
data source in the US for the calculation of disease rates including
county-level age-adjusted rates by race/ethnicity. The ACS does not
report an exclusive black non-Hispanic variable by age. While the
hospitalization data would permit the calculation of mutually
exclusive disease rates for black non-Hispanics and Hispanics, we
needed to align our race/ethnicity categories with those available
from the ACS for the purposes of age-adjustment. Our categoriza-
tion means that there is slight overlap between black and Hispanic
(i.e., black is not mutually exclusive of Hispanic, but both are
exclusive of non-Hispanic white). The overlap is quite small due to
the demographics of the Hispanic population in Texas: black His-
panics (of all ages) represent only 3.11% of the total black popula-
tion and .98% of the total Hispanic population in Texas (US Census
Bureau, 2010).

Each patient was also categorized as insured or uninsured.
Because PUDF data do not include income variables, lacking health
insurance was used as a marker of social vulnerability. Those
lacking insurance include immigrants without access to public
programs such as Medicaid or Medicare, the working poor who
make too much to qualify for public programs but not enough to
afford private health insurance, and employees of small businesses
who either do not have access to insurance through their employer
or cannot afford the premiums (Grineski and McDonald, 2011;
O'Neil and O'Neil, 2009). Insured include cases covered by the
categories of private insurance, Medicare, Medicaid, or insurance
from other government programs (e.g., military). The uninsured
category is mutually exclusive of the insured, which is the reference
category in the analyses. The categories of black, Hispanic, and the
uninsured are associated with social vulnerability to climate
change, as these sub-groups are likely to be disproportionately
impacted by climate change-related exposures (Reid et al., 2009;
Shonkoff et al., 2011).

2.4. Model projections

In order to estimate the future incidence, treatment costs, and
disparities for social sub-groups (research question 4), we



Table 4
Hospital admission cases per disease per 100,000 population at the state-level.

Disease category p/100,000 Selected disease p/100,000

Cardiovascular 5268.37 Ischemic heart disease 195.20
Gastrointestinal 75.35 Diarrhea 75.35
Heat 13.71 Heat ECSS 7.81
Respiratory 1237.97 Asthma 517.51
Vector-borne .00 N/A
Water-borne .40 N/A

Y.J. McDonald et al. / Social Science & Medicine 133 (2015) 242e252246
considered the time period 2040e2050 for asthma only. We used
2040e2050 because substantial climatic changes are expected with
relative certainty by that time period, yet it is also proximate
enough to support reasonable predictions regarding human health
impacts. We selected asthma because it is associated with weather
parameters influenced by climate change (Kinney, 2008); a tem-
perature/hospitalization relationship has been established for it
based on a previous study (Lin et al., 2012); it has the highest
incidence rate among our selected diseases; and it is illustrative of a
climate health injustice, i.e., blacks are disproportionately
burdened with asthma.

Projected temperature data for Texas were obtained from a
downscaled regional climate-change projection model (RCPM) that
utilized multi-model ensembles (Nielsen-Gammon, 2011). The
RCPM was developed using the International Panel of Climate
Change (IPCC) A1B scenario and a Texas centric 10-grid-cell
computation (see Nielsen-Gammon, 2011). The IPCC defines the
A1B scenario as a future world with very rapid economic growth
and a global population that peaks in mid-century, and then ex-
periences a decline. It is marked with the rapid introduction of new
and more efficient technologies, which do not rely too heavily on
one particular energy source (Intergovernmental Panel on Climate
Change, 2007). Assuming A1B conditions, the RCPM predicts a
2.2 �C temperature increase for Texas by 2040e2050 relative to the
baseline of a simulated 1980e1999 mean (Nielsen-Gammon, 2011).

Beyond A1B scenario assumptions, the RCPM temperature
model assumes people will not reduce their greenhouse emissions
output to levels that would reduce the model estimates and that
there will not be other natural events that impact temperature
(Nielsen-Gammon, 2011). Population and sub-group populations
were held constant (see Lin et al., 2012), which means that we
assume that population age structures for each of the sub-groups
examined will remain the same in the future; this allows us to
isolate the effects of climate change on healthwithout complicating
the associations with variable population parameters. We also as-
sume that no significant human adaptations to temperature in-
creases will occur in the intervening time period. In terms of the
effect on hospital admissions due to increase in temperature, we
used a conservative approach and applied the low-end range of Lin
et al.'s (2012) log-linear empirical estimation, in which a 1 �C in-
crease in temperature will result in a 2.1% same-day increase in
admissions for respiratory diseases, after adjusting other cova-
riates. Based on this empirically-estimated temperature/hospitali-
zation relationship, we assume that a Texas statewide increase of
2.2 �C (from the baseline) will result in a 5.12% increase in asthma
hospital admission rates by 2040e2050.

2.5. Analysis strategy

To answer research question 1, we present age-adjusted rates of
hospital admissions for the cardiovascular, gastrointestinal, heat,
and respiratory disease categories and for the selected diseases,
which include ischemic heart disease, diarrhea, heat ECSS, and
asthma for the state as a whole. To address research question 2, we
sum total hospitalization dollar charges and calculate mean dollar
charges for the disease categories and the selected diseases.

Addressing research question 3 involves four analyses using the
selected disease data. First, we used the Wilcoxon signed-rank test
to determine if there were social disparities (between black/white
non-Hispanic, Hispanic/white non-Hispanic, and uninsured/
insured) in hospitalizations for the age-adjusted selected diseases
at the county level. We used this non-parametric test because the
data were not normally distributed.

Second, we use relative risk ratios (RR) to explore if there were
disparities between age-adjusted social groups (same three
comparisons as above) by selected disease at the county-level. SPSS
version 21.0 was used for these statistical tests. The RR results for
asthma are also mapped since asthma had the most counties with
complete data. The RR results for ischemic heart disease and diar-
rhea were not mapped because the number of included counties
was insufficient to support meaningful spatial representation.
Third, to explore spatial distributions of age-adjusted hospital ad-
missions for all people for the selected diseases, we create maps
showing counties with low (<�1 standard deviation below the
mean), moderate (��1 and �1 standard dev. from the mean), and
high (>1 standard deviation above the mean) rates.

To address research question 4, we apply the estimated 5.12%
increase in asthma hospitalization rates by 2040e2050 (Lin et al.,
2012) to our 2008e2010 asthma statistics: asthma hospital ad-
missions cases per 100,000, the total and mean hospital charges for
asthma hospital admissions, and the age-adjusted hospitalization
rates for asthma by social sub-groups. Social sub-groups include
blacks, Hispanics, white non-Hispanics, and individuals admitted
with and without medical insurance (i.e. insured and uninsured
persons). Future projection was performed at the state-level.
3. Results

In answer to research question 1, the rates for the disease cat-
egories and selected diseases are presented in Table 4. Cardiovas-
cular disease ranked first among the categories of diseases
examined in terms of age-adjusted rates at the state level, and
asthma had the highest rate out of the selected diseases for hospital
admissions per 100,000 people.

In response to research question 2, total and mean charge
summaries are presented in Table 5. Cardiovascular disease was the
most costly disease category for hospital admissions, with nearly
six times the total dollar charges than the second most costly
category, respiratory disease. Asthma and ischemic heart disease
were the most costly of the selected diseases. Although ischemic
heart disease had more than $1.5 billion less in total charges than
asthma, its mean hospital charges were more than $10,000 greater
per patient.

For the first analysis addressing research question 3, blacks had
the highest age-adjusted hospital admission rates for ischemic
heart disease, asthma, and heat ECSS, while white non-Hispanic
was the top social sub-group for diarrhea (see Table 6). Hispanics
had the lowest age-adjusted hospitalizations for all of the selected
diseases. The insured had higher rates of age-adjusted hospital
admissions for ischemic heart disease, diarrhea, and asthma than
the uninsured, but the uninsured had a higher rate than the insured
for heat ECSS.

For the second analysis addressing research question 3 (see
Table 7), the Wilcoxon signed-rank test (two-tailed) for ischemic
heart disease at the county-level revealed that the age-adjusted
mean was higher (p ¼ .01) for blacks than white non-Hispanics
and for uninsured as compared to insured (p ¼ .02). There was no
significant difference between the mean ischemic heart disease
hospitalization rates for Hispanics versus white non-Hispanics at



Table 5
Hospital charges by disease category and selected disease, 2008e2010 at the state-
level.

Disease category Total charges Mean charges SD

Cardiovascular 53,348,045,592 40,270 668,365
Gastrointestinal 385,477,208 20,345 23,578
Heat 81,480,523 23,631 50,082
Respiratory 891,706,4693 28645 156,529
Selected disease
Ischemic heart disease 1,824,315,434 37,168 49,447
Diarrhea 385,477,208 20,345 23,577
Heat ECSS 45,226,859 23,027 47,832
Asthma 3,416,051,022 26,251 232,361

*Total, mean, and standard deviation are in US dollars.

Table 6
Age-adjusted disease rates at the state-level by selected disease by social sub-groups
for hospital admissions, 2008e2010.a

IHDb Diarrhea Asthma Heat ECSS

Social sub-groups
Black 195.62 67.77 935.02 11.05
Hispanic 182.15 60.16 401.18 5.70
White non-Hispanic 191.42 80.76 455.71 6.93
Insured 235.80 89.42 579.13 7.40
Uninsured 147.59 37.85 322.48 20.18

a Disease rates are per 100,000 population and presented by age-adjusted rate.
b Ischemic Heart Disease.
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the county level. However, for diarrhea, white non-Hispanics had a
higher age-adjusted county-level mean (p ¼ .02) than Hispanics. In
contrast to the result for ischemic heart disease, the county mean
diarrhea rate for the insured was higher (p¼ .05) than it was for the
uninsured. All three county-level comparisons were significant for
asthma with blacks having higher mean rates than white non-
Hispanics, white non-Hispanics having higher mean rates than
Hispanics, and the insured having higher mean rates than the
uninsured (p ¼ .01 for all three).

The relative risk ratio (RR) analysis for hospital admissions at the
county-level by selected diseases also addressed research question
3 (see supplementary file A).

For ischemic heart disease, 74% of the counties under study (20
out of 27) had an RR above 1 for blacks compared to white non-
Hispanics indicating that blacks were at increased risk in the ma-
jority of Texas counties as compared to white non-Hispanics. The
same disparities were not clearly evident for Hispanics; the per-
centage of counties with RR above 1 was less for the Hispanic vs.
white non-Hispanic comparison (54%, 27 out of 50 counties).
Interestingly, the percentage of counties with RR above 1 for the
uninsured as compared the insured was 23% (7 out of 30), which
indicates that the insured are more prone to be hospitalized due to
Table 7
Age-adjusted per 100,000 by selected disease by social sub-groups at the county-level, 2

Social sub-groups variable Ischemic heart disease Diarrhea

N Mean SD Wilcoxona N M

White non-Hispanic 27 212.00 67.23 13
Black 27 259.38 124.54 .01** 13
White non-Hispanic 49 918.71 3678.75 28 1
Hispanic 49 366.87 1008.11 .50 28 1
Insured 31 257.93 74.87 11
Uninsured 31 261.35 377.34 .02* 11

N ¼ Number of Counties with at least 25 cases per disease per social group.
** Mean statistically significant at .01 and * Mean statistically significant < .05.

a Wilcoxon signed-rank test (two-tailed).
ischemic heart disease across approximately three-quarters of
Texas counties. The same trends across the three comparisons
observed for ischemic heart disease, wherein black populations
experience greater risks relative to white non-Hispanics in the
majority of Texas counties while Hispanics do not, and the insured
exhibit increased odds of hospitalization relative to the uninsured,
were also found for diarrhea and asthma hospitalizations (see
supplementary file A). In the case of asthma, as presented in
Fig. 1, it is notable that 99% of 76 counties under study had an RR
above 1 for black compared to white non-Hispanic indicating this
racial disparity in asthma hospitalizations is present in nearly every
county across the state.

Maps showing the Texas counties with high rates of the selected
diseases (the fourth and final analysis for research question 3) are
presented in Fig. 2. The maps display age-adjusted disease rates
based on three classes of standard deviation values: low (<�1),
moderate (��1 to �1), or high (>1). In terms of ischemic heart
disease, 9% (15 out of 159) of the counties had high rates (i.e., age-
adjusted admission rate that is greater than one standard deviation
above the Texas county mean), while 12% (12 out of 98), and 14%
(25 of 177) of counties had high rates for diarrhea, and asthma,
respectively (Fig. 1).

To address research question 4, estimated 2040e2050 hospital
admissions, treatment costs, and social sub-groups rates for asthma
are presented in Table 8. While the relationships remained the
same to present day findings, the magnitudes of the incidence of
disease, economic burden, and health disparities are amplified in
response to temperature increases.

4. Discussion

This analysis of 2008e2010 hospitalization discharge data at
state and county levels in Texas (USA) demonstrated the utility of
our climate health justice model. Note that the intent of the model
is not to support claims about the proportion of health effects
(hospital admissions) or economic costs (dollar charges) that are
directly attributable to climate change. Instead, our purpose has
been to quantify the current impact of these diseases and project
future impacts under climate change, demonstrating how this
model can be used to assess climate health (in)justice.

4.1. Model applications

Themodel can be tailored to meet assessment needs in a variety
of ways. We illustrated its utility at the US county and state levels,
but it could be used at finer and coarser scales, for example, for
neighborhood proxy geographic units or even countries and world
regions. The use of an international disease coding system (ICD-9-
CM or ICD-10-CM) and a standard age-adjustment protocol allows
for comparability across different scales and between geographic
008e2010.

Asthma

ean SD Wilcoxona N Mean SD Wilcoxona

80.18 21.63 76 536.53 220.71
83.32 30.51 .75 76 1237.29 847.87 .01**
89.52 484.49 77 998.49 2390.14
58.99 432.82 .02* 77 624.71 1072.49 .01**
90.19 18.87 68 660.97 241.72
54.44 59.69 .05* 68 427.45 362.07 .01**



Fig. 1. Age-adjusted relative risk for Asthma Hospital admissions per 100,000 population by social group.

Y.J. McDonald et al. / Social Science & Medicine 133 (2015) 242e252248
locations. The model can be applied for non-comparative purposes
and researchers have the flexibility to focus on a variety of climate
change-associated diseases (see Tables 1 and 2). While hospitali-
zation data have limitations (e.g. a lack of information on socio-
economic status and indirect economic impacts), they are relatively
accessible in many countries, making them ideal for comparative
purposes. While our analyses did not include a focus on indirect
economic impacts (e.g. those associated with missed days of work
or reduced spending), it would not be beyond the scope of the
model, since such economic impacts can be projected.

Emergency room (ER) records also use ICD codes to classify
patients, making them easily employable in themodel, and they are
available in some US states. Their inclusion would allow for
consideration of less serious cases of the illnesses (see Table 2) not
requiring hospital admission. In the US, hospitalization and ER data
are often available from state health departments at the individual
level. These data include home address, which allows patients' lo-
cations to be geocoded and then analyzed as individuals or aggre-
gated to coarser geographic scale of interest. Other health data
sources could be utilized, such as national health surveys and
mortality statistics with geographic information about re-
spondents. The health data source selected by the analyst will
determine the sorts of health conditions that can be examined. For
example, hospitalization data were not a good choice for vector-
and water-borne diseases in Texas, but they were ideal for exam-
ining ischemic heart disease.

Themodel can be expanded to include any relevant axis of social
marginality, such as gender or occupation, depending on relevance



Fig. 2. Age-adjusted hospital admissions per 100,000 population by selected disease.
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in the study area and data availability. In Texas, black and Hispanic
were important racial/ethnic categories for which data were
available, but elsewhere, other racial/ethnic groups may be more
applicable (e.g., Native American, if one was studying the state of
New Mexico). Analysts may also be limited to some degree by the
availability of population data for use in age-adjustments. In our
case, the 5-year ACS estimates were the best available data for the
age-adjustments, but use of this data source meant that two of the
social groups we examined were not mutually exclusive. The seri-
ousness of such data issues needs to be evaluated on a case-by-case
basis; for our purposes, the slight overlap of Hispanic and black had
a limited impact on the analysis, results, and conclusions. Incor-
porating socio-demographic data beyond what is available in
hospital records is also advisable to permit more robust analyses of
health inequalities.

The modest health impact projection steps employed in the
Texas application above illustrate that it is possible to estimate
future disease rates, economic costs, and inequalities using the
model, based on the integration of data on projected climate
parameter changes and known weather parameter/health re-
lationships derived from empirical analyses. The analyst will be
restricted by preexisting knowledge of weather parameter/health
relationships and projections. In our case, asthma was the best
choice to demonstrate the utility of the model (e.g., we did not find
a reliable figure for the expected increase in excess cases of diarrhea
hospitalization due to climate change in the literature). While this



Table 8
2008e2010 Compared to projected 2040e2050 hospital admissions treatment
costs, and social sub-groups disease rates for asthma at the state-level.

2008e2010 2040e2050

Incidencea 517.51 544.01
Total chargesb $3,416,051,022 $3,590,952,834
Mean chargesb $26,251 $27,595

Social sub-groups asthma ratesc

Black 935.02 982.89
Hispanic 401.18 421.72
White non-Hispanic 455.71 479.04
Insured 579.13 608.78
Uninsured 322.48 338.99

a Incidence is per 100,000 at the State-Level, and population is held constant.
b Charges are treatment costs and are in un-adjusted US dollars.
c Disease rates are age-adjusted per 100,000 population, and population is held

constant.
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is a limitation of our case study, it is not a limitation of the general
model. In implementing our asthma projection, we used estimated
increase from Lin et al. (2012), as they actually perform a climate
change respiratory health impact projection analysis. Even though
the projection is based on an analysis of New York, it is the best
climate change-respiratory health impact projection analogue
currently available in the literature. The absence of information on
empirically-based projected weather parameter/health relation-
ships for specific climate change-related diseases in particular re-
gions of interest should direct future analysts to determine those
relationships based upon public health need. We recommend that
analysts seek to identify downscaled climate models that permit
finer-scale analyses and incorporate population projections for
socio-demographic changes in age structures. These improvements
would allow for better identification of geographic areas likely to be
disproportionately burdened in the future and for the prediction of
changing trends in disparities between social groups.
4.2. Relevance of the Texas application

Our analyses can inform policy discussions of the possible future
health impacts of climate change in Texas and other similar con-
texts, which indicates the potential utility of our climate health
justice model for addressing health impacts and inequalities. Hos-
pital admissions for climate change-relevant diseases in Texas
during the study period were associated with $62.7 billion in
charges, which equaled 5% of the Texas GDP in 2010. This figure
does not account for all costs, since it excludes healthcare accessed
in clinics, urgent care centers, emergency rooms, and indirect im-
pacts, such as lost economic productivity. In terms of social in-
equalities, blacks were disproportionally burdened while Hispanics
had the lowest rates for all of the selected diseases. These Hispanic
findings align with the social health inequalities literature doc-
umenting a “Hispanic Health Paradox”, which refers to a contra-
diction in that Hispanics in the US enjoy better health compared to
other minorities despite their relatively low socioeconomic status
(Collins et al., 2013; Markides and Coreil, 1986; Morales et al.,
2002). The difference in disease risk between Hispanics and
blacks demonstrates the importance of considering these sub-
groups separately, as opposed to pooling them into one “minor-
ity” group, as is sometimes done. More generally, the marked dif-
ference in disease risk between Texas' two largest racial/ethnic
minority groups highlights the importance of operationalizing
regionally-relevant social categories for successful model imple-
mentation. The insurance status results demonstrate the compli-
cated relationships between insurance status, wealth, and severity
of disease. We found that those with insurance were more likely to
be hospitalized for non-life threatening climate change-related
diseases, as opposed to those without insurance, and conversely,
that hospitalization rates for life threatening diseases were highest
among the uninsured. It is likely that concerns about cost are
driving this pattern with the uninsured using the hospital only as a
last resort for serious illnesses. Finally, the Victoria MSA emerged as
a locale that warrants future research and programmatic inter-
vention due to its high risk for all selected diseases.
5. Conclusion

Our model extends from the well-established literature on
weather parameter/health relationships and climate change pro-
jections, and merges a normative emphasis on unequal impacts
associated with climate change with health inequalities scholar-
ship. It demonstrates four contributions to climate change health
literature. First, it introduces a model that can be used to inform
understandings of climate health justice. Second, it addresses the
relative neglect of a social inequalities perspective in the current
health impacts of climate change literature by focusing analytical
attention on the differential social impacts of diseases associated
with climate change. Third, it can project future climate health
injustices in a technically-sound manner using projected weather
parameter/health relationships found in the literature. Fourth, it
demonstrates how tools that are relatively low-cost, readily avail-
able, and easy to implement by scholars and practitioners alike can
be utilized to implement a geographic approach to understanding
disparate health impacts associated with climate change. The
model can be adopted in future studies by academic analysts or
public health practitioners and can help inform the development of
public health intervention strategies to reduce health disparities.

From the normative perspective that underpins our climate
health justice model, intervention strategies should be designed
with the goals of ameliorating injustices through the reduction of
social and spatial health disparities. For example, public health
interventions in Texas should prioritize addressing the dispropor-
tionate impacts experienced by black residents and geographical
groups of people at disparately high risk, such as residents of the
Victoria MSA. If interventions are not targeted to address the
climate health injustices burdening these groups of Texans now,
the health inequalities they experience will deepen in the coming
decades.
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