Yiyi Chen

Yiyi Chen
  • PhD Student at Aalborg University

About

21
Publications
1,304
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
41
Citations
Current institution
Aalborg University
Current position
  • PhD Student

Publications

Publications (21)
Article
Large Language Models (LLMs) are susceptible to malicious influence by cyber attackers through intrusions such as adversarial, backdoor, and embedding inversion attacks. In response, the burgeoning field of LLM Security aims to study and defend against such threats. Thus far, the majority of works in this area have focused on monolingual English mo...
Preprint
Full-text available
As NLP models are used by a growing number of end-users, an area of increasing importance is NLP Security (NLPSec): assessing the vulnerability of models to malicious attacks and developing comprehensive countermeasures against them. While work at the intersection of NLP and cybersecurity has the potential to create safer NLP for all, accidental ov...
Preprint
The role of memorization in machine learning (ML) has garnered significant attention, particularly as modern models are empirically observed to memorize fragments of training data. Previous theoretical analyses, such as Feldman's seminal work, attribute memorization to the prevalence of long-tail distributions in training data, proving it unavoidab...
Preprint
Full-text available
Hackathons have become popular collaborative events for accelerating the development of creative ideas and prototypes. There are several case studies showcasing creative outcomes across domains such as industry, education, and research. However, there are no large-scale studies on creativity in hackathons which can advance theory on how hackathon f...
Preprint
Full-text available
With the growing popularity of Large Language Models (LLMs) and vector databases, private textual data is increasingly processed and stored as numerical embeddings. However, recent studies have proven that such embeddings are vulnerable to inversion attacks, where original text is reconstructed to reveal sensitive information. Previous research has...
Preprint
Full-text available
Language Confusion is a phenomenon where Large Language Models (LLMs) generate text that is neither in the desired language, nor in a contextually appropriate language. This phenomenon presents a critical challenge in text generation by LLMs, often appearing as erratic and unpredictable behavior. We hypothesize that there are linguistic regularitie...
Article
Full-text available
Creoles represent an under-explored and marginalized group of languages, with few available resources for NLP research. While the genealogical ties between Creoles and a number of highly resourced languages imply a significant potential for transfer learning, this potential is hampered due to this lack of annotated data. In this work we present Cre...
Preprint
Full-text available
Large Language Models (LLMs) are susceptible to malicious influence by cyber attackers through intrusions such as adversarial, backdoor, and embedding inversion attacks. In response, the burgeoning field of LLM Security aims to study and defend against such threats. Thus far, the majority of works in this area have focused on monolingual English mo...
Preprint
Full-text available
Representing textual information as real-numbered embeddings has become the norm in NLP. Moreover, with the rise of public interest in large language models (LLMs), Embeddings as a Service (EaaS) has rapidly gained traction as a business model. This is not without outstanding security risks, as previous research has demonstrated that sensitive data...
Preprint
Full-text available
Language similarities can be caused by genetic relatedness, areal contact, universality, or chance. Colexification, i.e. a type of similarity where a single lexical form is used to convey multiple meanings, is underexplored. In our work, we shed light on the linguistic causes of cross-lingual similarity in colexification and phonology, by exploring...
Preprint
Full-text available
Colexification refers to the linguistic phenomenon where a single lexical form is used to convey multiple meanings. By studying cross-lingual colexifications, researchers have gained valuable insights into fields such as psycholinguistics and cognitive sciences [Jackson et al.,2019]. While several multilingual colexification datasets exist, there i...
Conference Paper
Full-text available
In semantic typology, colexification refers to words with multiple meanings, either related (polysemy) or unrelated (ho-mophony). Studies of cross-linguistic colexification have yielded insights into, e.g., psychology, historical linguistics and cognitive science (Xu et al., 2020; Brochhagen and Boleda, 2022; Schap-per and Koptjevskaja-Tamm, 2022;...
Article
Full-text available
Among other ways of expressing opinions on media such as blogs, and forums, social media (such as Twitter) has become one of the most widely used channels by populations for expressing their opinions. With an increasing interest in the topic of migration in Europe, it is important to process and analyze these opinions. To this end, this study aims...
Chapter
The entity type information in Knowledge Graphs (KGs) of different languages plays an important role in a wide range of Natural Language Processing applications. However, the entity types in KGs are often incomplete. Multilingual entity typing is a non-trivial task if enough information is not available for the entities in a KG. In this work, multi...
Preprint
Full-text available
With the increasing trend in the topic of migration in Europe, the public is now more engaged in expressing their opinions through various platforms such as Twitter. Understanding the online discourses is therefore essential to capture the public opinion. The goal of this study is the analysis of social media platform to quantify public attitudes t...
Conference Paper
Full-text available
A huge number of scholarly articles published every day in different domains makes it hard for the experts to organize and stay updated with the new research in a particular domain. This study gives an overview of a new approach, HierClasSArt, for knowledge aware hierarchical classification of the scholarly articles for mathematics into a predefine...

Network

Cited By