Yiyan Yang

Yiyan Yang
  • Doctor of Philosophy
  • PostDoc Position at National Library of Medicine, National Institutes of Health

About

44
Publications
5,729
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
420
Citations
Current institution
National Library of Medicine, National Institutes of Health
Current position
  • PostDoc Position
Additional affiliations
December 2020 - present
National Library of Medicine, National Institutes of Health
Position
  • Postdoc

Publications

Publications (44)
Article
Full-text available
Vibrio cholerae pathogens cause cholera, an acute diarrheal disease resulting in significant morbidity and mortality worldwide. Biofilms in vibrios enhance their survival in natural ecosystems and facilitate transmission during cholera outbreaks. Critical components of the biofilm matrix include the Vibrio polysaccharides produced by the vps-1 and...
Article
Full-text available
Vibrio cholerae pathogens cause cholera, an acute diarrheal disease resulting in significant morbidity and mortality worldwide. Biofilms in vibrios enhance their survival in natural ecosystems and facilitate transmission during cholera outbreaks. Critical components of the biofilm matrix include the Vibrio polysaccharides produced by the vps-1 and...
Article
Full-text available
Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems....
Article
Full-text available
Metabolism of haem by-products such as bilirubin by humans and their gut microbiota is essential to human health, as excess serum bilirubin can cause jaundice and even neurological damage. The bacterial enzymes that reduce bilirubin to urobilinogen, a key step in this pathway, have remained unidentified. Here we used biochemical analyses and compar...
Article
Background Phage therapy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehensive understanding of the specificity of individual phages. Yet the significant diversity within phage populations presents a considerable challenge. Currently, there is a notable lack of tools designed for large-scale ch...
Preprint
Full-text available
Phage tailspike proteins are depolymerases that target diverse bacterial surface glycans with high specificity, determining the host-specificity of numerous phages. To address the challenge of identifying tailspike proteins due to their sequence diversity, we developed SpikeHunter, an approach based on the ESM-2 protein language model. Using SpikeH...
Article
Motivation: The discovery of the genetic features that underly a phenotype is a fundamental task in microbial genomics. With the growing number of microbial genomes that are paired with phenotypic data, new challenges and opportunities are arising for genotype-phenotype inference. Phylogenetic approaches are frequently used to adjust for the popul...
Article
Full-text available
Wastewater-based epidemiology (WBE) is a non-invasive and cost-effective approach for monitoring the spread of a pathogen within a community. WBE has been adopted as one of the methods to monitor the spread and population dynamics of the SARS-CoV-2 virus, but significant challenges remain in the bioinformatic analysis of WBE-derived data. Here, we...
Preprint
Full-text available
Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant Archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those of marine and soil AOA. We h...
Preprint
Full-text available
The degradation of heme and the interplay of its catabolic derivative, bilirubin, between humans and their gut microbiota is an essential facet of human health. However, the hypothesized bacterial enzyme that reduces bilirubin to urobilinogen, a key step that produces the excretable waste products of this pathway, has remained unidentified. In this...
Article
Full-text available
Insertions in the SARS-CoV-2 genome have the potential to drive viral evolution, but the source of the insertions is often unknown. Recent proposals have suggested that human RNAs could be a source of some insertions, but the small size of many insertions makes this difficult to confirm. Through an analysis of available direct RNA sequencing data f...
Preprint
Full-text available
Insertions in the SARS-CoV-2 genome have the potential to drive viral evolution, but the source of the insertions is often unknown. Recent proposals have suggested that human RNAs could be a source of some insertions, but the small size of many insertions makes this difficult to confirm. Through an analysis of available direct RNA sequencing data f...
Article
Full-text available
Background Biogenic histamine plays an important role in immune response, neurotransmission, and allergic response. Although endogenous histamine production has been extensively studied, the contributions of histamine produced by the human gut microbiota have not been explored due to the absence of a systematic annotation of histamine-secreting bac...
Article
Full-text available
Primordial nitrification processes have been studied extensively using geochemical approaches, but the biological origination of nitrification remains unclear. Ammonia-oxidizing archaea (AOA) are widely distributed nitrifiers and implement the rate-limiting step in nitrification. They are hypothesized to have been important players in the global ni...
Article
Full-text available
Though promising, identifying synergistic combinations from a large pool of candidate drugs remains challenging for cancer treatment. Due to unclear mechanism and limited confirmed cases, only a few computational algorithms are able to predict drug synergy. Yet they normally require the drug-cell treatment results as an essential input, thus exclud...
Article
Full-text available
Novel coronaviruses, including SARS-CoV-2, SARS, and MERS, often originate from recombination events. The mechanism of recombination in RNA viruses is template switching. Coronavirus transcription also involves template switching at specific regions, called transcriptional regulatory sequences (TRS). It is hypothesized but not yet verified that TRS...
Article
Novel coronaviruses, including SARS-CoV-2, SARS, and MERS, often originate from recombination events. The mechanism of recombination in RNA viruses is template switching. Coronavirus transcription also involves template switching at specific regions, called transcriptional regulatory sequences (TRS). It is hypothesized but not yet verified that TRS...
Article
Full-text available
Antigenicity measurement plays a fundamental role in vaccine design, which requires antigen selection from a large number of mutants. To augment traditional cross-reactivity experiments, computational approaches for predicting the antigenic distance between multiple protein antigens are highly valuable. The performance of in silico models relies he...
Preprint
Novel coronaviruses, including SARS-CoV-2, SARS, and MERS, often originate from recombination events. The mechanism of recombination in RNA viruses is template switching. Coronavirus transcription also involves template switching at specific regions, called transcriptional regulatory sequences (TRS). It is hypothesized but not yet verified that TRS...
Article
Full-text available
Purpose: This study investigates the impact of aging on the miRNA expression profile in porcine angular aqueous plexus (AAP) cells, which are the porcine equivalent of human Schlemm's canal endothelial cells. Methods: AAP endothelial cells were isolated and cultured in physiologic (5% O2) or hyperoxic condition (40% O2) for 14 days to induce cel...
Article
Full-text available
Background Functional antibody genes are often assembled by VDJ recombination and then diversified by somatic hypermutation. Identifying the combination of sourcing germline genes is critical to understand the process of antibody maturation, which may facilitate the diagnostics and rapid generation of human monoclonal antibodies in therapeutics. De...
Article
Full-text available
Major challenges in vaccine development include rapidly selecting or designing immunogens for raising cross-protective immunity against different intra-or inter-subtypic pathogens, especially for the newly emerging varieties. Here we propose a computational method, Conformational Epitope (CE)-BLAST, for calculating the antigenic similarity among di...
Article
Full-text available
Aim To explore the mechanisms of action (MOA) of synergistic anticancer function in the combination of berberine and evodiamine. Methods We first analyzed the action of suppression in the drug combination from the cell level and validated the dose scope as well as ratio of concentration in synergistic effects of drug combination. Then, the miRNA ch...
Article
Full-text available
The rapid and consistent mutation of influenza requires frequent evaluation of antigenicity variation among newly emerged strains, during which several in-silico methods have been reported to facilitate the assays. In this paper, we designed a structure-based antigenicity scoring model instead of those sequence-based previously published. Protein s...
Article
Full-text available
Pyrrolizidine Alkaloids (PAs) are currently one of the most important botanical hepatotoxic ingredients. Glutathion (GSH) metabolism is the most reported pathway involved in hepatotoxicity mechanism of PAs. We speculate that, for different PAs, there should be a common mechanism underlying their hepatotoxicity in GSH metabolism. Computational metho...
Article
As an extension of the conventional quantitative structure activity relationship models, proteochemometric (PCM) modelling is a computational method that can predict the bioactivity relations between multiple ligands and multiple targets. Traditional PCM modelling includes three essential elements: descriptors (including target descriptors, ligand...
Article
Full-text available
Mutations of the influenza virus lead to antigenic changes that cause recurrent epidemics and vaccine resistance. Preventive measures would benefit greatly from the ability to predict the potential distribution of new antigenic sites in future strains. By leveraging the extensive historical records of HA sequences for 90 years, we designed a comput...
Article
Full-text available
Despite the high specificity between antigen and antibody binding, similar epitopes can be recognized or cross-neutralized by paratopes of antibody with different binding affinities. How to accurately characterize this slight variation which may or may not change the antigen-antibody binding affinity is a key issue in this area. In this report, by...

Network

Cited By