About
21
Publications
1,821
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
132
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (21)
During the 2023 Chinese New Year (CNY), many city governments temporarily relaxed firework restrictions, leading to increased sulfur dioxide (SO2) emissions from the combustion of sulfur-containing fireworks. This study employed the four-dimensional variational (4DVar) assimilation system to examine variations in SO2 emissions in China by assimilat...
Based on the Weather Research and Forecasting Model Coupled with Chemistry (WRF-Chem) atmospheric chemistry model, a parameterization scheme for the radioactive isotope caesium (137Cs), considering processes such as advection, turbulent diffusion, dry deposition, and wet deposition, was constructed, enabling the spatial distribution simulation of t...
During the 2023 Chinese New Year (CNY), many city governments relaxed restrictions on residents setting off fireworks. Fireworks contain large amounts of sulfur powder, which releases the toxic air pollutant sulfur dioxide (SO 2 ) when combusted rapidly. In this study, we employed a four-dimensional variational (4DVar) assimilation system to examin...
Emissions are essential for forecasting air quality and pollution control, but traditional emissions are often not real-time by the statistics of "bottom-up" approach due to high human resource demand. The four-dimensional variational method (4DVAR) and the ensemble Kalman filter (EnKF) are generally used to optimize emissions based on chemical tra...
Emission inventories are essential for modelling studies and pollution control, but traditional emission inventories are usually updated after a few years based on the statistics of “bottom-up” approach from the energy consumption in provinces, cities, and counties. The latest emission inventories of multi-resolution emission inventory in China (ME...
Based on the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol scheme of the Weather Research and Forecasting model coupled with online Chemistry (WRF-Chem) and the three-dimensional variational (3DVAR) assimilation method, a 3DVAR data assimilation (DA) system for aerosol optical depth (AOD) and aerosol concentration observa...
Emission inventories are essential for modeling studies and pollution control, but traditional emission inventories have large uncertainties and are often not real-time because they are highly human resource demanding to develop. In this study, a four-dimensional variational assimilation (4DVAR) system was developed to optimize sulfur dioxide (SO2)...
This paper presents a three-dimensional variational (3DVAR) data assimilation (DA) system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, developed for the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) within the Weather Research and Forecasting model coupled...
In order to evaluate the potential impact of an aerosol lidar monitoring network in China on improving air quality prediction, an observing system simulation experiment (OSSE) was conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model and three-dimensional variational (3DVAR) data assimilation (DA) system. The impact of lid...
Emission inventories are important for modeling studies and policy-making, but the traditional “bottom-up” emission inventories are often outdated with a time lag, mainly due to the lack of accurate and timely statistics. In this study, we developed a “top-down” approach to optimize the emission inventory of sulfur dioxide (SO2) using the Weather R...
Based on the three-dimensional variational assimilation (3DVAR) algorithm, the extinction coefficient profiles of the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite were assimilated for the first time on the basis of the aerosol variables from the Model for Simulating Aerosol Interactions and Chemistry (MOSAI...
This paper presents a three-dimensional variational (3DVAR) data assimilation (DA) system for aerosol optical properties, including aerosol optical depth (AOD) retrievals and lidar-based aerosol profiles, which was developed for the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) within the Weather Research and Forecasting model co...
We develop a new inversion method which is suitable for linear and nonlinear emission source (ES) modeling, based on the three-dimensional decoupled direct (DDM-3D) sensitivity analysis module in the Community Multiscale Air Quality (CMAQ) model and the three-dimensional variational (3DVAR) data assimilation technique. We established the explicit o...
We develop a new inversion method which is suitable for linear and nonlinear emission sources (ES) modeling, based on the three-dimensional decoupled direct (DDM-3D) sensitivity analysis module in the Community Multiscale Air Quality (CMAQ) model and the three-dimensional variational (3DVAR) data assimilation technique. We established the explicit...
A three‐dimensional variational (3DVAR) data assimilation method for the aerosol variables of the community multiscale air quality (CMAQ) model was developed. This 3DVAR system uses PM2.5 and PM2.5‐10 (the difference between PM10 and PM2.5) as control variables and used the AERO6 aerosol chemical mechanism in the CMAQ model. Two parallel experiment...
The authors developed a three-dimensional variational (3-DVAR) aerosol extinction coefficient (AEC) and aerosol mass concentration (AMC) data assimilation (DA) system for aerosol variables in the Weather Research and Forecasting–Chemistry (WRF–Chem) model with the WRF–Chem using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) s...
For the aerosol variables in the model for simulating aerosol interactions and chemistry (MOSAIC)-4bin chemical scheme in the Weather Research and Forecasting–Chemistry (WRF–Chem) model, this study presents an observation forward aerosol extinction coefficient (AEC) and aerosol mass concentration (AMC) operator and corresponding adjoint based on th...
Background error covariance (BEC) plays a key role in a variational data assimilation system. It determines variable analysis increments by spreading information from observation points. In order to test the influence of BEC on the GSI data assimilation and prediction of aerosol in Beijing-Tianjin-Hebei, a regional BEC is calculated using one month...