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Abstract—Detecting unknown malicious code (malcode) is a 
challenging task. Current common solutions, such as anti-virus 
tools, rely heavily on prior explicit knowledge of specific 
instances of malcode binary code signatures. During the time 
between its appearance and an update being sent to anti-virus 
tools, a new worm can infect many computers and cause 
significant damage. We present a new host-based intrusion 
detection approach, based on analyzing the behavior of the 
computer to detect the presence of unknown malicious code. The 
new approach consists on classification algorithms that learn 
from previous known malcode samples which enable the 
detection of an unknown malcode. We performed several 
experiments to evaluate our approach, focusing on computer 
worms being activated on several computer configurations while 
running several programs in order to simulate background 
activity. We collected 323 features in order to measure the 
computer behavior. Four classification algorithms were applied 
on several feature subsets. The average detection accuracy that 
we achieved was above 90% and for specific unknown worms 
even above 99%. 
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I.  INTRODUCTION 
The detection of malicious code (malcode) transmitted over 

computer networks have been researched intensively in recent 
years. One type of abundant malcode is worms, which 
proactively propagate across networks while exploiting 
vulnerabilities in operating systems and programs. Other types 
of malcode include computer viruses, Trojan horses, spyware, 
and adware. In this study we focus on worms, though we plan 
to extend the proposed approach to other types of malcodes. 

Nowadays, excellent technology (i.e., antivirus software 
packages) exists for detecting and eliminating known malicious 
code. Typically, antivirus software packages inspect each file 
that enters the system, looking for known signs (signatures) 
which uniquely identify an instance of known malcode. 
Nevertheless, antivirus technology is based on prior explicit 
knowledge of malcode signatures and cannot be used for 
detecting unknown malcode. Following the appearance of a 
new worm, a patch is provided by the operating system 
provider (if needed) and the antivirus vendors update their 
signatures-base accordingly. This solution is not perfect since 
worms propagate very rapidly and by the time the local 
antivirus software tools have been updated, very expensive 
damage has already been inflicted by the worm [1]. 

Intrusion detection, commonly at the network level, called 
network based intrusion detection (NIDS), was researched 
substantially [2]. However, NIDS are limited in their detection 
capabilities (like any detection system). In order to detect 
malcodes which slipped through the NIDS at the network level, 
detection operations are performed locally at the host level. 
Detection systems at the host level, called Host-based Intrusion 
Detection (HIDS), are currently very limited in their ability to 
detect unknown malcode. 

Recent studies have proposed methods for detecting 
unknown malcode using Machine Learning techniques. Given 
a training set of malicious and benign executables binary code, 
a classifier is trained to identify and classify unknown 
malicious executables as being malicious [3,4,5]. 

In this study, we focus on detecting the presence of a worm 
based on the computer's (host) behavior. Our suggested 
approach can be classified under HIDS. The main contribution 
of our approach is that the knowledge is acquired automatically 
using inductive learning, given a dataset of known worms 
(avoids the need for manual acquisition of knowledge). While 
the new approach does not prevent infection, it enables a fast 
detection of an infection which may result in an alert, which 
can be further reasoned by the system administrator. Further 
reasoning based on the network-topology can be performed by 
a network and system administration function, and relevant 
decisions and policies, such as disconnecting a single computer 
or a cluster, can be applied. 

Generally speaking, malcode within the same category 
(e.g., worms, Trojans, spyware, adware) share similar 
characteristics and behavior patterns. These patterns are 
reflected by the infected computer's behavior. Thus, we 
hypothesize that it is feasible to learn the computer behavior 
having the presence of a certain type of malcode, which can be 
measured through the collection of various parameters along 
time (CPU, Memory, etc..). In the proposed approach, a 
classifier is trained with computer measurements from infected 
and not infected computers. Based on the generalization 
capability of the classification algorithm, we argue that a 
classifier can further detect previously unknown worm activity. 
Nevertheless, this approach may be affected by the variation of 
computer and application configurations as well as user 
behavior on each computer. In this study, we investigate 
whether an unknown worm activity can be detected, at a high 
level of accuracy, given the variation in hardware and software 



environmental conditions on individual computers, while 
minimizing the set of features required. 

The rest of the article is structured as follows: in section 2, 
a survey of the relevant background for this work is presented. 
The methods used in this study are described in section 3, 
followed by the description of the experiments design in 
section 4. In section 5 we present the results and conclude with 
section 6. 

II. BACKGROUND AND RELATED WORK 

A. Malicious Code and Worms 
The term 'malicious code' (malcode) refers to a piece of 

code, not necessarily an executable file, intended to harm, 
whether generally or in particular, a specific owner (host). The 
approach suggested in this study aims at detecting any 
malcode activity, whether known or unknown. However, since 
our preliminary research is on worms, we will focus on them 
in this section. 

Kienzle and Elder [7] define a worm by several aspects 
through which it can be distinguished from other types of 
malcode: 1) Malicious code – worms are considered malicious 
in nature; 2) network propagation or Human intervention – a 
commonly agreed-upon aspect, that is, worms propagate 
actively over a network, while other types of malicious codes, 
such as viruses, commonly require human activity to 
propagate; 3) standalone or file infecting – while viruses infect 
a file (its host), a worm does not require a host file, and 
sometimes does not even require an executable file, residing 
entirely in the memory, as did the Code Red [8] worm. 
Different purposes and motivations stand behind worm 
developers [9] including: Experimental curiosity (ILoveYou 
worm [10]); pride and power leading programmers to show off 
their knowledge and skill through the harm caused by the 
worm; commercial advantage, extortion and criminal gain, 
random and political protest, and terrorism and cyber warfare. 
The existence of all these types of motivation indicates that 
computer worms are here to stay as a network vehicle serving 
different purposes and implemented in different ways. To 
address the challenge posed by worms effectively, meaningful 
experience and knowledge should be extracted by analyzing 
known worms. Today, given the known worms, we have a 
great opportunity to learn from these examples in order to 
generalize. We argue that data mining methods can be a very 
useful in learning and generalizing from previously 
encountered worms, in order to classify unknown worms 
effectively. 

B. Detecting Malicious Code Using Data Mining 
Data mining has already been used for detecting and 

protecting against malicious codes. A recent survey on 
intrusion detection systems [2] summarizes recently proposed 
applications of data mining for recognizing malcodes in single 
computers and in computer networks. Lee et al. proposed a 
framework consisting of data mining algorithms for the 
extraction of anomalies of user normal behavior for use in 
anomaly detection [11], in which a normal behavior is learned 
and any abnormal activity is considered as intrusive. The 

authors suggest several techniques, such as classification, meta-
learning, association rules, and frequent episodes, to extract 
knowledge for implementation in intrusion detection systems, 
evaluating their approach on the DARPA98 [12] benchmark. 

A Naïve Bayesian classifier was suggested in [2], referring 
to its implementation within the ADAM system, developed by 
Barbara et al. [13], which had three main parts: (a) a network 
data monitor listening to TCP/IP protocol; (b) a data mining 
engine which enables acquisition of the association rules from 
the network data; and (c) a classification module which 
classifies the nature of the traffic in two possible classes, 
normal and abnormal, which can later be linked to specific 
attacks. Other machine learning algorithms were proposed for 
detecting malicious code (Artificial Neural Networks (ANN) 
[14,15,16], Self Organizing Maps (SOM) [17] and fuzzy logic 
[18,19,20]) 

III. METHODS 
The goal of this study was to assess the feasibility of 

detecting unknown malicious code, in particular computer 
worms, based on the computer's behavior (measurements), 
using machine learning techniques, and the potential accuracy 
of such a method. In order to create the datasets we built a local 
network of computers, which was isolated from the real 
internet network (simulated a real internet network in order to 
allow worms to try to propagate). This setup enabled us to 
inject worms into a controlled environment, while monitoring 
the computer measurements, which were saved in log files. 
Preliminary results were very encouraging, but an obvious 
question arose: Is a classifier, trained on data collected from a 
computer having certain hardware configuration and certain 
specific background activity, able to classify correctly the 
behavior of a computer having other configurations? In order 
to answer this question we designed several experiments. We 
created eight datasets using two computers, having different 
configurations, background applications, and user activities. 
Another goal was to select the minimal subset of features using 
a feature selection technique. Finally, we applied four 
classification algorithms on the given datasets in a variety of 
experiments. 

A. DataSet Creation 
Since there is no benchmark dataset which could be used 

for this study, we created our own dataset. A network with 
various computers (configurations) was deployed, enabling us 
to inject worms, and monitor the computer behavior and log 
the measurements. 

1) Environment Description  
The lab network consisted on seven computers, which 

contained heterogenic hardware, and a server computer 
simulating the internet. We used the windows performance 
counters1, which enable monitoring system features that appear 
in these main categories (including amount of features in 
parenthesis): Internet Control Message Protocol (27), Internet 
Protocol (17), Memory (29), Network Interface (17), Physical 

                                                        
1http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/counter/counters2_lbfc.asp 
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Disk (21), Process (27), Processor (15), System (17), Transport 
Control Protocol (9), Thread (12), and User Datagram 
Protocol (5). In addition we used VTrace [21], a software tool 
which can be installed on a PC running Windows for 
monitoring purposes. VTrace collects traces of the file system, 
the network, the disk drive, processes, threads, interprocess 
communication, waitable objects, cursor changes, windows, 
and the keyboard. The data from the windows performance 
were configured to measure the features every second and store 
them in a log file as vector. VTrace stored time-stamped 
events, which were aggregated into the same fixed intervals, 
and merged with the windows performance log files. These 
eventually included a vector of 323 features for every second. 

2) Injected Worms 
While selecting worms from the wild, our goal was to 

choose worms that differ in their behavior, from among the 
available worms. Some of the worms have a heavy payload of 
Trojans to install in parallel to the distribution process upon the 
network; others focus only on distribution. Another aspect is 
having different strategies for IP scanning which results in 
varying communication behavior, CPU consumption and 
network usage. While all the worms are different, we wanted to 
find common characteristics to be able to detect an unknown 
worm. We briefly describe here the main characteristics, 
relevant to this study, of each worm included in this study. The 
information is based on the virus libraries on the web234. We 
briefly describe the five worms we used: 

(1) W32.Dabber.A scans IP addresses randomly. It uses the 
W32.Sasser.D worm to propagate and opens the FTP server to 
upload itself to the victim computer. Registering itself enables 
its execution on the next user login (human based activation). It 
drops a backdoor, which listens on a predefined port. This 
worm is distinguished by its use of an external worm in order 
to propagate. 

(2) W32.Deborm.Y is a self-carried worm, which prefers local 
IP addresses. It registers itself as an MS Windows service and 
is executed upon user login (human based activation). This 
worm contains three Trojans as a payload: Backdoor.Sdbot, 
Backdoor.Litmus, and Trojan.KillAV, and executes them all. 
We chose this worm because of its heavy payload. 

(3) W32.Korgo.X is a self carrying worm which uses a totally 
random method for IP addresses scanning. It is self-activated 
and tries to inject itself as a function to MS Internet Explorer as 
a new thread. It contains a payload code which enables it to 
connect to predefined websites in order to receive orders or 
download newer worm versions. 

(4) W32.Sasser.D uses a preference for local addresses 
optimization while scanning the network. About half the time it 
scans local addresses, and the other half random addresses. In 
particular it opens 128 threads for scanning the network, which 
requires a heavy CPU consumption, as well as significant 
network traffic. It is a self-carried worm and uses a shell to 
connect to the infected computer’s FTP server and to upload 
itself. 

                                                        
2 Symantec – www.symantec.com 
3 Kasparsky www.viruslist.com 
4Macfee http://vil.nai.com  

(5) W32.Slackor.A, a self-carried worm, exploits MS Windows 
sharing vulnerability to propagate. The worm registers itself to 
be executed upon user login. It contains a Trojan payload and 
opens an IRC server on the infected computer in order to 
receive orders. 

All the worms perform port scanning and possess different 
characteristics. Further information about these worms can be 
accessed through libraries on the web567. 

3) Dataset Description 
In order to examine the influence of a computer hardware 

configuration, background running applications, and user 
activity, we considered three major aspects: computer 
hardware configuration, constant background application 
consuming extreme computational resources, and user activity, 
being binary variables. (1) Computer hardware configuration: 
Both computers ran on Windows XP, which considered the 
most widely used operation system, having two configuration 
types: an "old," having Pentium 3 800Mhz CPU, bus speed 
133Mhz and memory 512 Mb, and a "new," having Pentium 4 
3Ghz CPU, bus speed 800Mhz and memory 1 Gb. (2) 
Background application: We ran an application affecting 
mainly the following features: Processor object, Processor 
Time (usage of 100%); Page Faults/sec; Physical Disk object, 
Avg Disk Bytes/Transfer, Avg Disk Bytes/Write, and Disk 
Writes/sec. (3) User activity: several applications, including 
browsing, downloading and streaming operations through 
Internet Explorer, Word, Excel, chat through MSN messenger, 
and Windows Media Player, were executed to imitate user 
activity in a scheduled order. Thus, two options were for the 
Background Application and the User Activity: presence or 
absence of each. 

TABLE I.  THE THREE ASPECTS RESULTING IN EIGHT DATASETS, 
REPRESENTING A VARIETY OF SITUATIONS OF A MONITORED COMPUTER. 

Computer Background 
Application 

User 
Activity 

Dataset 
Name 

Old No No o 

Old No Yes ou 

Old Yes No oa 

Old Yes Yes oau 

New No No n 

New No Yes nu 

New Yes No na 

New Yes Yes nau 

We created eight datasets (see table I). Each dataset 
contained monitored samples of each one of the five injected 
worms separately, and samples of a normal computer behavior, 
without any injected worm. Each worm was monitored for a 
period of 20 minutes. We collected the values of the features 
every second. Thus, each record, containing a vector of 
measurements and a label, presented an activity along a second 
labeled by a specific worm, or a none activity label. Each 
dataset contained a few thousand (labeled) samples of each 
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worm or none activity. We therefore had three binary aspects, 
which resulted in eight possible combinations, shown in Table 
I, representing a variety of dynamic computer configurations 
and usage patterns. Each dataset contained monitored samples 
for each of the five worms injected separately, and samples of a 
normal computer behavior without any injected worm. Each 
sample (record) was labeled with the relevant worm (class), or 
'none' for "clean" samples. 

B. Feature Selection 
In Data Mining applications, the large number of features in 

many domains presents a huge challenge. Typically, some of 
the features do not contribute to the accuracy of the 
classification task and may even hamper it. Ideally, we would 
like to minimize the self-consumption of computer resources 
required for the monitoring operations (measurements) and the 
classifier computations. This can be achieved through 
reduction of the classified features using the feature selection 
technique. Since this is not the focus of this paper, we will 
describe the feature selection preprocessing very briefly. In 
order to compare the performance of the various classification 
algorithms, we used the filters approach, which is applied on 
the dataset and is independent of any classification algorithm, 
in which a measure is calculated to quantify the correlation of 
each feature with the class (the presence or absence of worm 
activity). Each feature is ranked which represents its expected 
contribution in the classification task. 

We used three feature-selection measures, which resulted in 
a list of ranks for each feature-selection measure and an 
ensemble incorporating all three of them. We used Chi-Square 
(CS), Gain Ratio (GR), ReliefF implemented in the Weka 
environment [22] and their ensemble, based on a simple 
average of the three ranks. In a recent publication we have 
shown that the best performance was achieved when GainRatio 
was used, thus here we focus in details on the results achieved 
using GainRatio and further experiments using these settings. 
While the feature selection is not the focus of this study, but 
rather its application, we briefly describe the GainRatio 
measure. 

Gain Ratio (GR), originally presented by Quinlan in the 
context of decision trees [23], which was designed to overcome 
a bias in the Information Gain (IG) measure [24], and which 
measures the expected reduction of entropy caused by 
partitioning the examples according to a chosen feature. Given 
entropy E(S) as a measure of the impurity in a collection of 
items, it is possible to quantify the effectiveness of a feature at 
classifying the training data. Equation 2 presents the formula of 
the entropy of a set of items S, based on C subsets of S (for 
example, classes of the items), presented by Sc. Information 
Gain measures the expected reduction of entropy caused by 
portioning the examples according to attribute A, in which V is 
the set of possible values of A, as shown in equation 1. These 
equations refer to discrete values; however, it is possible to 
extend it to continuous values attribute. 

)(
||
||)(),(

)(
v

AVv

v SE
S
SSEASIG ∑

∈

⋅−=
  (1) 

||
||

log
||
||

)( 2 S
S

S
S

SE c

Cc

c∑
∈

⋅−=
  (2) 

The IG measure favors features having a high variety of 
values over those having only a few. Gain-Ratio overcomes 
this problem by considering how the feature splits the data 
(Equations 3 and 4). Si are d subsets of examples resulting 
from portioning S by the d-valued feature A. 
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We selected the top 5, 10, 20 and 30 ranked features from 
the GainRatio measure. We describe the top 5 ranked features 
later. Eventually we had four feature subsets and the full set of 
features, which we took as the original baseline for comparison 
purposes, summed in five forms of sets of datasets. Thus, each 
one of the eight datasets described earlier was presented in five 
subsets of optional features. 

C. Classification Algorithms 
One of the goals of this study was to pinpoint the 

classification algorithm which provides the highest level of 
detection accuracy. We employed four commonly used 
Machine Learning algorithms: Decision Trees, Naïve Bayes, 
Bayesian Networks and Artificial Neural Networks, in a 
supervised learning approach, in which the classification 
algorithm learns from a provided training set, containing 
labeled examples. 

While the focus of this paper is not on classification 
algorithm techniques, but on their application in the task of 
detecting worm activity, we briefly describe the classification 
algorithms we used in this study. 

1) Decision Trees 
Decision tree learners [23] are a well-established family of 

learning algorithms. Classifiers are represented as trees whose 
internal nodes are tests on individual features, and leaves are 
classification decisions. Typically, a greedy heuristic search 
method is used to find a small decision tree that correctly 
classifies the training data. The decision tree is induced from 
the dataset by splitting the variables based on the expected 
information gain. Modern implementations include pruning, 
which avoids over-fitting. In this study we evaluated J48, the 
Weka version of the commonly used C4.5 algorithm [23]. An 
important characteristic of Decision Trees is the explicit form 
of their knowledge which can be easily represented as a set of 
rules. 

2) Naïve Bayes 
The Naïve Bayes classifier is based on the Bayes theorem, 

which in the context of classification states that the posterior 
probability of a class is proportional to its prior probability as 
well as to the conditional likelihood of the features, given this 
class. If no independent assumptions are made, a Bayesian 



algorithm must estimate conditional probabilities for an 
exponential number of feature combinations. “Naive Bayes” 
simplifies this process by making the assumption that features 
are conditionally independent given the class, and requires that 
only a linear number of parameters be estimated. The prior 
probability of each class and the probability of each feature, 
given each class, is easily estimated from the training data and 
used to determine the posterior probability of each class, given 
a set of features. Naive Bayes has been shown empirically to 
produce good classification accuracy across a variety of 
problem domains [25]. In this study, we evaluated Naive 
Bayes, the standard version that comes with Weka. 

3) Bayesian Networks 
Bayesian networks are a form of the probabilistic graphical 

model [26]. Specifically, a Bayesian network is a directed 
acyclic graph of nodes with variables and arcs representing 
dependence among the variables. Like Naïve Bayes, Bayesian 
networks are based on the Bayes Theorem; however, unlike 
Naïve Bayes they do not assume that the variables are 
independent. Actually Bayesian Networks are known for their 
ability to represent conditional probabilities which are the 
relations between variables. A Bayesian network can thus be 
considered a mechanism for automatically constructing 
extensions of Bayes' theorem to more complex problems. 
Bayesian networks were used for modeling knowledge and 
implemented successfully in different domains. We evaluated 
the Bayesian Network standard version which comes with 
WEKA. 

4) Artificial Neural Networks 
An Artificial Neural Network (ANN) [27] is an information 

processing paradigm that is inspired by the way biological 
nervous systems (i.e., the brain) are modeled with regard to 
information processing. The key element of this paradigm is 
the structure of the information processing system. It is a 
network composed of a large number of highly interconnected 
processing elements, called neurons, working together in order 
to approximate a specific function. An ANN is configured for a 
specific application, such as pattern recognition or data 
classification, through a learning process during which the 
weights of the inputs in each neuron are updated. The weights 
are updated by a training algorithm, such as back-propagation, 
according to the examples the network receives, in order to 
reduce the value of error function. The power and usefulness 
of ANN have been demonstrated in numerous applications 
including speech synthesis, medicine, finance and many other 
pattern recognition problems. For some application domains, 
neural models show more promise in achieving human-like 
performance than do more traditional artificial intelligence 
techniques. All ANN manipulations in this study have been 
performed within a MATLAB(r) environment using Neural 
Network Toolbox [28]. 

IV. EXPERIMENTAL DESIGN 
Our main goal in this study was to estimate whether the 

approach presented here, in which unknown malicious code is 
detected, based on the computer behavior (measurements), is 
feasible and enables a high level of accuracy in the application 

of a variety of computers. We defined four hypotheses 
accordingly: 

Hypothesis I: Detection of known malicious code, based on 
a computer's measurements, using machine learning techniques 
can reach an accuracy level above 90%. 

Hypothesis II: The computer configuration and the 
computer background activity, from which the training sets 
were taken, have no significant influence on the detection 
accuracy. 

Hypothesis III: Reducing the amount of features below 30 
features will enable maintenance of the accuracy provided by 
the full set of attributes or above. 

Hypothesis IV: Detecting unknown worms is possible at an 
accuracy level above 80%. 

In addition to these hypotheses, we wanted to identify the 
best classification algorithms and the best combination of top 
ranked features and classification algorithm. We start with the 
definition of the evaluation measures and continue with the 
experiments we designed for this study. 

A. Evaluation Measures 
For the purpose of evaluation, we used the True Positive 

(TP) measure presenting the rate of instances classified as 
positive correctly, False Positive (FP) presenting the rate of 
positive instances misclassified (Equation 7), and the Total 
Accuracy – the rate of the entire correctly classified instances, 
either positive or negative, divided by the entire number of 
instances, as shown in Equation 8. The actual (A) amount of 
classifications are represented by XYA, where Y presents the 
classification (positive or negative) and X presents the 
classification correctness (true or false). 
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We also measured a confusion matrix, which depicts the 
number of instances from each class which were classified in 
each one of the classes (ideally all the instances would be in 
their actual class). 

V. EXPERIMENTS AND RESULTS 
To test the hypotheses described above, we created the 

eight datasets (see in Table I) in five feature subsets: Top 5, 10, 
20 and 30 ranked features and the full features set. To 
determine the best combination of classification algorithm and 
top feature selection, we ran all the 20 combinations (five top 
selections and four classification algorithms) in each 
experiment. 

A. Experiment I 
To test hypothesis I, in which we wanted to test whether 

based on monitored measurements of a computer behavior a 
high level of accuracy can be achieved, we unified all the eight 



datasets into a single dataset, which we called 'All.' The four 
classification algorithms were evaluated on the All dataset with 
the full set of features. Since the training set and test set were 
identical, we used 10-fold cross validation [29], in which the 
dataset was portioned randomly into ten equal partitions. Nine 
partitions were used for the training set, and the remaining 
partition used to evaluate the learned model. The process then 
repeated ten times, leaving out a partition for testing each time. 

While Decision Trees and Bayesian Networks achieved 
99% accuracy, ANN achieved 96%, and Baive Bayes achieved 
92%. Note that classifying each sample to a specific worm 
(type) activity, within the five given worms is more 
challenging than classifying to a generic worm behavior, 
alerting for an unknown worm which was our final goal. Thus, 
the results could be improved when evaluating this method as a 
binary problem, which was encouraging. 

B. Experiment II 
In hypothesis II we wanted to estimate the performance 

variability of the suggested approach given several training sets 
sampled from a variety of computers, represented by the eight 
datasets. Thus, we tested whether the accuracy obtained by 
training a classifier on a training set sampled from a given 
computer will vary significantly when evaluated on a variety of 
test sets, for which we designed two experiments: 

In the first experiment, called e21, each classifier was 
trained on a single dataset i and tested on a single dataset j, 
where i and j are indices of the eight datasets. When i = j, we 
used cross validation since the training set (i) and test set (j) 
were the same dataset. Thus, we had a set of eight iterations in 
which each dataset used for training and evaluated on the eight 
corresponding datasets, resulting in 64 evaluation runs.  

In the second experiment, called e22, the training set was a 
unified dataset of seven of the eight datasets, called all-i in 
which i refers to the eighth left dataset, which was the test set, 
resulting in eight iterations of evaluation runs. Note that both 
experiments included the 20 combinations of four classification 
algorithms and five features subsets amounting to 1280 runs 
for e21 and 160 runs for the e22. To test whether a significant 
difference exists among the datasets, when used as training sets 
or as test sets, we performed a statistical homogeneity test. 

Table II presents the mean accuracy and the resulting 
standard deviation in each experiment, including 128 
evaluation runs. In the first main column the results of e21 are 
presented in two views, when the dataset (on the left) was used 
as a training set, and when used as test sets. The results of e21 
when focusing on the training sets were not homogenous. The 
same occurred with the results when grouping by the testing 
sets, though we found that the training on datasets created in 
the 'old' computer was significantly better (α = 0.01). In e22, in 
which the datasets were considered as test sets, the results were 
statistically significant (α = 0.05) homogenous. Note that these 
tests were performed on the entire experiments of all the 
classification algorithms, and not specifically on each 
algorithm. The classification accuracy in e22 outperformed the 
accuracy in e21, since the training sets in e21 had a wider 
representation of the datasets. 

TABLE II.  THE RESULTS ACHIEVED IN E21 AND E22. IN EACH COLUMN 
THE DATASETS FUNCTION DIFFERENTLY, AS TRAINING SET OR TEST SETS. IN 

E22 THE RESULTS WERE SIGNIFICANTLY HOMOGENOUS (Α=0.01). 

Experiment e21 e22 
Dataset As training As test As test 

o 0.68 ± 0.23 0.73 ± 0.23 0.78 ± 0.22 

ou 0.76 ± 0.22 0.73 ± 0.22 0.82 ± 0.18 

oa 0.73 ± 0.21 0.73 ± 0.23 0.81 ± 0.18 

oau 0.77 ± 0.21 0.72 ± 0.21 0.81 ± 0.19 

n 0.61 ± 0.24 0.64 ± 0.22 0.71 ± 0.20 

nu 0.76 ± 0.21 0.72 ± 0.22 0.82 ± 0.22 

na 0.70 ± 0.21 0.73 ± 0.24 0.86 ± 0.17 
nau 0.73 ± 0.22 0.71 ± 0.23 0.79 ± 0.20 

average 0.72 ± 0.22 0.72 ± 0.22 0.80 ± 0.19 

To test hypothesis III, in which we wanted to determine the 
optimal number of features required to achieve the highest 
accuracy, we used the results of e21 and e22, calculating the 
mean and variance of the top selection options, Top 5, 10, 20, 
30 or full, and the classification algorithms. 

Table III shows the results from e21. Each cell in the table 
presents the mean accuracy of 64 evaluation runs, in which a 
classifier was trained on a training set and tested on the other 
seven test sets. The Bayesian Networks outperformed the other 
classification algorithms significantly (α = 0.01). On average 
the Top20 features subset outperformed the other top selection 
features subset significantly (α = 0.01), out of the Top10. 
Bayesian Networks applied to the Top20 features outperformed 
all the other combinations. 

TABLE III.  THE RESULTS OF E21FOR EACH CLASSIFIER AND TOP 
FEATURES. BAYESIAN NETWORKS OUTPERFORMED THE OTHER CLASSIFIERS 

AND THE   TOP20 WAS THE BEST FEATURES SUBSET. 

 ANN BN DT NB Average 
Top5 0.50±0.10 0.58±0.10 0.59±0.08 0.56±0.08 0.56±0.09 
Top10 0.74±0.26 0.90±0.08 0.64±0.25 0.87±0.14 0.79±0.20 
Top20 0.82±0.21 0.90±0.09 0.70±0.21 0.88±0.14 0.83±0.17 
Top30 0.75±0.21 0.89±0.08 0.61±0.25 0.85±0.18 0.78±0.19 

Full 0.73±0.16 0.76±0.18 0.51±0.26 0.54±0.26 0.63±0.22 
Avg 0.71±0.20 0.80±0.11 0.61±0.22 0.74±0.17 0.72±0.18 

Table IV shows the results of e22. Each cell in the table 
presents the mean accuracy of eight evaluations, in which each 
classifier was trained on a training set consisting of seven 
datasets, and the test set contained only the excluded dataset. 
Generally, the mean accuracy of most of the algorithms was 
better than in e21, as expected, while the ANN performance 
decreased rapidly. Unlike in e21, the Decision Trees 
outperformed the other algorithms, while Bayesian Networks 
consistently produced good results. On average, the Top10 
features selection outperformed the other top selections, but not 
significantly, the performance of the Top5 was significantly (α 
= 0.01) lower than the others. Note that, while in e21 all the 
algorithms favored the Top20, here it varied mainly between 
Top20 and Top10, and ANN outperformed with the full set of 
features. 



TABLE IV.  E22 RESULTS FOR EACH CLASSIFIER AND TOP FEATURES. 
DECISION TREES SLIGHTLY OUTPERFORMED BAYESIAN NETWORKS AND THE 
OTHER CLASSIFIERS AND THE TOP10 FEATURES OUTPERFORMED THE OTHER. 

 ANN BN DT NB Average 

Top5 0.44±0.09 0.62±0.04 0.64±0.01 0.59 ± 0.07 0.57±0.06 

Top10 0.74±0.16 0.96±0.04 0.97±0.04 0.90 ± 0.06 0.89±0.09 

Top20 0.55±0.21 0.96±0.05 0.94±0.05 0.94 ± 0.03 0.85±0.11 

Top30 0.62±0.14 0.95±0.05 0.96±0.05 0.93 ± 0.03 0.86±0.08 

Full 0.81±0.23 0.88±0.09 0.94±0.09 0.88 ± 0.07 0.88±0.14 

Average 0.63±0.17 0.88±0.06 0.89±0.05 0.85 ± 0.06 0.81±0.10 

We present here the Top5 features (because of the limited 
space of the paper) and their definitions. In the category of 
ICMP: (1) Sent_Echo_sec – The rate of ICMP Echo messages 
sent; (2) Messages Sent/sec – the rate, in incidents per second, 
at which the server attempted to send. The rate includes those 
messages sent in error; (3) Messages/sec – the total rate, in 
incidents per second, at which ICMP messages were sent and 
received by the target entity. The rate includes messages 
received or sent in error. In the category of TCP: (4) 
Connections Passive – the number of times TCP connections 
have made a direct transition to the SYN-RCVD state from the 
LISTEN state; (5) Connection Failures – the number of times 
TCP connections have made a direct transition to the CLOSED 
state from the SYN-SENT state or the SYN-RCVD state, plus 

the number of times TCP connections have made a direct 
transition to the LISTEN state from the SYN-RCVD state. The 
list of the top fifteen ranked features is presented in the 
Appendix. 

C. Experiment III 
In hypothesis IV we wanted to estimate the possibility of 

classifying an unknown worm when training on data based on a 
single computer, which was the main and final objective of this 
study. In this set of experiments we used only the Top20 
features, which outperformed in e2. The training set included 
four worms out of the five and the test set included the 
excluded worm and the none activity samples. This process 
was done for each worm repeating in five iterations. Note, that 
in these experiments, unlike in e2, in which each worm class 
was defined separately, there were two classes: (generally) 
worm and none activity. 

Table V presents the results of e3 exceeding a 90% 
accuracy level of detection for each worm by a different 
classification algorithm (shown in bold). On average the 
Decision Trees and Bayesian Networks outperformed the 
others. The table shows also the true positive (TP) and false 
positive (FP). Decision Trees and Bayesian Networks while 
achieving high level of accuracy maintained a low false 
positive rate. 

TABLE V.  THE RESULTS OF E3. THERE IS A DIFFERENCE IN THE DETECTION ACCURACY OF EACH CLASSIFIER FOR EACH TYPE OF WORM. IN AVERAGE 
DECISION TREES OUTPERFORMED THE OTHER CLASSIFIERS, WHILE MAINTAINING A LOW LEVEL OF FALSE POSITIVE RATE. 

 ANN_20 BN_20 DT_20 NB_20 

Worm Acc TP FP Acc TP FP Acc TP FP Acc TP FP 

1 0.985 0.985 0.014 0.554 0.557 0.443 0.936 0.937 0.063 0.497 0.500 0.499 

2 0.494 0.499 0.500 0.992 0.992 0.007 0.999 0.999 0.0005 0.997 0.997 0.002 

3 0.952 0.952 0.047 0.992 0.993 0.007 0.680 0.678 0.3215 0.844 0.843 0.156 

4 0.994 0.994 0.005 0.998 0.998 0.002 0.968 0.968 0.032 0.998 0.998 0.002 

5 0.636 0.637 0.362 0.990 0.991 0.008 0.999 0.999 0.0005 0.975 0.974 0.026 

Average 0.81 0.81 0.19 0.91 0.91 0.09 0.92 0.92 0.08 0.86 0.86 0.14 

StdDev 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.02 0.02 0.05 0.05 0.05 
 

VI. DISCUSSION AND CONCLUSIONS 
We presented in this paper a Host-based Intrusion 

Detection method for unknown malicious code activity. The 
novelty of the proposed approach is that it is based on 
monitoring a host's various parameters (as opposed to direct 
matching of the malcode signature), using various automated 
classification algorithms. Four hypotheses were investigated, 
for which a dataset was created and several corresponding 
experiments were designed. In the first experiment we showed 
that the detection of known worms is feasible at almost 100% 
accuracy. In the second experiment we wanted to examine the 
influence of the variance in the training phase and detection 
phase, of the configuration of a computer and its programs, to 
determine whether this method can be generalized. We found 
that training on seven unified datasets was significantly 
homogenous (α=0.01) based on a homogeneity test, unlike 
training on a single dataset (as in e21). This is a very 

encouraging result, since we assume that, when applying such 
an approach in the real world, a training set that consists of 
samples from several types of computer activities is a 
reasonable requirement. Based on the results in e21 and e22, in 
general Bayesian Networks outperformed the other algorithms; 
and using the Top 20 ranked features from the GainRatio was 
the best, which is very encouraging, especially when 
comparing to more than 300 features in the full set, since it is 
very meaningful in terms of the computer's resources 
consumption. 

To examine the possibility of classifying unknown worms, 
unlike in previous experiments, two classes were defined in the 
dataset, a worm type consisting of the worms' samples and 
none. The training sets had four worms and the test set 
consisted only of the excluded worm and the none-activity. We 
found that the level of detection accuracy for each worm varies 
from algorithm to algorithm. Finally, in e3 above 85% 
accuracy was achieved in general; Decision Trees achieved 



92%, while specific algorithms exceeded the 95% level of 
accuracy for specific worms. We noticed that the detection of 
each worm varied within each algorithm, while being different 
among algorithms, and thus we suggest using an ensemble of 
classifiers to achieve a higher level of accuracy for instances of 
all potential worm classes. In general Bayesian Networks 
resulted constantly in very good results, which might be 
explained by the consideration of the dependency within 
features, unlike other classifiers. 

The limitations of this study are the amount of worms and 
the computer configurations. Note that the worms were 
selected to provide a reasonable variety and the computers 
which were used were dramatically different. However, this 
was enough to achieve statistically significant results. 

To conclude, we have shown that, based on the presented 
evaluation, it is possible to detect previously un-encountered 
worms using our novel approach, which is based on the 
computer "behavior" (features). In order to attain a high level 
of accuracy in different types of computers, which is an 
essential requirement in real life, the training set should include 
samples taken from several computers (i.e., different 
configurations). 

VI. FUTURE WORK 
Based on these encouraging results, we plan to perform a 

wider evaluation using more types of worms and an ensemble 
of classifiers. We are in the process of broadening the 
application of this approach to other types of malicious codes, 
such as Trojans and backdoors, which are expected to present a 
greater challenge. In addition, we are also developing a 
temporal data mining algorithm which is expected to enable 
more sophisticated dynamic behavior and its detection along 
time in such activities. 
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