
Host Based Intrusion Detection using Machine
Learning

Robert Moskovitch, Shay Pluderman, Ido Gus, Dima Stopel, Clint Feher, Yisrael Parmet, Yuval Shahar and Yuval
Elovici

Deutsche Telekom Laboratories at Ben-Gurion University
Ben Gurion University, Be’er Sheva, 84105, Israel

{robertmo,shaipl,gus,stopel,clint,iparmet,yshahar, elovici}@bgu.ac.il

Abstract—Detecting unknown malicious code (malcode) is a
challenging task. Current common solutions, such as anti-virus
tools, rely heavily on prior explicit knowledge of specific
instances of malcode binary code signatures. During the time
between its appearance and an update being sent to anti-virus
tools, a new worm can infect many computers and cause
significant damage. We present a new host-based intrusion
detection approach, based on analyzing the behavior of the
computer to detect the presence of unknown malicious code. The
new approach consists on classification algorithms that learn
from previous known malcode samples which enable the
detection of an unknown malcode. We performed several
experiments to evaluate our approach, focusing on computer
worms being activated on several computer configurations while
running several programs in order to simulate background
activity. We collected 323 features in order to measure the
computer behavior. Four classification algorithms were applied
on several feature subsets. The average detection accuracy that
we achieved was above 90% and for specific unknown worms
even above 99%.

Keywords-component; Malicious code detection; worms;

I. INTRODUCTION
The detection of malicious code (malcode) transmitted over

computer networks have been researched intensively in recent
years. One type of abundant malcode is worms, which
proactively propagate across networks while exploiting
vulnerabilities in operating systems and programs. Other types
of malcode include computer viruses, Trojan horses, spyware,
and adware. In this study we focus on worms, though we plan
to extend the proposed approach to other types of malcodes.

Nowadays, excellent technology (i.e., antivirus software
packages) exists for detecting and eliminating known malicious
code. Typically, antivirus software packages inspect each file
that enters the system, looking for known signs (signatures)
which uniquely identify an instance of known malcode.
Nevertheless, antivirus technology is based on prior explicit
knowledge of malcode signatures and cannot be used for
detecting unknown malcode. Following the appearance of a
new worm, a patch is provided by the operating system
provider (if needed) and the antivirus vendors update their
signatures-base accordingly. This solution is not perfect since
worms propagate very rapidly and by the time the local
antivirus software tools have been updated, very expensive
damage has already been inflicted by the worm [1].

Intrusion detection, commonly at the network level, called
network based intrusion detection (NIDS), was researched
substantially [2]. However, NIDS are limited in their detection
capabilities (like any detection system). In order to detect
malcodes which slipped through the NIDS at the network level,
detection operations are performed locally at the host level.
Detection systems at the host level, called Host-based Intrusion
Detection (HIDS), are currently very limited in their ability to
detect unknown malcode.

Recent studies have proposed methods for detecting
unknown malcode using Machine Learning techniques. Given
a training set of malicious and benign executables binary code,
a classifier is trained to identify and classify unknown
malicious executables as being malicious [3,4,5].

In this study, we focus on detecting the presence of a worm
based on the computer's (host) behavior. Our suggested
approach can be classified under HIDS. The main contribution
of our approach is that the knowledge is acquired automatically
using inductive learning, given a dataset of known worms
(avoids the need for manual acquisition of knowledge). While
the new approach does not prevent infection, it enables a fast
detection of an infection which may result in an alert, which
can be further reasoned by the system administrator. Further
reasoning based on the network-topology can be performed by
a network and system administration function, and relevant
decisions and policies, such as disconnecting a single computer
or a cluster, can be applied.

Generally speaking, malcode within the same category
(e.g., worms, Trojans, spyware, adware) share similar
characteristics and behavior patterns. These patterns are
reflected by the infected computer's behavior. Thus, we
hypothesize that it is feasible to learn the computer behavior
having the presence of a certain type of malcode, which can be
measured through the collection of various parameters along
time (CPU, Memory, etc..). In the proposed approach, a
classifier is trained with computer measurements from infected
and not infected computers. Based on the generalization
capability of the classification algorithm, we argue that a
classifier can further detect previously unknown worm activity.
Nevertheless, this approach may be affected by the variation of
computer and application configurations as well as user
behavior on each computer. In this study, we investigate
whether an unknown worm activity can be detected, at a high
level of accuracy, given the variation in hardware and software

environmental conditions on individual computers, while
minimizing the set of features required.

The rest of the article is structured as follows: in section 2,
a survey of the relevant background for this work is presented.
The methods used in this study are described in section 3,
followed by the description of the experiments design in
section 4. In section 5 we present the results and conclude with
section 6.

II. BACKGROUND AND RELATED WORK

A. Malicious Code and Worms
The term 'malicious code' (malcode) refers to a piece of

code, not necessarily an executable file, intended to harm,
whether generally or in particular, a specific owner (host). The
approach suggested in this study aims at detecting any
malcode activity, whether known or unknown. However, since
our preliminary research is on worms, we will focus on them
in this section.

Kienzle and Elder [7] define a worm by several aspects
through which it can be distinguished from other types of
malcode: 1) Malicious code – worms are considered malicious
in nature; 2) network propagation or Human intervention – a
commonly agreed-upon aspect, that is, worms propagate
actively over a network, while other types of malicious codes,
such as viruses, commonly require human activity to
propagate; 3) standalone or file infecting – while viruses infect
a file (its host), a worm does not require a host file, and
sometimes does not even require an executable file, residing
entirely in the memory, as did the Code Red [8] worm.
Different purposes and motivations stand behind worm
developers [9] including: Experimental curiosity (ILoveYou
worm [10]); pride and power leading programmers to show off
their knowledge and skill through the harm caused by the
worm; commercial advantage, extortion and criminal gain,
random and political protest, and terrorism and cyber warfare.
The existence of all these types of motivation indicates that
computer worms are here to stay as a network vehicle serving
different purposes and implemented in different ways. To
address the challenge posed by worms effectively, meaningful
experience and knowledge should be extracted by analyzing
known worms. Today, given the known worms, we have a
great opportunity to learn from these examples in order to
generalize. We argue that data mining methods can be a very
useful in learning and generalizing from previously
encountered worms, in order to classify unknown worms
effectively.

B. Detecting Malicious Code Using Data Mining
Data mining has already been used for detecting and

protecting against malicious codes. A recent survey on
intrusion detection systems [2] summarizes recently proposed
applications of data mining for recognizing malcodes in single
computers and in computer networks. Lee et al. proposed a
framework consisting of data mining algorithms for the
extraction of anomalies of user normal behavior for use in
anomaly detection [11], in which a normal behavior is learned
and any abnormal activity is considered as intrusive. The

authors suggest several techniques, such as classification, meta-
learning, association rules, and frequent episodes, to extract
knowledge for implementation in intrusion detection systems,
evaluating their approach on the DARPA98 [12] benchmark.

A Naïve Bayesian classifier was suggested in [2], referring
to its implementation within the ADAM system, developed by
Barbara et al. [13], which had three main parts: (a) a network
data monitor listening to TCP/IP protocol; (b) a data mining
engine which enables acquisition of the association rules from
the network data; and (c) a classification module which
classifies the nature of the traffic in two possible classes,
normal and abnormal, which can later be linked to specific
attacks. Other machine learning algorithms were proposed for
detecting malicious code (Artificial Neural Networks (ANN)
[14,15,16], Self Organizing Maps (SOM) [17] and fuzzy logic
[18,19,20])

III. METHODS
The goal of this study was to assess the feasibility of

detecting unknown malicious code, in particular computer
worms, based on the computer's behavior (measurements),
using machine learning techniques, and the potential accuracy
of such a method. In order to create the datasets we built a local
network of computers, which was isolated from the real
internet network (simulated a real internet network in order to
allow worms to try to propagate). This setup enabled us to
inject worms into a controlled environment, while monitoring
the computer measurements, which were saved in log files.
Preliminary results were very encouraging, but an obvious
question arose: Is a classifier, trained on data collected from a
computer having certain hardware configuration and certain
specific background activity, able to classify correctly the
behavior of a computer having other configurations? In order
to answer this question we designed several experiments. We
created eight datasets using two computers, having different
configurations, background applications, and user activities.
Another goal was to select the minimal subset of features using
a feature selection technique. Finally, we applied four
classification algorithms on the given datasets in a variety of
experiments.

A. DataSet Creation
Since there is no benchmark dataset which could be used

for this study, we created our own dataset. A network with
various computers (configurations) was deployed, enabling us
to inject worms, and monitor the computer behavior and log
the measurements.

1) Environment Description
The lab network consisted on seven computers, which

contained heterogenic hardware, and a server computer
simulating the internet. We used the windows performance
counters1, which enable monitoring system features that appear
in these main categories (including amount of features in
parenthesis): Internet Control Message Protocol (27), Internet
Protocol (17), Memory (29), Network Interface (17), Physical

1http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/counter/counters2_lbfc.asp

 This work was supported by Deutsche Telekom Co.

Disk (21), Process (27), Processor (15), System (17), Transport
Control Protocol (9), Thread (12), and User Datagram
Protocol (5). In addition we used VTrace [21], a software tool
which can be installed on a PC running Windows for
monitoring purposes. VTrace collects traces of the file system,
the network, the disk drive, processes, threads, interprocess
communication, waitable objects, cursor changes, windows,
and the keyboard. The data from the windows performance
were configured to measure the features every second and store
them in a log file as vector. VTrace stored time-stamped
events, which were aggregated into the same fixed intervals,
and merged with the windows performance log files. These
eventually included a vector of 323 features for every second.

2) Injected Worms
While selecting worms from the wild, our goal was to

choose worms that differ in their behavior, from among the
available worms. Some of the worms have a heavy payload of
Trojans to install in parallel to the distribution process upon the
network; others focus only on distribution. Another aspect is
having different strategies for IP scanning which results in
varying communication behavior, CPU consumption and
network usage. While all the worms are different, we wanted to
find common characteristics to be able to detect an unknown
worm. We briefly describe here the main characteristics,
relevant to this study, of each worm included in this study. The
information is based on the virus libraries on the web234. We
briefly describe the five worms we used:

(1) W32.Dabber.A scans IP addresses randomly. It uses the
W32.Sasser.D worm to propagate and opens the FTP server to
upload itself to the victim computer. Registering itself enables
its execution on the next user login (human based activation). It
drops a backdoor, which listens on a predefined port. This
worm is distinguished by its use of an external worm in order
to propagate.

(2) W32.Deborm.Y is a self-carried worm, which prefers local
IP addresses. It registers itself as an MS Windows service and
is executed upon user login (human based activation). This
worm contains three Trojans as a payload: Backdoor.Sdbot,
Backdoor.Litmus, and Trojan.KillAV, and executes them all.
We chose this worm because of its heavy payload.

(3) W32.Korgo.X is a self carrying worm which uses a totally
random method for IP addresses scanning. It is self-activated
and tries to inject itself as a function to MS Internet Explorer as
a new thread. It contains a payload code which enables it to
connect to predefined websites in order to receive orders or
download newer worm versions.

(4) W32.Sasser.D uses a preference for local addresses
optimization while scanning the network. About half the time it
scans local addresses, and the other half random addresses. In
particular it opens 128 threads for scanning the network, which
requires a heavy CPU consumption, as well as significant
network traffic. It is a self-carried worm and uses a shell to
connect to the infected computer’s FTP server and to upload
itself.

2 Symantec – www.symantec.com
3 Kasparsky www.viruslist.com
4Macfee http://vil.nai.com

(5) W32.Slackor.A, a self-carried worm, exploits MS Windows
sharing vulnerability to propagate. The worm registers itself to
be executed upon user login. It contains a Trojan payload and
opens an IRC server on the infected computer in order to
receive orders.

All the worms perform port scanning and possess different
characteristics. Further information about these worms can be
accessed through libraries on the web567.

3) Dataset Description
In order to examine the influence of a computer hardware

configuration, background running applications, and user
activity, we considered three major aspects: computer
hardware configuration, constant background application
consuming extreme computational resources, and user activity,
being binary variables. (1) Computer hardware configuration:
Both computers ran on Windows XP, which considered the
most widely used operation system, having two configuration
types: an "old," having Pentium 3 800Mhz CPU, bus speed
133Mhz and memory 512 Mb, and a "new," having Pentium 4
3Ghz CPU, bus speed 800Mhz and memory 1 Gb. (2)
Background application: We ran an application affecting
mainly the following features: Processor object, Processor
Time (usage of 100%); Page Faults/sec; Physical Disk object,
Avg Disk Bytes/Transfer, Avg Disk Bytes/Write, and Disk
Writes/sec. (3) User activity: several applications, including
browsing, downloading and streaming operations through
Internet Explorer, Word, Excel, chat through MSN messenger,
and Windows Media Player, were executed to imitate user
activity in a scheduled order. Thus, two options were for the
Background Application and the User Activity: presence or
absence of each.

TABLE I. THE THREE ASPECTS RESULTING IN EIGHT DATASETS,
REPRESENTING A VARIETY OF SITUATIONS OF A MONITORED COMPUTER.

Computer Background
Application

User
Activity

Dataset
Name

Old No No o

Old No Yes ou

Old Yes No oa

Old Yes Yes oau

New No No n

New No Yes nu

New Yes No na

New Yes Yes nau

We created eight datasets (see table I). Each dataset
contained monitored samples of each one of the five injected
worms separately, and samples of a normal computer behavior,
without any injected worm. Each worm was monitored for a
period of 20 minutes. We collected the values of the features
every second. Thus, each record, containing a vector of
measurements and a label, presented an activity along a second
labeled by a specific worm, or a none activity label. Each
dataset contained a few thousand (labeled) samples of each

5 Symantec – www.symantec.com
6 Kasparsky www.viruslist.com
7Macfee http://vil.nai.com

worm or none activity. We therefore had three binary aspects,
which resulted in eight possible combinations, shown in Table
I, representing a variety of dynamic computer configurations
and usage patterns. Each dataset contained monitored samples
for each of the five worms injected separately, and samples of a
normal computer behavior without any injected worm. Each
sample (record) was labeled with the relevant worm (class), or
'none' for "clean" samples.

B. Feature Selection
In Data Mining applications, the large number of features in

many domains presents a huge challenge. Typically, some of
the features do not contribute to the accuracy of the
classification task and may even hamper it. Ideally, we would
like to minimize the self-consumption of computer resources
required for the monitoring operations (measurements) and the
classifier computations. This can be achieved through
reduction of the classified features using the feature selection
technique. Since this is not the focus of this paper, we will
describe the feature selection preprocessing very briefly. In
order to compare the performance of the various classification
algorithms, we used the filters approach, which is applied on
the dataset and is independent of any classification algorithm,
in which a measure is calculated to quantify the correlation of
each feature with the class (the presence or absence of worm
activity). Each feature is ranked which represents its expected
contribution in the classification task.

We used three feature-selection measures, which resulted in
a list of ranks for each feature-selection measure and an
ensemble incorporating all three of them. We used Chi-Square
(CS), Gain Ratio (GR), ReliefF implemented in the Weka
environment [22] and their ensemble, based on a simple
average of the three ranks. In a recent publication we have
shown that the best performance was achieved when GainRatio
was used, thus here we focus in details on the results achieved
using GainRatio and further experiments using these settings.
While the feature selection is not the focus of this study, but
rather its application, we briefly describe the GainRatio
measure.

Gain Ratio (GR), originally presented by Quinlan in the
context of decision trees [23], which was designed to overcome
a bias in the Information Gain (IG) measure [24], and which
measures the expected reduction of entropy caused by
partitioning the examples according to a chosen feature. Given
entropy E(S) as a measure of the impurity in a collection of
items, it is possible to quantify the effectiveness of a feature at
classifying the training data. Equation 2 presents the formula of
the entropy of a set of items S, based on C subsets of S (for
example, classes of the items), presented by Sc. Information
Gain measures the expected reduction of entropy caused by
portioning the examples according to attribute A, in which V is
the set of possible values of A, as shown in equation 1. These
equations refer to discrete values; however, it is possible to
extend it to continuous values attribute.

)(
||
||)(),(

)(
v

AVv

v SE
S
SSEASIG ∑

∈

⋅−=
 (1)

||
||

log
||
||

)(2 S
S

S
S

SE c

Cc

c∑
∈

⋅−=
 (2)

The IG measure favors features having a high variety of
values over those having only a few. Gain-Ratio overcomes
this problem by considering how the feature splits the data
(Equations 3 and 4). Si are d subsets of examples resulting
from portioning S by the d-valued feature A.

),(
),(),(

ASSI
ASIGASGR =

 (3)

||
||log

||
||),(

1
2 S

S
S
SASSI i

d

i

i∑
=

⋅−=
 (4)

We selected the top 5, 10, 20 and 30 ranked features from
the GainRatio measure. We describe the top 5 ranked features
later. Eventually we had four feature subsets and the full set of
features, which we took as the original baseline for comparison
purposes, summed in five forms of sets of datasets. Thus, each
one of the eight datasets described earlier was presented in five
subsets of optional features.

C. Classification Algorithms
One of the goals of this study was to pinpoint the

classification algorithm which provides the highest level of
detection accuracy. We employed four commonly used
Machine Learning algorithms: Decision Trees, Naïve Bayes,
Bayesian Networks and Artificial Neural Networks, in a
supervised learning approach, in which the classification
algorithm learns from a provided training set, containing
labeled examples.

While the focus of this paper is not on classification
algorithm techniques, but on their application in the task of
detecting worm activity, we briefly describe the classification
algorithms we used in this study.

1) Decision Trees
Decision tree learners [23] are a well-established family of

learning algorithms. Classifiers are represented as trees whose
internal nodes are tests on individual features, and leaves are
classification decisions. Typically, a greedy heuristic search
method is used to find a small decision tree that correctly
classifies the training data. The decision tree is induced from
the dataset by splitting the variables based on the expected
information gain. Modern implementations include pruning,
which avoids over-fitting. In this study we evaluated J48, the
Weka version of the commonly used C4.5 algorithm [23]. An
important characteristic of Decision Trees is the explicit form
of their knowledge which can be easily represented as a set of
rules.

2) Naïve Bayes
The Naïve Bayes classifier is based on the Bayes theorem,

which in the context of classification states that the posterior
probability of a class is proportional to its prior probability as
well as to the conditional likelihood of the features, given this
class. If no independent assumptions are made, a Bayesian

algorithm must estimate conditional probabilities for an
exponential number of feature combinations. “Naive Bayes”
simplifies this process by making the assumption that features
are conditionally independent given the class, and requires that
only a linear number of parameters be estimated. The prior
probability of each class and the probability of each feature,
given each class, is easily estimated from the training data and
used to determine the posterior probability of each class, given
a set of features. Naive Bayes has been shown empirically to
produce good classification accuracy across a variety of
problem domains [25]. In this study, we evaluated Naive
Bayes, the standard version that comes with Weka.

3) Bayesian Networks
Bayesian networks are a form of the probabilistic graphical

model [26]. Specifically, a Bayesian network is a directed
acyclic graph of nodes with variables and arcs representing
dependence among the variables. Like Naïve Bayes, Bayesian
networks are based on the Bayes Theorem; however, unlike
Naïve Bayes they do not assume that the variables are
independent. Actually Bayesian Networks are known for their
ability to represent conditional probabilities which are the
relations between variables. A Bayesian network can thus be
considered a mechanism for automatically constructing
extensions of Bayes' theorem to more complex problems.
Bayesian networks were used for modeling knowledge and
implemented successfully in different domains. We evaluated
the Bayesian Network standard version which comes with
WEKA.

4) Artificial Neural Networks
An Artificial Neural Network (ANN) [27] is an information

processing paradigm that is inspired by the way biological
nervous systems (i.e., the brain) are modeled with regard to
information processing. The key element of this paradigm is
the structure of the information processing system. It is a
network composed of a large number of highly interconnected
processing elements, called neurons, working together in order
to approximate a specific function. An ANN is configured for a
specific application, such as pattern recognition or data
classification, through a learning process during which the
weights of the inputs in each neuron are updated. The weights
are updated by a training algorithm, such as back-propagation,
according to the examples the network receives, in order to
reduce the value of error function. The power and usefulness
of ANN have been demonstrated in numerous applications
including speech synthesis, medicine, finance and many other
pattern recognition problems. For some application domains,
neural models show more promise in achieving human-like
performance than do more traditional artificial intelligence
techniques. All ANN manipulations in this study have been
performed within a MATLAB(r) environment using Neural
Network Toolbox [28].

IV. EXPERIMENTAL DESIGN
Our main goal in this study was to estimate whether the

approach presented here, in which unknown malicious code is
detected, based on the computer behavior (measurements), is
feasible and enables a high level of accuracy in the application

of a variety of computers. We defined four hypotheses
accordingly:

Hypothesis I: Detection of known malicious code, based on
a computer's measurements, using machine learning techniques
can reach an accuracy level above 90%.

Hypothesis II: The computer configuration and the
computer background activity, from which the training sets
were taken, have no significant influence on the detection
accuracy.

Hypothesis III: Reducing the amount of features below 30
features will enable maintenance of the accuracy provided by
the full set of attributes or above.

Hypothesis IV: Detecting unknown worms is possible at an
accuracy level above 80%.

In addition to these hypotheses, we wanted to identify the
best classification algorithms and the best combination of top
ranked features and classification algorithm. We start with the
definition of the evaluation measures and continue with the
experiments we designed for this study.

A. Evaluation Measures
For the purpose of evaluation, we used the True Positive

(TP) measure presenting the rate of instances classified as
positive correctly, False Positive (FP) presenting the rate of
positive instances misclassified (Equation 7), and the Total
Accuracy – the rate of the entire correctly classified instances,
either positive or negative, divided by the entire number of
instances, as shown in Equation 8. The actual (A) amount of
classifications are represented by XYA, where Y presents the
classification (positive or negative) and X presents the
classification correctness (true or false).

AA

A

FNTP
TPTP

+
= ; AA

A

TNFP
FPFP

+
= ; (7)

AAAA

AA

FNTNFPTP
TNTPAccuracyTotal

+++
+= ; (8)

We also measured a confusion matrix, which depicts the
number of instances from each class which were classified in
each one of the classes (ideally all the instances would be in
their actual class).

V. EXPERIMENTS AND RESULTS
To test the hypotheses described above, we created the

eight datasets (see in Table I) in five feature subsets: Top 5, 10,
20 and 30 ranked features and the full features set. To
determine the best combination of classification algorithm and
top feature selection, we ran all the 20 combinations (five top
selections and four classification algorithms) in each
experiment.

A. Experiment I
To test hypothesis I, in which we wanted to test whether

based on monitored measurements of a computer behavior a
high level of accuracy can be achieved, we unified all the eight

datasets into a single dataset, which we called 'All.' The four
classification algorithms were evaluated on the All dataset with
the full set of features. Since the training set and test set were
identical, we used 10-fold cross validation [29], in which the
dataset was portioned randomly into ten equal partitions. Nine
partitions were used for the training set, and the remaining
partition used to evaluate the learned model. The process then
repeated ten times, leaving out a partition for testing each time.

While Decision Trees and Bayesian Networks achieved
99% accuracy, ANN achieved 96%, and Baive Bayes achieved
92%. Note that classifying each sample to a specific worm
(type) activity, within the five given worms is more
challenging than classifying to a generic worm behavior,
alerting for an unknown worm which was our final goal. Thus,
the results could be improved when evaluating this method as a
binary problem, which was encouraging.

B. Experiment II
In hypothesis II we wanted to estimate the performance

variability of the suggested approach given several training sets
sampled from a variety of computers, represented by the eight
datasets. Thus, we tested whether the accuracy obtained by
training a classifier on a training set sampled from a given
computer will vary significantly when evaluated on a variety of
test sets, for which we designed two experiments:

In the first experiment, called e21, each classifier was
trained on a single dataset i and tested on a single dataset j,
where i and j are indices of the eight datasets. When i = j, we
used cross validation since the training set (i) and test set (j)
were the same dataset. Thus, we had a set of eight iterations in
which each dataset used for training and evaluated on the eight
corresponding datasets, resulting in 64 evaluation runs.

In the second experiment, called e22, the training set was a
unified dataset of seven of the eight datasets, called all-i in
which i refers to the eighth left dataset, which was the test set,
resulting in eight iterations of evaluation runs. Note that both
experiments included the 20 combinations of four classification
algorithms and five features subsets amounting to 1280 runs
for e21 and 160 runs for the e22. To test whether a significant
difference exists among the datasets, when used as training sets
or as test sets, we performed a statistical homogeneity test.

Table II presents the mean accuracy and the resulting
standard deviation in each experiment, including 128
evaluation runs. In the first main column the results of e21 are
presented in two views, when the dataset (on the left) was used
as a training set, and when used as test sets. The results of e21
when focusing on the training sets were not homogenous. The
same occurred with the results when grouping by the testing
sets, though we found that the training on datasets created in
the 'old' computer was significantly better (α = 0.01). In e22, in
which the datasets were considered as test sets, the results were
statistically significant (α = 0.05) homogenous. Note that these
tests were performed on the entire experiments of all the
classification algorithms, and not specifically on each
algorithm. The classification accuracy in e22 outperformed the
accuracy in e21, since the training sets in e21 had a wider
representation of the datasets.

TABLE II. THE RESULTS ACHIEVED IN E21 AND E22. IN EACH COLUMN
THE DATASETS FUNCTION DIFFERENTLY, AS TRAINING SET OR TEST SETS. IN

E22 THE RESULTS WERE SIGNIFICANTLY HOMOGENOUS (Α=0.01).

Experiment e21 e22
Dataset As training As test As test

o 0.68 ± 0.23 0.73 ± 0.23 0.78 ± 0.22

ou 0.76 ± 0.22 0.73 ± 0.22 0.82 ± 0.18

oa 0.73 ± 0.21 0.73 ± 0.23 0.81 ± 0.18

oau 0.77 ± 0.21 0.72 ± 0.21 0.81 ± 0.19

n 0.61 ± 0.24 0.64 ± 0.22 0.71 ± 0.20

nu 0.76 ± 0.21 0.72 ± 0.22 0.82 ± 0.22

na 0.70 ± 0.21 0.73 ± 0.24 0.86 ± 0.17
nau 0.73 ± 0.22 0.71 ± 0.23 0.79 ± 0.20

average 0.72 ± 0.22 0.72 ± 0.22 0.80 ± 0.19

To test hypothesis III, in which we wanted to determine the
optimal number of features required to achieve the highest
accuracy, we used the results of e21 and e22, calculating the
mean and variance of the top selection options, Top 5, 10, 20,
30 or full, and the classification algorithms.

Table III shows the results from e21. Each cell in the table
presents the mean accuracy of 64 evaluation runs, in which a
classifier was trained on a training set and tested on the other
seven test sets. The Bayesian Networks outperformed the other
classification algorithms significantly (α = 0.01). On average
the Top20 features subset outperformed the other top selection
features subset significantly (α = 0.01), out of the Top10.
Bayesian Networks applied to the Top20 features outperformed
all the other combinations.

TABLE III. THE RESULTS OF E21FOR EACH CLASSIFIER AND TOP
FEATURES. BAYESIAN NETWORKS OUTPERFORMED THE OTHER CLASSIFIERS

AND THE TOP20 WAS THE BEST FEATURES SUBSET.

 ANN BN DT NB Average
Top5 0.50±0.10 0.58±0.10 0.59±0.08 0.56±0.08 0.56±0.09
Top10 0.74±0.26 0.90±0.08 0.64±0.25 0.87±0.14 0.79±0.20
Top20 0.82±0.21 0.90±0.09 0.70±0.21 0.88±0.14 0.83±0.17
Top30 0.75±0.21 0.89±0.08 0.61±0.25 0.85±0.18 0.78±0.19

Full 0.73±0.16 0.76±0.18 0.51±0.26 0.54±0.26 0.63±0.22
Avg 0.71±0.20 0.80±0.11 0.61±0.22 0.74±0.17 0.72±0.18

Table IV shows the results of e22. Each cell in the table
presents the mean accuracy of eight evaluations, in which each
classifier was trained on a training set consisting of seven
datasets, and the test set contained only the excluded dataset.
Generally, the mean accuracy of most of the algorithms was
better than in e21, as expected, while the ANN performance
decreased rapidly. Unlike in e21, the Decision Trees
outperformed the other algorithms, while Bayesian Networks
consistently produced good results. On average, the Top10
features selection outperformed the other top selections, but not
significantly, the performance of the Top5 was significantly (α
= 0.01) lower than the others. Note that, while in e21 all the
algorithms favored the Top20, here it varied mainly between
Top20 and Top10, and ANN outperformed with the full set of
features.

TABLE IV. E22 RESULTS FOR EACH CLASSIFIER AND TOP FEATURES.
DECISION TREES SLIGHTLY OUTPERFORMED BAYESIAN NETWORKS AND THE
OTHER CLASSIFIERS AND THE TOP10 FEATURES OUTPERFORMED THE OTHER.

 ANN BN DT NB Average

Top5 0.44±0.09 0.62±0.04 0.64±0.01 0.59 ± 0.07 0.57±0.06

Top10 0.74±0.16 0.96±0.04 0.97±0.04 0.90 ± 0.06 0.89±0.09

Top20 0.55±0.21 0.96±0.05 0.94±0.05 0.94 ± 0.03 0.85±0.11

Top30 0.62±0.14 0.95±0.05 0.96±0.05 0.93 ± 0.03 0.86±0.08

Full 0.81±0.23 0.88±0.09 0.94±0.09 0.88 ± 0.07 0.88±0.14

Average 0.63±0.17 0.88±0.06 0.89±0.05 0.85 ± 0.06 0.81±0.10

We present here the Top5 features (because of the limited
space of the paper) and their definitions. In the category of
ICMP: (1) Sent_Echo_sec – The rate of ICMP Echo messages
sent; (2) Messages Sent/sec – the rate, in incidents per second,
at which the server attempted to send. The rate includes those
messages sent in error; (3) Messages/sec – the total rate, in
incidents per second, at which ICMP messages were sent and
received by the target entity. The rate includes messages
received or sent in error. In the category of TCP: (4)
Connections Passive – the number of times TCP connections
have made a direct transition to the SYN-RCVD state from the
LISTEN state; (5) Connection Failures – the number of times
TCP connections have made a direct transition to the CLOSED
state from the SYN-SENT state or the SYN-RCVD state, plus

the number of times TCP connections have made a direct
transition to the LISTEN state from the SYN-RCVD state. The
list of the top fifteen ranked features is presented in the
Appendix.

C. Experiment III
In hypothesis IV we wanted to estimate the possibility of

classifying an unknown worm when training on data based on a
single computer, which was the main and final objective of this
study. In this set of experiments we used only the Top20
features, which outperformed in e2. The training set included
four worms out of the five and the test set included the
excluded worm and the none activity samples. This process
was done for each worm repeating in five iterations. Note, that
in these experiments, unlike in e2, in which each worm class
was defined separately, there were two classes: (generally)
worm and none activity.

Table V presents the results of e3 exceeding a 90%
accuracy level of detection for each worm by a different
classification algorithm (shown in bold). On average the
Decision Trees and Bayesian Networks outperformed the
others. The table shows also the true positive (TP) and false
positive (FP). Decision Trees and Bayesian Networks while
achieving high level of accuracy maintained a low false
positive rate.

TABLE V. THE RESULTS OF E3. THERE IS A DIFFERENCE IN THE DETECTION ACCURACY OF EACH CLASSIFIER FOR EACH TYPE OF WORM. IN AVERAGE
DECISION TREES OUTPERFORMED THE OTHER CLASSIFIERS, WHILE MAINTAINING A LOW LEVEL OF FALSE POSITIVE RATE.

 ANN_20 BN_20 DT_20 NB_20

Worm Acc TP FP Acc TP FP Acc TP FP Acc TP FP

1 0.985 0.985 0.014 0.554 0.557 0.443 0.936 0.937 0.063 0.497 0.500 0.499

2 0.494 0.499 0.500 0.992 0.992 0.007 0.999 0.999 0.0005 0.997 0.997 0.002

3 0.952 0.952 0.047 0.992 0.993 0.007 0.680 0.678 0.3215 0.844 0.843 0.156

4 0.994 0.994 0.005 0.998 0.998 0.002 0.968 0.968 0.032 0.998 0.998 0.002

5 0.636 0.637 0.362 0.990 0.991 0.008 0.999 0.999 0.0005 0.975 0.974 0.026

Average 0.81 0.81 0.19 0.91 0.91 0.09 0.92 0.92 0.08 0.86 0.86 0.14

StdDev 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.02 0.02 0.05 0.05 0.05

VI. DISCUSSION AND CONCLUSIONS
We presented in this paper a Host-based Intrusion

Detection method for unknown malicious code activity. The
novelty of the proposed approach is that it is based on
monitoring a host's various parameters (as opposed to direct
matching of the malcode signature), using various automated
classification algorithms. Four hypotheses were investigated,
for which a dataset was created and several corresponding
experiments were designed. In the first experiment we showed
that the detection of known worms is feasible at almost 100%
accuracy. In the second experiment we wanted to examine the
influence of the variance in the training phase and detection
phase, of the configuration of a computer and its programs, to
determine whether this method can be generalized. We found
that training on seven unified datasets was significantly
homogenous (α=0.01) based on a homogeneity test, unlike
training on a single dataset (as in e21). This is a very

encouraging result, since we assume that, when applying such
an approach in the real world, a training set that consists of
samples from several types of computer activities is a
reasonable requirement. Based on the results in e21 and e22, in
general Bayesian Networks outperformed the other algorithms;
and using the Top 20 ranked features from the GainRatio was
the best, which is very encouraging, especially when
comparing to more than 300 features in the full set, since it is
very meaningful in terms of the computer's resources
consumption.

To examine the possibility of classifying unknown worms,
unlike in previous experiments, two classes were defined in the
dataset, a worm type consisting of the worms' samples and
none. The training sets had four worms and the test set
consisted only of the excluded worm and the none-activity. We
found that the level of detection accuracy for each worm varies
from algorithm to algorithm. Finally, in e3 above 85%
accuracy was achieved in general; Decision Trees achieved

92%, while specific algorithms exceeded the 95% level of
accuracy for specific worms. We noticed that the detection of
each worm varied within each algorithm, while being different
among algorithms, and thus we suggest using an ensemble of
classifiers to achieve a higher level of accuracy for instances of
all potential worm classes. In general Bayesian Networks
resulted constantly in very good results, which might be
explained by the consideration of the dependency within
features, unlike other classifiers.

The limitations of this study are the amount of worms and
the computer configurations. Note that the worms were
selected to provide a reasonable variety and the computers
which were used were dramatically different. However, this
was enough to achieve statistically significant results.

To conclude, we have shown that, based on the presented
evaluation, it is possible to detect previously un-encountered
worms using our novel approach, which is based on the
computer "behavior" (features). In order to attain a high level
of accuracy in different types of computers, which is an
essential requirement in real life, the training set should include
samples taken from several computers (i.e., different
configurations).

VI. FUTURE WORK
Based on these encouraging results, we plan to perform a

wider evaluation using more types of worms and an ensemble
of classifiers. We are in the process of broadening the
application of this approach to other types of malicious codes,
such as Trojans and backdoors, which are expected to present a
greater challenge. In addition, we are also developing a
temporal data mining algorithm which is expected to enable
more sophisticated dynamic behavior and its detection along
time in such activities.

REFERENCES
[1] Craig Fosnock, Computer Worms: Past, Present and Future. East

Carolina University (2005)
[2] Kabiri, P., Ghorbani, A.A. (2005) "Research on intrusion detection and

response: A survey," International Journal of Network Security, vol.
1(2), pp. 84-102.

[3] Schultz, M., Eskin, E., Zadok, E., and Stolfo, S. (2001) Data Mining
Methods for Detection of New Malicious Executables, Proceedings of
the IEEE Symposium on Security and Privacy, 2001, pp. 178--184.

[4] Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R. (2004) N-
gram based Detection of New Malicious Code, Proceedings of the 28th
Annual International Computer Software and Applications Conference
(COMPSAC'04)

[5] Kolter, J.Z. and Maloof, M.A., Learning to detect and classify malicious
executables in the wild, Journal of Machine Learning Research, 7
(2006) 2721-2744.

[6] Moore D., Paxson V., Savage S., and Shannon C., Staniford S., and
Weaver N. (2003) Slammer Worm Dissection: Inside the Slammer
Worm, IEEE Security and Privacy, Vol. 1 No. 4, July-August 2003, 33-
39.

[7] Kienzle, D.M. and Elder, M.C. (2003) Recent worms: a survey and
trends. In Proceedings of the 2003 ACM Workshop on Rapid Malcode,
pages 1--10. ACM Press, October 27, 2003.

[8] Moore, D., Shannon, C., and Brown, J. (2002) Code Red: a case study
on the spread and victims of an internet worm, Proceedings of the

Internet Measurement Workshop 2002, Marseille, France, November
2002.

[9] Weaver, N. Paxson, V. Staniford, and S. Cunningham, R. (2003) A
Taxonomy of Computer Worms, Proceedings of the 2003 ACM
workshop on Rapid Malcode, Washington, DC, October 2003, pages 11-
18

[10] CERT. CERT Advisory CA-2000-04, Love Letter Worm,
http://www.cert.org/advisories/ca-2000-04.html

[11] Lee, W., Stolfo, S.J. and Mok, K.W. (1999). A data mining framework
for building intrusion detection models. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, May 1999

[12] Richard P. Lippmann, Isaac Graf, Dan Wyschogrod, Seth E. Webster,
Dan J. Weber, and Sam Gorton, "The 1998 DARPA/AFRL Off-Line
Intrusion Detection Evaluation,"
First International Workshop on Recent Advances in Intrusion Detection
(RAID), Louvain-la-Neuve, Belgium, 1998.

[13] Barbara, D., Wu, N., Jajodia, S. (2001) “Detecting novel network
intrusions using bayes estimators,” in Proceedings of the First SIAM
International Conference on Data Mining (SDM 2001), Chicago, USA

[14] Ste. Zanero and Sergio M. Savaresi, “Unsupervised learning techniques
for an intrusion detection system,” in Proceedings of the 2004 ACM
symposium on Applied computing, pp. 412–419, Nicosia, Cyprus, Mar.
2004. ACM Press.

[15] H. Gunes Kayacik, A. Nur Zincir-Heywood, and Malcolm I. Heywood,
On the capability of a som based intrusion detection system, in
Proceedings of the International Joint Conference on Neural Networks,
vol. 3, pp. 1808–1813. IEEE, IEEE, July 2003.

[16] J. Z. Lei and Ali Ghorbani, “Network intrusion detection using an
improved competitive learning neural network,” in Proceedings of the
Second Annual Conference on Communication Networks and Services
Research (CNSR04), pp. 190–197. IEEE-Computer Society, IEEE, May
2004.

[17] P. Z. Hu and Malcolm I. Heywood, Predicting intrusions with local
linear model, in Proceedings of the International Joint Conference on
Neural Networks, vol. 3, pp. 1780–1785. IEEE, IEEE, July 2003.

[18] John E. Dickerson and Julie A. Dickerson, “Fuzzy network profiling for
intrusion detection,” in Proceedings of NAFIPS 19th International
Conference of the North American Fuzzy Information Processing
Society, pp. 301–306, Atlanta, USA, July 2000.

[19] Susan M. Bridges and M. Vaughn Rayford, “Fuzzy data mining and
genetic algorithms applied to intrusion detection,” in Proceedings of the
Twenty-third National Information Systems Security Conference.
National Institute of Standards and Technology, Oct. 2000.

[20] M. Botha and R. von Solms, “Utilising fuzzy logic and trend analysis for
effective intrusion detection,” Computers & Security, vol. 22, no. 5, pp.
423–434, 2003.

[21] Lorch, J. and Smith, A. J. (2000) The VTrace tool: building a system
tracer for Windows NT and Windows 2000. MSDN Magazine,
15(10):86–102, October 2000.

[22] Witten, I.H. and Frank E., Data Mining: Practical machine learning tools
and techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

[23] Quinlan, J.R. (1993). C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[24] Mitchell T. (1997) Machine Learning, McGraw-Hill.
[25] Domingos, P., and Pazzani, M. (1997) On the optimality of simple

Bayesian classifier under zero-one loss, Machine Learning, 29:103-130.
[26] Pearl J., (1986) Fusion, propagation, and structuring in belief networks.

Artificial Intelligence 29(3):241–288.
[27] Bishop, C.(1995) Neural Networks for Pattern Recognition. Clarendon

Press, Oxford.
[28] Demuth, H. and Beale, (1998) M. Neural Network toolbox for use with

Matlab. The Mathworks Inc., Natick, MA.
[29] Kohavi, R., (1995) A Study of Cross-Validation and Bootstrap for

Accuracy Estimation and Model Selection, International Joint
Conference in Artificial Intelligence, 1137-1145, 1995.

