Yiqin Yang

Yiqin Yang
Tsinghua University | TH · Department of Automation

About

13
Publications
2,508
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
90
Citations
Citations since 2017
13 Research Items
90 Citations
20172018201920202021202220230510152025
20172018201920202021202220230510152025
20172018201920202021202220230510152025
20172018201920202021202220230510152025

Publications

Publications (13)
Preprint
Offline reinforcement learning (RL) enables the agent to effectively learn from logged data, which significantly extends the applicability of RL algorithms in real-world scenarios where exploration can be expensive or unsafe. Previous works have shown that extracting primitive skills from the recurring and temporally extended structures in the logg...
Preprint
Offline reinforcement learning (RL) enables effective learning from previously collected data without exploration, which shows great promise in real-world applications when exploration is expensive or even infeasible. The discount factor, $\gamma$, plays a vital role in improving online RL sample efficiency and estimation accuracy, but the role of...
Preprint
Full-text available
Offline reinforcement learning (RL) shows promise of applying RL to real-world problems by effectively utilizing previously collected data. Most existing offline RL algorithms use regularization or constraints to suppress extrapolation error for actions outside the dataset. In this paper, we adopt a different framework, which learns the V-function...
Article
Full-text available
Reinforcement Learning (RL) agents are often fed with large-dimensional observations to achieve the ideal performance in complex environments. Unfortunately, the massive observation space usually contains useless or even adverse features, which leads to low sample efficiency. Existing methods rely on domain knowledge and cross-validation to discove...
Preprint
Full-text available
Learning from datasets without interaction with environments (Offline Learning) is an essential step to apply Reinforcement Learning (RL) algorithms in real-world scenarios. However, compared with the single-agent counterpart, offline multi-agent RL introduces more agents with the larger state and action space, which is more challenging but attract...
Preprint
Full-text available
Value-based methods of multi-agent reinforcement learning (MARL), especially the value decomposition methods, have been demonstrated on a range of challenging cooperative tasks. However, current methods pay little attention to the interaction between agents, which is essential to teamwork in games or real life. This limits the efficiency of value-b...
Article
Full-text available
Writing is a pivotal part of the language exam, which is considered as a useful tool to accurately reflect students’ language competence. As Chinese language tests become popular, manual grading becomes a heavy and expensive task for language test organizers. In the past years, there is a large volume of research about the automated English evaluat...
Article
Full-text available
Deep neural network (DNN) has many advantages. Autonomous driving has become a popular topic now. In this paper, an improved stack autoencoder based on the deep learning techniques is proposed to learn the driving characteristics of an autonomous car. These techniques realize the input data adjustment and solving diffusion gradient problem. A Raspb...
Article
Full-text available
The automation level of autonomous marine vehicle is limited which is always semi-autonomy and reliant on operator interactions. In order to improve it, an autonomous collision avoidance method is proposed based on the visual technique as human’s visual system. A deep convolutional neural network (Alexnet), with strong visual processing capability,...

Network

Cited By