
Yipeng LiuShanghai Jiao Tong University | SJTU · Department of Electrical Engineering
Yipeng Liu
Doctor of Engineering
About
13
Publications
401
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
211
Citations
Introduction
Skills and Expertise
Publications
Publications (13)
In this paper, we propose a global monotonicity consistency training strategy for quality assessment, which includes a differentiable, low-computation monotonicity evaluation loss function and a global perception training mechanism. Specifically, unlike conventional ranking loss and linear programming approaches that indirectly implement the Spearm...
We present a novel quality assessment method which can predict the perceptual quality of point clouds from new scenes without available annotations by leveraging the rich prior knowledge in images, called the Distribution-Weighted Image-Transferred Point Cloud Quality Assessment (DWIT-PCQA). Recognizing the human visual system (HVS) as the decision...
No-Reference Point Cloud Quality Assessment (NR-PCQA) aims to objectively assess the human perceptual quality of point clouds without relying on pristine-quality point clouds for reference. It is becoming increasingly significant with the rapid advancement of immersive media applications such as virtual reality (VR) and augmented reality (AR). Howe...
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, as reference point clouds are not available in many cases, no-reference (NR) metrics have become a research hotspot. Existing NR methods suffer from poor generalization performance. To address this shortcoming, we propose a novel NR-...
In this paper, we propose a reduced reference (RR) point cloud quality assessment (PCQA) model named R-PCQA to quantify the distortions introduced by the lossy compression. Specifically, we use the attribute and geometry quantization steps of different compression methods (i.e., V-PCC, G-PCC and AVS) to infer the point cloud quality, assuming that...
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, in many cases, obtaining the reference point clouds is difficult, so no-reference (NR) metrics have become a research hotspot. Few researches about NR-PCQA are carried out due to the lack of a large-scale PCQA dataset. In this paper,...
We present a novel no-reference quality assessment metric, the image transferred point cloud quality assessment (IT-PCQA), for 3D point clouds. For quality assessment, deep neural network (DNN) has shown compelling performance on no-reference metric design. However, the most challenging issue for no-reference PCQA is that we lack large-scale subjec...
Point cloud compression (PCC) has made remarkable achievement in recent years. In the mean time, point cloud quality assessment (PCQA) also realize gratifying development. Some recently emerged metrics present robust performance on public point cloud assessment databases. However, these metrics have not been evaluated specifically for PCC to verify...
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, in many cases, obtaining the reference point cloud is difficult, so the no-reference (NR) methods have become a research hotspot. Since learning-based FR-PCQA methods should be driven by data, few researches about NR objective qualit...