Introduction

- Review of video summarization
- Evaluation of video summaries
- BLEU and ROUGE
- VERT principles
- Experiments
- Conclusion
Video Summarization

- Overload of Multimedia information, specially videos
 - Lots of TV channels
 - Lots of recording devices
- Summarization is a useful tool:
 - Quickly grasp the main content
 - Decide to watch entire video or not
 - Allows to quickly compare several videos
 - Sometimes find relevant information
- Major issue in summarization:

Select important instants

Video Summarization is difficult

- Efficient selection requires:
 - Analysis
 - Modeling
 - “Understanding”
 - Evaluation of importance
Video Summarization is easy

- Lots of possible approaches for selection
 - From random choice
 - To numerical optimization

- How to prove that a summary is good (or bad)?

- A major problem is Evaluation

Video Summary Evaluation

- Many proposals, two basic approaches:
 - Objective metrics (quantitative)
 - SVD over feature frame matrix [Gong 2000]
 - Shot Reconstruction Degree [Liu 2004]
 - Shot importance [Uchihashi 1999]
 - User studies (qualitative)
 - Keyframe Counting [Dufaux 2000]
 - User satisfaction [Ngo 2003]
 - Content identification [Smith 1998, Lu 2004]
Video Summary Evaluation

- **Problem with current approaches:**
 - Maximize objective metrics
 - Performance does not always relate easily to a task
 - Result is difficult to interpret
 - Evaluate with real users on real task
 - Very expensive, difficult to set up
 - Difficult to optimize summaries automatically

- **Fundamental difficulty:**
 - There is no ground truth
 - But people are able to judge if one proposal is better or worse than another

BLEU and ROUGE

- **BLEU (Bilingual Evaluation Understudy)**
 - A similar situation is encountered in language translation
 - Proposal: BLEU measure (IBM 2002)
 - Idea: measure the similarities between a candidate translation and a set of reference translations
 - Compare n-gram counts
 - Precision-based measure

 \[
 \text{BLEU}_n = \frac{\sum_{C \in \text{Candidate Sentences}} \sum_{\text{gram} \in C} \text{Count}_{clip}(\text{gram}_n)}{\sum_{C \in \text{Candidate Sentences}} \sum_{\text{gram} \in C} \text{Count}(\text{gram}_n)}
 \]
 - High correlation with human judgment
 - Scoring metric used in the NIST translation benchmarks

EURECOM - BP 193
F-06904 Sophia Antipolis cedex
BLEU and ROUGE

- ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
 - Text summarization evaluation metric (Lin 2003)
 - Counts the number of overlapping units between the candidate summary and several man-made ground truth summaries

 \[
 ROUGE - N = \frac{\sum_{\text{Se \{References\}}} \sum_{\text{gram}_n \in S} \text{count}_{\text{match}}(\text{gram}_n)}{\sum_{\text{Se \{References\}}} \sum_{\text{gram}_n \in S} \text{count}(\text{gram}_n)}
 \]

 - Recall oriented measure
 - Several variants:
 - ROUGE-N, ROUGE-L, ROUGE-W, ROUGE-S

VERT

- VERT (Video Evaluation by Relevant Threshold)
 - Transpose BLEU and ROUGE ideas to evaluation of video summarization
 - Issues:
 - Precision or Recall ?
 - How to define \(\text{gram}_n \) ?
 - Which values of \(n \) ?
 - How to validate VERT ?
 - Video summary = selection of instants
 - selection of ordered keyframes
 \(S = f_1 f_2 \ldots f_n \)

 n-gram word order ~ keyframe rank (decreasing importance)
VERT-P

- Inspired by BLEU, precision-based
 - Keyframes are assigned a weight based on position in the selection
 - In reference summaries (human selected lists)
 - keyframe i in position y_i of reference x: $W_S(x,y_i)$
 - $T_i = \max_{y_i} W_S(x,y_i)$
 - In candidate summary (computer selected list)
 - keyframe i: $W_C(i)$
 - VERT-P:
 $$ VERT - P = \frac{\sum_{i=1}^{m} \min[W_C(i), T_i]}{\sum_{i=1}^{m} W_C(i)} $$
 - Maximal value when candidate keyframes all have a rank less or equal to their best rank in references

VERT-R

- Inspired by ROUGE, recall based
 - computes the weight percentage of reference $gram_n$ occurring also in the candidate summary
 $$ VERT - R_{N}(C) = \frac{\sum_{S \in \text{Reference summaries}} \sum_{f \in S} W_C(f)}{\sum_{S \in \text{Reference summaries}} \sum_{f \in S} W_S(f)} $$
 - Variants:
 - $N=1$
 $$ VERT - R_1(C) = \frac{\sum_{S \in R} \sum_{f \in S} W_C(f)}{\sum_{S \in R} \sum_{f \in S} W_S(f)} $$
 - $N=2$
 $$ VERT - R_2(C) = \frac{\sum_{S \in R} \sum_{f, g \in S} W_C(f, g)}{\sum_{S \in R} \sum_{f, g \in S} W_S(f, g)} $$

- $W_{S}(f, g) = \frac{w_s(f) + w_s(g)}{2}$
- $W_{S}(f, g) = |w_s(f) - w_s(g)|$
Experiments

- Videos related to news articles
 - Obtained from Wikio web site
 - 2 groups of 6 videos each
 - 10 keyframes max per video

- Reference summaries:
 - 12 users: ordered selection of 10 keyframes

Experiments

- User selection (12 users)
Evaluating the evaluation method

Goal: compare VERT score with human judgement

1. Select 7 candidates summaries:
 • 2 random summaries
 • 1 summary constructed by K-Means
 • 2 summaries constructed by Video-MMR
 • best and worst human summaries

2. Create 21 pairs:

 Summary Pair: One row = one summary.

3. Request users to perform Human Pair Selection (HPS): select the best one for each summary pair

4. Use VERT to perform VERT Pair Selection (VPS) for each summary pair

5. Compare HPS and VPS:
 • Accuracy percentage λ: percentage of correct choices made by VPS compared with HPS
 $$\lambda = \frac{1}{H} \sum_{i=1}^{H} \left[\frac{1}{21} \sum_{i=1}^{21} C_{\text{VERT}}(i) C_{H}(i) + 1 \right]$$
 where $C_x(i) = -1$ if the first summary is selected
 $+1$ if the second summary is selected
 • Spearman rank correlation coefficient ρ
 $$\rho = 1 - \frac{1}{H} \sum_{i=1}^{H} \frac{6}{21(21^2-1)} \left[\sum_{i=1}^{21} \left(\text{rank}_{\text{VERT}}(i) - \text{rank}_{H}(i) \right)^2 \right]$$
Experimental results

Table 1. \(\lambda \)s with Ranking Weights

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>(R_1)</th>
<th>(R_{2S})</th>
<th>(R_{2D})</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATI</td>
<td>0.5317</td>
<td>0.6270</td>
<td>0.5794</td>
<td>0.6270</td>
<td>0.5714</td>
</tr>
<tr>
<td>YSL</td>
<td>0.5317</td>
<td>0.7063</td>
<td>0.6905</td>
<td>0.6587</td>
<td>0.6286</td>
</tr>
</tbody>
</table>

Table 2. \(\rho \)s with Ranking Weights

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>(R_1)</th>
<th>(R_{2S})</th>
<th>(R_{2D})</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATI</td>
<td>0.1071</td>
<td>0.6429</td>
<td>0.4643</td>
<td>0.6429</td>
<td>0.6190</td>
</tr>
<tr>
<td>YSL</td>
<td>0.2143</td>
<td>0.7500</td>
<td>0.8571</td>
<td>0.8214</td>
<td>0.6310</td>
</tr>
</tbody>
</table>

Table 3. \(\lambda \)s and \(\rho \)s with Uniform Weights

<table>
<thead>
<tr>
<th></th>
<th>(\lambda(R_1))</th>
<th>(\lambda(R_{2S}))</th>
<th>(\rho(R_1))</th>
<th>(\rho(R_{2S}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATI</td>
<td>0.6270</td>
<td>0.5794</td>
<td>0.6429</td>
<td>0.4643</td>
</tr>
<tr>
<td>YSL</td>
<td>0.6905</td>
<td>0.6905</td>
<td>0.6071</td>
<td>0.8214</td>
</tr>
</tbody>
</table>

Accuracy percentage \(\lambda \)

![Accuracy percentage graph](image1)

Spearman rank correlation coefficient \(\rho \)

![Spearman rank correlation graph](image2)
Conclusions

- VERT-P does not correlate well with human assessment
 - the values of Spearman coefficients for VERT-P are very small

- VERT-R measure is effective
 - the value of APs and Spearman coefficients are both around 0.6

- Variants of VERT-R have similar performance
 - Need to extend the experiments in size and scope to further identify the capabilities of the method

- Future work:
 - Large scale experiments with Wikio web site

Thank you!

Questions?