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LETTER
Impulse-Noise-Tolerant Data-Selective LMS Algorithm

Ying-Ren CHIEN†a), Senior Member and Chih-Hsiang YU††, Nonmember

SUMMARY Exponential growth in data volumes has promoted
widespread interest in data-selective adaptive algorithms. In a pioneer-
ing work, Diniz developed the data-selective least mean square (DS-LMS)
algorithm, which is able to reduce specific quantities of computation data
without compromising performance. Note however that the existing frame-
work fails to consider the issue of impulse noise (IN), which can greatly
undermine the benefits of reduced computation. In this letter, we present an
error-based IN detection algorithm for implementation in conjunction with
the DS-LMS algorithm. Numerical evaluations confirm the effectiveness
of our proposed IN-tolerant DS-LMS algorithm.
key words: data-selective least mean square (DS-LMS), impulse noise (IN)

1. Introduction

Data-selective adaptive filtering algorithms have been at-
tracting interest for their ability to reduce computational
overhead by avoiding weight updates for adaptive filters in
cases where the magnitude of the error signals is too small
or too large. Diniz presented the basic framework of this ap-
proach in the form of data-selective least-mean-square (DS-
LMS) algorithms [1]. Under the assumption of white Gaus-
sian background measurement noise in conventional system
identification problems, the existing framework allows users
to select a prescribed weight update probability (Pup) and
threshold parameter (τmax), such that only innovative input
data is used to update the weights of adaptive filters. Un-
der this framework, adaptive filters are updated in according
with a prescribed updating constraint, which allows opera-
tions with a tolerable degree of misadjustment.

Unfortunately, the existing scheme is prone to failure
in situations where the measurement noise is non-Gaussian
impulse noise (IN) rather than additive white Gaussian noise
(AWGN). A number of robust adaptive filtering algorithms
have been proposed to deal with IN; however, none of those
works have been implemented with data-selective updat-
ing schemes aimed at reducing computational complexity.
In [2], the authors presented a prefiltered observation-based
adaptive filtering algorithm in which the weights of the adap-
tive filters are frozen when IN is detected. Note however that
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this approach suffers from a low IN detection rate, particu-
larly when the input is a colored Gaussian signal. To the best
of our knowledge, this is the first study to address the data-
selective algorithm within the context of IN. In this letter,
we first outline the method used to detect the presence of IN
based on an error signal. We then outline our modification of
the DS-LMS algorithm, which takes into consideration the
potential effects of IN. Numerical simulations demonstrated
that our modified DS-LMS implementation outperforms the
original DS-LMS algorithm in the presence of IN.

2. System Models

Under a scenario of system identification, we denote the
impulse response of the unknown system as w(n) and the
inputs to this system as x(n). The observable outputs d(n)
can be expressed as

d(n) = wT (n)x(n) + v(n) + η(n), (1)

where w(n) := [w0(n), w1(n), . . . , wL−1(n)]T ∈ RL×1

denotes a real weight vector of length L; super-
script T denotes the transpose operation; x(n) :=
[x(n), x(n − 1), . . . , x(n − L + 1)]T ∈ RL×1 denotes the real
input regressor vector of length L; and n denotes the time
index. This system model considers two additive noise
sources: background white Gaussian noise v(n) with zero-
mean and variance σ2

v , and IN η(n). IN can be described
using the Bernoulli-Gaussian (BG) IN model as follows:

η(n) = b(n) · g(n), (2)

where b(n) denotes the Bernoulli process with a probability
of occurrence of IN p and g(n) is the white Gaussian process
with zero-mean and variance of σ2

g . Two parameters are
used to represent the intensity of the IN, i.e., the occurrence
probability of IN p and the Gaussian-to-IN ratio (GINR)
Γ := σ2

v /σ
2
g . Higher values of p and smaller values of Γ

indicate a situation with stronger additive IN.

3. Proposed IN Tolerable DS-LMS Algorithm

3.1 Review of Diniz DS-LMS Algorithm

Without loss of generality, the information of the length of
the unknown system (i.e., L) is assumed to be a piece of
given information. The recursive updating of the original
Diniz DS-LMS algorithm is as follows:
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ŵ(n + 1) = ŵ(n) + µ · δ(n) · x(n) · e(n), (3)

where ŵ(n) ∈ RL×1 is the weight vector of the adaptive
filter; µ is the step-size; e(n) = d(n) − ŷ(n) is the error
signal; ŷ(n) = ŵT (n)x(n) is the output of the adaptive filter;
and δ(n) is the selection factor, which is defined as follows:

δ(n) =


0, if e2(n)

σ2
v
≤ τ(n)

0, if e2(n)

σ2
v
> τmax

1, otherwise

. (4)

Note that the DS-LMS algorithm freezes the weight vector
when the error signal is either too small or too large.

For a given probability of updating Pup , the original
derives threshold τ under the assumption of no outliers (i.e.,
τmax ≈ ∞), as follows:

τ = (1 + α)
(
Q−1 (

Pup/2
) )2

, (5)

where α is selected such that σ2
e ≈ (1+ α)σ2

v ; σ2
e represents

the variance of the error signal calculated within a specified
observation window; and Q−1 {·} denotes the inverse of the
complementary Gaussian cumulative distribution function.
Note that theDS-LMSalgorithm expects theweight updating
ŵ to occurwith probability Pup , while the variance of error is
maintained at a prescribed value σ2

e ≈ (1 + α)σ2
v . However,

when the observed signal is corrupted by strong outliers,
(i.e., IN), this approach does not provide a systematic means
to determine the value of τmax.

3.2 Proposed Error-Based IN Detection

We first derive the bound of e2(n) in the absence of IN. The
square of the instantaneous error signal can be expressed as
follows:

e2(n) = ẽ2(n) + v2(n) + 2ẽ(n)v(n), (6)

where ẽ(n) := y(n) − ŷ(n) = xT (n)w̃(n) and w̃(n) := w(n) −
ŵ(n). Leverage of the Peter-Paul inequality [3, p.105] for
the products of any two real numbers a and b means the
following inequality holds for all ε > 0:

2ab ≤
a2

ε
+ εb2. (7)

After some simple manipulations, we can rewrite (6) as fol-
lows:

e2(n) ≤
(
1 +

1
ε

)
ẽ2(n) + (1 + ε)v2(n). (8)

Moreover, ẽ2(n) ≈ ||x(n)| |22 | |w̃(n)| |
2
2 and | |x(n)| |

2
2 ≈ Lσ2

x [4];
therefore, we obtain

ẽ2(n) ≈ Lσ2
x | |w̃(n)| |22

≈ L
(
σ2
e − σ

2
v

)
. (9)

By substituting (9) into (8) and selecting L for the value of
ε , we obtain the following:

e2(n) ≤
(

L + 1
L

)
L

(
σ2
e − σ

2
v

)
+ (1 + L)v2(n)

≈ (1 + L)σ2
e (n), (10)

where we assume that v2(n) ≈ σ2
v (n).

Next, a median filter [5] is used to estimate the value of
σ2
e (n) for the case of environments involving IN as follows:

σ2
e (n) = γσ

2
e (n − 1) + C1(1 − γ)med(σ2

e (n)), (11)

where γ is a positive forgetting factor that is smaller than
but close to one [6]. The larger value of γ implies that the
estimation of σ2

e (n) depends heavier on the estimation of
σ2
e (n−1) and depends less on the output of the median filter.

σ2
e (n) =

[
e2(n), e2(n − 1), . . . , e2(n − Nw + 1)

]
with Nw as

the observation window; med (·) denotes the sample median
operation; and C1 = 1.483/(1 + 5/(Nw − 1)) is the finite
sample correction factor [7]. Practically, the value of Nw can
be selected to lie between 5 and 11 so that the computational
complexity incurred by (11), which is O(Nw log Nw) [8], is
affordable [9].

Finally, we claim that the IN is detected if (10) does
not hold. Therefore, we modify the selection factor in (3) as
follows:

δ(n) =


0, if e2(n)

σ2
v
≤ τ(n)

0, if e2(n) > (L + 1)σ2
e (n)

1, otherwise
. (12)

4. Simulation Results

The effectiveness of the IN tolerat DS-LMS algorithm was
evaluated by conducting numerical simulations of the system
identification problem with a target Pup = 30%. Referring
to [1], we set the impulse response of the unknown system
as follows:

[0.1010 0.3030 0 − 0.2020 − 0.4040
−0.7071 − 0.4040 − 0.2020] .

Moreover, we assumed that the unknown system had under-
gone an abrupt change in the 5000th iteration. The step-size
µ = 1/

(
ν(L + 1)σ2

x

)
with ν = 5, and α = Pup/

(
ν − Pup

)
[1,

Table IV]. Note that the forgetting factor and the length of
the observation windows in (11) are γ = 0.9 and Nw = 11,
respectively.

Variance in the additive background Gaussian noise is
determined by the SNR, which is given as

SNR := 10 log10

(
σ2
y/σ

2
v

)
, (13)

where σ2
y is the variance of the outputs of the unknown

system. In our simulation, the SNR value was set at 30 dB.
The other additive noise was BG IN.We considered three IN
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environments: 1) weakly disturbed (p = 0.01 and Γ = 0.1);
2) moderately disturbed (p = 0.05 and Γ = 0.01); and 3)
strongly disturbed (p = 0.08 and Γ = 5 × 10−3) [10].

We considered four cases. The first case was the ideal
case, labeled “Diniz DS-LMS (no IN)”. In this case, there
is no IN and the only additive noise is AWGN noise. The
second case was labeled “Diniz DS-LMS”, in which it was
assumed that τmax = ∞. The third case was labeled “Jeong
IN Detection”, in which we selected τmax in accordance with
prefiltered observation data to detect outliers (i.e., IN [2]).
The fourth case was labeled “Proposed method” using the
selection factor defined in (12).

The performance metric in this study was the nor-
malized mean-square deviation (NMSD), which can be ex-
pressed as follows:

NMSD(n) := 10 log10

(
| |w(n) − ŵ(n)| |22
| |w(n)| |22

)
. (14)

We also compared the averaged update probability Pup , the
detection rate, and the false alarm of IN detection. All results
were obtained by averaging the results from 300 independent
trials.

4.1 White Gaussian Inputs

The input signals were white Gaussian signals with zero-
mean and unit variance. Figure 1 illustrates the NMSE
learning curves under various IN disturbance levels. We can
see that the NMSE learning curve of the proposed method
is close to that of the ideal case. To better emphasize the
difference between the Diniz DS-LMS (no IN) and our pro-
posed method, we show the zoom-in plots for the number of
iterations n ∈ [180,820]. Note that our proposed method is
comparable to the ideal case when the measurement noises
containedweak ormoderate IN. However, ourmethod causes
few spikes in the resulted NMSE learning curves for the
strong IN case. By contrast, the original Diniz method and
the Jeong method presented a higher degree of misadjust-
ment.

4.2 Auto-Regressive (AR) Inputs

In accordance with [1], we considered fourth-order AR(4)
processes, by filtering the white Gaussian signal with zero-
mean and unit variance using the following Z-transfer func-
tion:

H(z) =
1

1 + b1z−1 + b2z−2 + b3z−3 + b4z−4 ,

where b1 = 0.55, b2 = 0.221, b3 = 0.49955, and b4 =
0.4536 to obtain the AR(4) signals. As shown in Fig. 2,
the eigenvalue spread associated with the AR(4) signals was
larger than that associated with white Gaussian inputs, which
slowed the rate of convergence to below that of white Gaus-
sian inputs. Other behaviors were consistent with the case
of white Gaussian inputs.

Fig. 1 Learning curves ofNMSD forwhiteGaussian inputs under various
disturbance levels: (a) weak IN; (b) moderate IN; and (c) strong IN.

Table 1 presents a summary of performance compar-
isons under various scenarios. Note that Methods 1 to 4
respectively refer to “Diniz DS-LMS (no IN)”, “Diniz DS-
LMS”, “Jeong IN Detection”, and “Proposed Method”.

1. Comparison of averaged update probability
Our simulation results revealed that the averaged up-
date probability Pup was affected by the type of input
signals as well as the types of IN. Method 1 refers to
the ideal case without IN. Among the four methods, the
average Pup of the proposed method was closest to the
target (Pup = 0.3). When the input type was non-white
Gaussian, some of the assumptions outlined in Sect. 3.2
did not necessarily hold. This led to a slight increase in
the average Pup when the input type was AR(4). Under
these conditions, the original Diniz DS-LMS method
(Method 2) and Jeong IN detection method (Method 3)
performed poorly, resulting in an average Pup that was
far higher than the target Pup .

2. Comparison of detection and false alarm rates
Note that only Methods 3 and 4 take into account the
issue of IN. Jeong IN detection was unable to detect
the occurrence of IN, particularly when the IN was
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Fig. 2 Learning curves of NMSD for AR(4) inputs under various distur-
bance levels: (a) weak IN; (b) moderate IN; and (c) strong IN.

Table 1 Performance comparison under various scenarios with target
Pup = 30%.

weak. The proposed method was able to detect 70%
of the IN in the case of weak IN, and more than 90%
IN detection rate when the IN is moderate or strong
disturbance. Note that the false alarm rate of both
methods was neglectable.

Simulation results have confirmed that our proposed
error-based IN detection method is superior to the Jeong
IN detector, which used the desired signals to detect the
IN. When no IN presence, condition σ2

e (n) < σ2
d
(n) holds.

Thus, our detector is more sensitive than the Jeong method
when the IN presents. Furthermore, the Jeong method may
fail to detect the IN because the instantaneous power of IN is
not always significantly more prominent than (L + 1)σ2

d
(n).

Table 1 has shown that the detection rate is getting higher as
the disturbance levels are getting higher. Even the sensitivity
of our IN detection is high; however, the resulted false alarm
rate is still kept at a tolerable level.

5. Conclusions

This letter presents an error-based IN detection algo-
rithm,which can be used in conjunction with the original
DS-LMS algorithm. Our IN-tolerant DS-LMS algorithm
provides a means of dynamically determining a threshold
for the detection of outliers in observed data. The modified
DS-LMS algorithm is able to reduce computation overhead
in accordance with a prescribed update probability, Pup ,
even in an environment of high impulse noise levels, without
sacrificing the performance in terms of steady-state errors.
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