About
71
Publications
21,827
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
890
Citations
Citations since 2017
Introduction
My research interests are broadly in the security of machine learning, including adversarial and robust learning, backdoor learning, and data privacy. For more information, please look through my homepage (http://liyiming.tech).
Publications
Publications (71)
Third-party resources ($e.g.$, samples, backbones, and pre-trained models) are usually involved in the training of deep neural networks, which brings backdoor threats. To facilitate the research and development of more secure training schemes, we propose a Python toolbox that implements representative and advanced backdoor attacks and defenses unde...
Yiming Li Yang Bai Yong Jiang- [...]
Bo Li
Deep neural networks (DNNs) have demonstrated their superiority in practice. Arguably, the rapid development of DNNs is largely benefited from high-quality (open-sourced) datasets, based on which researchers and developers can easily evaluate and improve their learning methods. Since the data collection is usually time-consuming or even expensive,...
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where adversaries embed a hidden backdoor trigger during the training process for malicious prediction manipulation. These attacks pose great threats to the applications of DNNs under the real-world machine learning as a service (MLaaS) setting, where the deployed model is fully black-...
Deep learning, especially deep neural networks (DNNs), has been widely and successfully adopted in many critical applications for its high effectiveness and efficiency. The rapid development of DNNs has benefited from the existence of some high-quality datasets (
e.g
., ImageNet), which allow researchers and developers to easily verify the perform...
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. This threat could happen when the training process is not fully controlled, such as t...
Deep neural networks are valuable assets considering their commercial benefits and huge demands for costly annotation and computation resources. To protect the copyright of DNNs, backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model by embedding a specific backdoor behavior before releasing...
We present a novel defense, against backdoor attacks on Deep Neural Networks (DNNs), wherein adversaries covertly implant malicious behaviors (backdoors) into DNNs. Our defense falls within the category of post-development defenses that operate independently of how the model was generated. The proposed defense is built upon a novel reverse engineer...
Deep neural networks (DNNs) are widely deployed on real-world devices. Concerns regarding their security have gained great attention from researchers. Recently, a new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques such as row hammer to attack quantized models in the deployment sta...
Deep neural networks (DNNs) are widely deployed on real-world devices. Concerns regarding their security have gained great attention from researchers. Recently, a new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques such as row hammer to attack quantized models in the deployment sta...
Deep neural networks are valuable assets considering their commercial benefits and huge demands for costly annotation and computation resources. To protect the copyright of DNNs, backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model by embedding a specific backdoor behavior before releasing...
Deep neural networks (DNNs) have been widely and successfully adopted and deployed in various applications of speech recognition. Recently, a few works revealed that these models are vulnerable to backdoor attacks, where the adversaries can implant malicious prediction behaviors into victim models by poisoning their training process. In this paper,...
Recent studies have demonstrated that existing deep neural networks (DNNs) on 3D point clouds are vulnerable to adversarial examples, especially under the white-box settings where the adversaries have access to model parameters. However, adversarial 3D point clouds generated by existing white-box methods have limited transferability across differen...
Training deep neural networks (DNNs) usually requires massive training data and computational resources. Users who cannot afford this may prefer to outsource training to a third party or resort to publicly available pre-trained models. Unfortunately, doing so facilitates a new training-time attack (i.e., backdoor attack) against DNNs. This attack a...
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where the adversary manipulates a small portion of training data such that the victim model predicts normally on the benign samples but classifies the triggered samples as the target class. The backdoor attack is an emerging yet threatening training-phase threat, leading to serious ris...
Deep learning has been widely and successfully adopted in many computer vision tasks. In general, training a well-performed deep learning model requires large-scale datasets and many computational resources. Accordingly, third-party resources ($e.g.$, datasets, training platforms, and pre-trained models) are frequently exploited to save training co...
Training deep neural networks (DNNs) usually requires massive training data and computational resources. Users who cannot afford this may prefer to outsource training to a third party or resort to publicly available pre-trained models. Unfortunately, doing so facilitates a new training-time attack (i.e., backdoor attack) against DNNs. This attack a...
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where adversaries embed a hidden backdoor trigger during the training process for malicious prediction manipulation. These attacks pose great threats to the applications of DNNs under the real-world machine learning as a service (MLaaS) setting, where the deployed model is fully black-...
Portfolio selection aims to manage the allocation of wealth among different assets, which remains to be a fundamental and challenging financial task. Markowitz's mean-variance analysis is one of the most well-known and widely adopted techniques for this problem. However, it requires accurate estimations of both the mean and variance of the return,...
Obtaining well-performed deep neural networks usually requires expensive data collection and training procedures. Accordingly, they are valuable intellectual properties of their owners. However, recent literature revealed that the adversaries can easily “steal” models by acquiring their function-similar copy, even when they have no training samples...
Deep neural networks (DNNs) are vulnerable to backdoor attacks. The backdoor adversaries intend to maliciously control the predictions of attacked DNNs by injecting hidden backdoors that can be activated by adversary-specified trigger patterns during the training process. One recent research revealed that most of the existing attacks failed in the...
Recent studies revealed that deep neural networks (DNNs) are exposed to backdoor threats when training with third-party resources (such as training samples or backbones). The backdoored model has promising performance in predicting benign samples, whereas its predictions can be maliciously manipulated by adversaries based on activating its backdoor...
Recent studies have demonstrated that deep neural networks (DNNs) are vulnerable to backdoor attacks during the training process. Specifically, the adversaries intend to embed hidden backdoors in DNNs so that malicious model predictions can be activated through pre-defined trigger patterns. In this paper, we explore the backdoor mechanism from the...
Yiming Li Yang Bai Yong Jiang- [...]
Bo Li
Deep neural networks (DNNs) have demonstrated their superiority in practice. Arguably, the rapid development of DNNs is largely benefited from high-quality (open-sourced) datasets, based on which researchers and developers can easily evaluate and improve their learning methods. Since the data collection is usually time-consuming or even expensive,...
Deep learning, especially deep neural networks (DNNs), has been widely and successfully adopted in many critical applications for its high effectiveness and efficiency. The rapid development of DNNs has benefited from the existence of some high-quality datasets (e.g., ImageNet), which allow researchers and developers to easily verify the performanc...
Currently, deep neural networks (DNNs) are widely adopted in different applications. Despite its commercial values, training a well-performed DNN is resource-consuming. Accordingly, the well-trained model is valuable intellectual property for its owner. However, recent studies revealed the threats of model stealing, where the adversaries can obtain...
Obtaining a well-trained model involves expensive data collection and training procedures, therefore the model is a valuable intellectual property. Recent studies revealed that adversaries can `steal' deployed models even when they have no training samples and can not get access to the model parameters or structures. Currently, there were some defe...
Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so that the attacked models perform well on benign samples, whereas their predictions will be maliciously changed if the hidden backdoor is activated by attacker-specified triggers. This threat could happen when the training process is not fully controlled, such as...
Recent studies have revealed that deep neural networks (DNNs) are vulnerable to backdoor attacks, where attackers embed hidden backdoors in the DNN model by poisoning a few training samples. The attacked model behaves normally on benign samples, whereas its prediction will be maliciously changed when the backdoor is activated. We reveal that poison...
Visual object tracking (VOT) has been widely adopted in mission-critical applications, such as autonomous driving and intelligent surveillance systems. In current practice, third-party resources such as datasets, backbone networks, and training platforms are frequently used to train high-performance VOT models. Whilst these resources bring certain...
Recent studies have revealed that deep neural networks (DNNs) are vulnerable to backdoor attacks, where attackers embed hidden backdoors in the DNN model by poisoning a few training samples. The attacked model behaves normally on benign samples, whereas its prediction will be maliciously changed when the backdoor is activated. We reveal that poison...
Visual object tracking (VOT) has been widely adopted in mission-critical applications, such as autonomous driving and intelligent surveillance systems. In current practice, third-party resources such as datasets, backbone networks, and training platforms are frequently used to train high-performance VOT models. Whilst these resources bring certain...
Obtaining a well-trained model involves expensive data collection and training procedures, therefore the model is a valuable intellectual property. Recent studies revealed that adversaries can `steal' deployed models even when they have no training samples and can not get access to the model parameters or structures. Currently, there were some defe...
Obtaining a well-trained model involves expensive data collection and training procedures, therefore the model is a valuable intellectual property. Recent studies revealed that adversaries can `steal' deployed models even when they have no training samples and can not get access to the model parameters or structures. Currently, there were some defe...
Adversarial examples have been shown to be a severe threat to deep neural networks (DNNs). One of the most effective adversarial defense methods is adversarial training (AT) through minimizing the adversarial risk Radv, which encourages both the benign example x and its adversarially perturbed neighborhoods within the ℓp-ball to be predicted as the...
Federated learning enables data owners to train a global model with shared gradients while keeping private training data locally. However, recent research demonstrated that the adversary may infer private training data of clients from the exchanged local gradients, e.g., having deep leakage from gradients (DLG). Many existing privacy-preserving app...
Adversarial training (AT) has been demonstrated as one of the most promising defense methods against various adversarial attacks. To our knowledge, existing AT-based methods usually train with the locally most adversarial perturbed points and treat all the perturbed points equally, which may lead to considerably weaker adversarial robust generaliza...
Despite the impressive performance of random forests (RF), its theoretical properties have not been thoroughly understood. In this paper, we propose a novel RF framework, dubbed multinomial random forest (MRF), to analyze its consistency and privacy-preservation. Instead of deterministic greedy split rule or with simple randomness, the MRF adopts t...
Well-trained models are valuable intellectual properties for their owners. Recent studies revealed that the adversaries can 'steal' deployed models even when they have no training sample and can only query the model. Currently, there were some defense methods to alleviate this threat, mostly by increasing the cost of model stealing. In this paper ,...
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of infected models will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Currently, most existing backdoor attacks adopted the setting of \emph{static} trigger, $i.e.,$ triggers across the train...
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of infected models will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Currently, most existing backdoor attacks adopted the setting of static trigger, $i.e.,$ triggers across the training and...
Deep neural networks (DNNs) are vulnerable to the \emph{backdoor attack}, which intends to embed hidden backdoors in DNNs by poisoning training data. The attacked model behaves normally on benign samples, whereas its prediction will be changed to a particular target label if hidden backdoors are activated. So far, backdoor research has mostly been...
Deep neural networks (DNNs) are vulnerable to the backdoor attack, which intends to embed hidden backdoors in DNNs by poisoning training data. The attacked model behaves normally on benign samples, whereas its prediction will be changed to a particular target label if hidden backdoors are activated. So far, back-door research has mostly been conduc...
To explore the vulnerability of deep neural networks (DNNs), many attack paradigms have been well studied, such as the poisoning-based backdoor attack in the training stage and the adversarial attack in the inference stage. In this paper , we study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purpos...
To explore the vulnerability of deep neural networks (DNNs), many attack paradigms have been well studied, such as the poisoning-based backdoor attack in the training stage and the adversarial attack in the inference stage. In this paper, we study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purpose...
k-means algorithm is one of the most classical clustering methods, which has been widely and successfully used in signal processing. However, due to the thin-tailed property of the Gaussian distribution , k-means algorithm suffers from relatively poor performance on the dataset containing heavy-tailed data or outliers. Besides, standard k-means alg...
Privacy protection is an important research area, which is especially critical in this big data era. To a large extent, the privacy of visual classification data is mainly in the mapping between the image and its corresponding label, since this relation provides a great amount of information and can be used in other scenarios. In this paper, we pro...
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data (e.g., data from the Internet or third-party data company). This raises the question of whether adopting un...
Recently, backdoor attacks pose a new security threat to the training process of deep neural networks (DNNs). Attackers intend to inject hidden backdoor into DNNs, such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by an attacker-defined trigger. Exist...
The rapid development of deep learning has benefited from the release of some high-quality open-sourced datasets (e.g., ImageNet), which allows researchers to easily verify the effectiveness of their algorithms. Almost all existing open-sourced datasets require that they can only be adopted for academic or educational purposes rather than commercia...
The deep hashing based retrieval method is widely adopted in large-scale image and video retrieval. However, there is little investigation on its security. In this paper, we propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval. Specifically, we first formulate the targeted attack as a po...
From the mutual empowerment of two high-speed development technologies: artificial intelligence and edge computing , we propose a tailored Edge Intelligent Video Surveillance (EIVS) system. It is a scalable edge computing architecture and uses multitask deep learning for relevant computer vision tasks. Due to the potential application of different...
Deep Neural Networks (DNNs) usually work in an end-to-end manner. This makes the trained DNNs easy to use, but they remain an ambiguous decision process for every test case. Unfortunately, the interpretability of decisions is crucial in some scenarios, such as medical or financial data mining and decision-making. In this paper, we propose a Tree-Ne...
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data ($e.g.$, data from the Internet or third-party data company). This raises the question of whether adopting...
The rapid development of deep learning has benefited from the release of some high-quality open-sourced datasets ($e.g.$, ImageNet), which allows researchers to easily verify the effectiveness of their algorithms. Almost all existing open-sourced datasets require that they can only be adopted for academic or educational purposes rather than commerc...
Interpretability and effectiveness are two essential and indispensable requirements for adopting machine learning methods in reality. In this paper, we propose a knowledge distillation based decision trees extension, dubbed rectified decision trees (ReDT), to explore the possibility of fulfilling those requirements simultaneously. Specifically, we...
Adversarial defense is a popular and important research area. Due to its intrinsic mechanism, one of the most straightforward and effective ways of defending attacks is to analyze the property of loss surface in the input space. In this paper, we define the local flatness of the loss surface as the maximum value of the chosen norm of the gradient r...
The deep hashing based retrieval method is widely adopted in large-scale image and video retrieval. However, there is little investigation on its security. In this paper, we propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval. Specifically, we first formulate the targeted attack as a po...
In this work, we study the problem of backdoor attacks, which add a specific trigger ($i.e.$, a local patch) onto some training images to enforce that the testing images with the same trigger are incorrectly predicted while the natural testing examples are correctly predicted by the trained model. Many existing works adopted the setting that the tr...
Adversarial examples have been shown to be the severe threat to deep neural networks (DNNs). One of the most effective adversarial defense methods is adversarial training (AT) through minimizing the adversarial risk $R_{adv}$, which encourages both the benign example $x$ and its adversarially perturbed neighborhoods within the $\ell_{p}$-ball to be...
Current research has managed to train multiple Deep Neural Networks (DNNs) in affordable computing time. Then, finding a practical method to aggregate these DNNs becomes a fundamental problem. To address this, we present an unbiased combination scheme to guide the aggregation of the diverse DNNs models, by leveraging the Negative Correlation Learni...
Data privacy protection is an important research area, which is especially critical in this big data era. To a large extent, the privacy of visual classification tasks is mainly in the one-to-one mapping between image and its corresponding label, since this relation provides a great amount of information and can be used in other scenarios. In this...
Adversarial defense is a popular and important research area. Due to its intrinsic mechanism, one of the most straightforward and effective ways is to analyze the property of loss surface in the input space. In this paper, we define the local flatness of the loss surface as the maximum value of the chosen norm of the gradient regarding to the input...