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Hybrid Event Detection and Phase-Picking
Algorithm Using Convolutional and
Recurrent Neural Networks
by Yijian Zhou, Han Yue, Qingkai Kong, and Shiyong Zhou

ABSTRACT

We developed a hybrid algorithm using both convolutional
and recurrent neural networks (CNNs and RNNs, respec-
tively) to pick phases from archived continuous waveforms
in two steps. First, an eight-layer CNN is trained to detect
earthquake events from 30-second-long three-component seis-
mograms. The event seismograms are then sent to a two-layer
bidirectional RNN to pick P- and S-arrival times. The data for
training and validation and testing of the networks are
obtained from the continuous waveforms of 16 stations record-
ing the aftershock sequence of the 2008 Wenchuan earth-
quake. The augmented training set has 135,966 P–S-wave
arrival-time pairs. The CNN achieved 94% and 98% hit rate
for event and noise segments in the test set, respectively. The
RNN picking accuracies for P and S waves are −0:03� 0:48
(mean error � standard deviation) and 0:03� 0:56 s, respec-
tively.

Supplemental Content: Detailed description of operations of
the convolutional layer and gated recurrent unit (GRU) cell.

INTRODUCTION

Earthquake event detection and phase picking form the first
step of determining earthquake location and building a catalog,
which is fundamentally important to earthquake studies. The
manual phase-picking procedure is generally composed of
detecting earthquake signals from continuous waveforms
(detection) and zooming in to precisely pick arrival times
(phase picking). For a long time, this process has been realized
with either labor intensive manually inspection or low-accuracy
automatic algorithms. Traditional automatic algorithms such
as short-term average over long-term average (STA/LTA;
Allen, 1978) meet difficulties when applying to records from
different stations and with different signal-to-noise ratios
(SNRs; Withers et al., 1998). Applying STA/LTA to continu-
ous waveforms produces a large number of false detections.
More advanced methods such as the matched filter technique

(Turin, 1960; Gibbons and Ringdal, 2006) require a predeter-
mined catalog to construct template sets and run with high
computational costs, which is more suitable for relocation pur-
poses instead of real-time phase picking. Machine-learning
(ML) algorithms have been applied to earthquake detection
since the 1990s (e.g., Joswig, 1990), with the advantage of
achieving generalized detection for waveforms that have not
been seen before. (See further discussions of ML-based detec-
tion algorithms in Kong et al., 2018.) Supervised deep-learning
algorithms are recently developed in various fields and applied
to earthquake detection problems, achieving promising results.
Such data-driven methods are particularly suitable for prob-
lems that are difficult to express through mathematics, but can
be easily handled by human experiences. Neural networks can
be trained by tremendous labeled examples such as manually
picked P/S phase. Perol et al. (2018) trained convolutional
neural networks (CNNs) to detect and roughly locate the
induced seismic events in Oklahoma, United States. Their net-
works reach a similar detection completeness as that of auto-
correlation (Brown et al., 2008) and the Fingerprinting and
SimilarityThresholding algorithm (Yoon et al., 2015) but with
a much lower time cost after the model is trained. Ross et al.
(2018) applied a CNN to P- and S-wave phase detection and
picking problems using a large amount of training data.
Mousavi et al. (2018) combined a CNN and a recurrent neural
network (RNN) as a single network for detection purposes and
achieved high-detection accuracy with a low rate of false pos-
itives. Zhu and Beroza (2019) creatively treat the phase picking
as a classification problem for each data point and convert the
phase picking into phase probability distributions using a
CNN. This model picks P and S waves at high accuracy for
various types of instruments and different data quality.

Most of the mentioned deep-learning algorithms cover
either signal detection or phase-picking problems, although
these two tasks need to be integrated to pick phase arrival times
from continuous waveforms. In this article, we propose con-
tinuous waveform phase picking with a sequential application
of deep-learning algorithms for event detection and phase-
picking purposes, respectively. The logic of algorithm design
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is stated as follows. Seismic signals are a combination of both
nonsequential and sequential signals. Three components of
seismic signals sample ground motions in different directions
resembling the RGB channels of images. The temporal varia-
tion and causal relationship of seismic signals draw important
constraints on phase detection, resembling word recognition of
a speech. For example, P wave always proceeds S waves, and
thus information on S-wave arrival can help detecting P wave;
the shape of coda waves is important to identify phase type and
to mark the initial arrivals. Such mixed behavior of seismic sig-
nals inspired us to use CNNs and RNNs in event detection
and phase picking, just as their common applications for image
and speech recognition problems. With such logic, we propose
a hybrid method composed of two separate neural networks,
exploiting the advantage of both algorithms.

DATASETS

We used data from the aftershock monitoring project of the
2008 Mw 7.9 Wenchuan earthquake. Continuous waveforms
are made available through the artificial intelligence phase detec-
tion competition of Alibaba (see Data and Resources). The seis-
mic network is composed of 16 broadband three-component
seismic stations covering a spatial range of ∼500 km × 400 km

(Fig. 1) and a time span of approximately two
months (30 June–31 August), originally sampled
at 100 Hz. About 25,487 manually picked P- and
S-wave arrival-time pairs were provided by the
competition (Zheng et al., 2010) as labels for
training. These manual picks are not complete
through the recording period. We divide the
61-day data randomly into three sets, including
46 days, 5 days, and 10 days of data as training,
validation, and test sets (Fig. 1c), respectively,
including 19,489, 1981 and 4008 P- and S-wave
arrival pairs. We calculated distributions for dif-
ferential arrival times of P and S waves (tS–tP)
for each set and found similar distributions
(Fig. 1b). The P and S arrival-time difference
resembles seismic signal duration, which is mostly
less than 15 s in our dataset. The sliced time win-
dow is supposed to cover both P and S phases,
which are the main features that human inspec-
tors use in earthquake detection. Thus, we chose
a 30-second-long time window to cut original
seismograms with the P arrival on the first half
to form segmented training data. Such operation
ensures (1) both P and S arrivals can be covered
by each time window, and (2) signal covers a sig-
nificant portion in each time window. To build
the event labeled data in the training set, we cut
the original data around the manually picked P
arrivals. The training data are augmented by both
random selection of initial times from 0 to 15 s
before the P arrivals and adding different levels of
Gaussian noise to serve the purpose of adding in

more variations for better generalization and increasing the
training dataset (the benefit of this data augmentation is shown
in the Ⓔ supplemental content to this article). Noise-labeled
data in the training set is made by random selection of time
windows not overlapping with seismic signals. Because the
manual picks are not complete, the noise sets for training are
possible to contain a few event samples, but we expect these
account for just a very small portion.We finally generated similar
amount of event (135,966) and noise (140,197) data segments
for the training set. Before being fed into the neural networks,
the stream data were preprocessed by (1) removing the mean
value and linear trend with respect to the common operation
made before manual picking; (2) normalizing to constrain
the absolute values between 0 and 1 considering the absolute
amplitude is not important in manual picking; and (3) applying
a high-pass filter of 1 Hz to avoid low-frequency information,
which are more significantly influenced by instrument drifts.

NEURAL NETWORK DESIGN

A hybrid method is used to achieve event detection and phase
picking. First, we treat the event detection as a classification
problem, in which we trained the CNN (detection network
[DetNet]) to classify the input time windows as event or noise.
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▴ Figure 1. (a) Seismic stations are plotted as black filled triangles. Wenchuan
aftershocks are plotted as black filled dots. (b) Histograms of event number at each
signal duration (t S–t P time). Distribution of training set, test set, and validation set are
plotted as white-, gray-, and black-filled bars, respectively. (c) The data continuity of
each station is plotted as gray bars. Daily waveforms used for training, validation, and
test purposes are plotted as white-, gray-, and black-filled dots, respectively.
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Second, we treat the phase picking as a sequential labeling
problem, in which an RNN (phase-picking network [PpkNet])
was applied to label each sequential 1 s frame of events detected
from the DetNet to noise, P wave, or S wave (Fig. 2). The
detailed architecture of the DetNet and PpkNet is described
in the following sections.

DetNet Design Using CNN
A convolutional layer in a CNN consists of three operations:
convolution, activation, and max-pooling (Fig. 2). The convo-
lution operation achieves filtering and a linear combination of
the input data. We choose rectified linear unit (ReLU; Nair
and Hinton, 2010) as the activation layer applied element

wisely on the output of convolution. ReLU outputs are then
modified by max pooling over every two samples in the tem-
poral dimension to downsample the data. The three operations
enable the network to detect objects in different locations of
the input, with slight input variations (LeCun et al., 2015). We
used eight convolutional layers in the DetNet, with each layer
containing 32 convolutional kernels of size 3. The first layer
converts the input three-channel waveforms to 32 feature
maps, and the same number of feature maps is maintained in
the network. We use a fully connected layer to summarize the
output of the last convolutional layer and calculate the prob-
ability using the softmax function (Fig. 2). The class with the
higher score is the prediction.
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▴ Figure 2. The workflow of hybrid detection and phase-picking algorithm. Event detection network (DetNet) is made through convolu-
tional neural network (CNN). Then seismograms labeled as events are sent to the recurrent neural network (RNN) for P/S phase-picking
network (PpkNet). Architecture of both neural networks is plotted in two boxes on the right (seeⒺ supplemental content to this article for
more details). In the bottom box, the detailed structure of gated recurrent unit (GRU) cell (G) is plotted, in which x t and ht represent the
input and hidden state of each time (t ), respectively. Gi

f = b represents the forward/backward GRU of the i th layer. N/P/S refers to label of
noise/after P/after S; ReLU, rectified linear unit.
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The PpkNet requires both P and S waves present in a time
window. For event detection from continuous waveforms, we
use a 15 s overlapped time window to cut original waveforms
and feed waveform segments to the DetNet. This approach
makes sure at least one window covers both P and S arrivals.
If two consecutive windows are predicted as events, the one
with higher classification score is considered to contain more
complete waveforms and thus is used as the candidate for the
PpkNet.

PpkNet Design Using RNN
RNNs model time series by recurrent hidden states, which are
updated through time. In each RNN layer, we model the out-
put classification probability using gated recurrent units
(GRUs; Cho et al., 2014; Chung et al., 2014), which enables
efficient training. We cut 30-second-long three-component
seismograms into 59 sequential frames with 1 s duration
and 0.5 s stride and concatenate the three-component seg-
ments into a 1D vector with 300 data points. We used two
sequential forward and two backward layers in the PpkNet,
in which GRU cells read the frames in either direction to cap-
ture contextual information. The GRU cells of each layer have
the identical structure, and each contains 64 units. The outputs
of the final RNN layers are sent to a fully connected layer with
softmax activation functions. Each timestep (the 1 s frame) is
classified as one of three classes: noise (before P arrival), P wave
(between P and S arrivals), or S wave (after S arrival) based on
the classification score given by the softmax normalization.
Because the waveform segments are 50% overlapped, two seg-
ments containing the input arrival are both labeled as after
arrival, the true arrival locates at the latter half (>0:5 s) of
the first labeled segment. Thus, we choose the arrival time
to be 0.75 s after the initial time of the first labeled segment
as the arrival time, which ensures theoretical maximum picking
accuracy of <0:25 s.

Training Strategies
Both CNNs and RNNs are trained by a minibatched stochastic
gradient descent algorithm. The optimizer updates the weights
of the neural networks based on the gradient of a loss function.
After each iteration, samples in the training set are shuffled,
and the whole process is repeated. The loss function for the
DetNet is defined as the cross entropy with L2 regularization
(Ng, 2004). The loss function for the PpkNet is defined as the
average cross entropy for all timesteps. All weights were initial-
ized by the Xavier initializer (Glorot and Bengio, 2010) and
optimized by the Adam optimizer (Kingma and Ba, 2015).
We constructed our model using Tensorflow (Abadi et al.,
2016) and run the training on two Nvidia GTX 1080ti graphic
processing units.

We adopt regularization in the CNN training to prevent
overfitting, which includes:
1. early stopping based on validation set (Prechelt, 1998) to

stop the training process;
2. L2 regularization (Ng, 2004) to penalize the loss function

and the absolute value of weighting numbers; and

3. batch normalization (Ioffe and Szegedy, 2015) to reduce
the distribution shift from shallow to deep layers by nor-
malizing each convolutional outputs.

RESULTS AND DISCUSSION

Training Progress and Performance Validation
We measured the classification accuracy in the training and
validation process of both the DetNet and PpkNet, as plotted
in Figure 3. The training accuracy for the DetNet converged to
more than 99% after about 25,000 iterations (Fig. 3a), and the
whole process lasted for ∼1 hr. The validation accuracy
reached a peak value of about 97% and 98% for event and
noise, respectively, and started to drop after about the 15,000th
iteration (Fig. 3a) indicating the onset of overfitting. We used
early stopping and chose the 13,780th checkpoint for further
tests, the validation accuracies of which are 96.8% and 98.1%
for events and noise, respectively. The training accuracy for the
PpkNet converged to more than 98% after 40,000 iterations
(Fig. 3b), which took a training period of ∼2 hr. Although
the validation accuracy is lower than training (∼97:5%), it
did not show a decreasing trend (Fig. 3b), indicating no over-
fitting. Thus, we simply chose the latest checkpoint for fur-
ther tests.

We plotted the true-positive rate versus false-positive rate
of the DetNet on the validation set at different training iter-
ations to evaluate the training progress and final performance
of the DetNet (Fig. 3c,d). The true-positive rate is defined as
the ratio between correctly detected events over the number of
event samples (detection rate), and the false-positive rate (false
detection rate) is defined as the ratio of noise samples that
falsely classified as events over the number of noise samples.
A good algorithm achieves high positive rate at low false-pos-
itive rate; thus, an ideal detection point locates on the top-left
corner in the figure regime. As a comparison, we also plot the
performance of the 13,780th checkpoint versus that of the
STA/LTA algorithm over the same dataset at different thresh-
olds (Fig. 3d), which resembles a modified receiver operating
characteristic (ROC) curve. We modify the ROC curve to
resemble completeness–redundancy relationship (Yue et al.,
2018) because seismologists are concerned more with the cor-
rectly picked and mispicked events than about noise. This
modification also enables a direct comparison with an
STA/LTA curve (Fig. 3c). The performance of the DetNet
initially locates beneath the STA/LTA curve because the train-
ing starts from a random initial point. The performance curve
quickly moves to the top-right corner and gradually moves to
the top-left corner, demonstrating that the training initially
classifies all data as events achieving both high true- and
false-positive rates. Then noise data are gradually excluded
from the event class, reducing false positives. The final training
stages (after 15,000 iterations) stabilized at 2%–3% of the false-
positive rate and 94%–97% of the true-positive rate (event
detection rate), which appears to be the optimized performance
of the DetNet. This event detection rate is significantly higher
than that (∼60%) of the STA/LTA performance. The
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modified ROC curve of the 13,780th iteration also performs
much better than that of the STA/LTA curve. As a perfor-
mance example of the DetNet, a segment of continuous wave-
form in the test dataset is labeled by the DetNet and plotted
in Figure 4. It shows earthquake signals with different dura-
tions and amplitudes are correctly labeled by the DetNet. An
example of PpkNet outputs is plotted in Figure 5 for events at
different epicentral distances. It shows that the correct pick-
ing of P and S phases is not significantly and systematically
influenced by epicentral distance or the onset of the P-wave
when both phases are presented in the time window. Even
when P arrivals at the second half of the time window (as
in the third line of Fig. 5), which is not included in the train-
ing set, the PpkNet gives reasonable results.

Tests on Detection and Picking Performance
The performance of the optimized DetNet is evaluated by
true-positive rate, as defined earlier. We applied the DetNet on
continuous waveforms in the testing data and calculated the
histogram for the true-positive rates of detection for events at
different epicentral distances. The DetNet achieved similar
true-positive rate for each epicentral distance range and different
station (Fig. 6a) and high true-negative rates (noise detection
rate > 97%), which ensures a low false-positive (false detection)
rate. The event detection rate appears to be correlated with the
SNR (Fig. 6c). In summary, about 95% of manually labeled
events can be detected by the DetNet.

We tested the performance of the PpkNet by cutting off
time windows around the manual picks in the testing days and
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▴ Figure 3. (a,b) The training accuracy and loss function curves are plotted in blue and brown, respectively. The validation accuracy of the
DetNet for event and noise is plotted in orange and green, respectively. The validation accuracy for the PpkNet is plotted in orange. (c) The
performance of the DetNet is plotted as a colored curve with the color denoting different training iterations. The modified receiver operating
characteristic (ROC) curve of a short-term average/long-term average (STA/LTA) algorithm is plotted as a black curve as a reference. The
modified ROC curve at 13,780th iteration is plotted as a black dashed curve. (d) A zoom-in view of the black box in (c). The steady-state
performance (after 30,000 training) is marked as a dashed ellipse.
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apply the PpkNet to these time windows. Phase-picking errors
are defined by the time differences between the PpkNet and
manual picks. We also used two traditional algorithms to pick
P and S phases to compare with the PpkNet outputs. We used
STA/LTA to pick P arrivals from Z-component records and to
pick S arrival from polarized-motion-filtered three-component
waveforms (Ross and Ben-Zion, 2014). We conducted three

sets of operation by (1) applying traditional
algorithms directly to the whole time window
(30 s), (2) applying the PpkNet to the whole
window, and (3) applying traditional algorithm
to a refined time window (�2 s of the PpkNet
picks) to evaluate the accuracy and stability of
the PpkNet. Detailed description of phase-pick-
ing performance comparison is provided in the
Ⓔ supplemental content. The algorithm per-
formances are summarized in Table 1, which
clearly shows the traditional algorithms produce
high false detection (error > 5 s) rates when
applying to the whole time window. This arti-
fact is caused by identifying impulsive noise as
earthquake signals, which could be more signifi-
cant when applying traditional algorithms to
continuous waveforms (Yue et al., 2018). The
PpkNet produces high detection accuracy for
both P and S phases, demonstrating that it is

a stable and accurate phase-picking algorithm. When applying
a traditional algorithm to a refined time window near the
PpkNet picks (PpkNet + Algorithm), the P-phase picking
accuracy is not significantly improved, but S-wave picking per-
formance is reduced. Figure 7 shows that the traditional algo-
rithm not only has large errors of S-phase picking but also
produces systematic arrival-time shifts for signals with different
duration. This error introduces systematic location errors for

▴ Figure 4. A sample of event detection in continuous waveform. Waveform seg-
ments detected as event and noise are plotted as black and gray colors, respec-
tively. The initial times of event segments are pointed out by the black arrows.

▴ Figure 5. Examples of PpkNet performance for different epicentral distances are plotted in each column, respectively. Probability
functions and waveforms of early, middle, and late P-wave arrivals are plotted in each row, respectively. In each set of panels, probability
functions of noise, P wave, and S wave are plotted as blue, orange, and green curves in the upper layer. Original waveforms and arrival
times are plotted in the lower layer. The labeled and predicted arrival times are marked as black and red lines, respectively. E, N, and Z
refers to east, north, and vertical components, respectively.
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events from differential epicentral distances. Such comparison
clearly shows the PpkNet outperforms traditional algorithms in
S-wave picking accuracy as also picking stability for both P and
S waves.

The PpkNet picking accuracy is comparable for P and S
phases, although manually picked P arrivals are more accurate
(∼0:1 s) than S waves, which is much smaller than the PpkNet.

The similar PpkNet pick uncertainty for P and
S waves may be caused by the accuracy upper
limit (0.25 s) introduced by waveform segmen-
tation (1 s) and stride (0.5 s). Further tests need
to be made if finer segments could improve the
P-wave picking accuracy.

CONCLUSION

In this article, we introduced a hybrid algorithm
using both CNNs and RNNs to detect events
and pick phases from continuous waveforms.
The hybrid algorithm outperforms traditional
algorithms in picking stability (low false detec-
tion) and high picking accuracy. This hybrid
approach appears to be a promising direction
to replace human picking from continuous
waveforms. It is also possible to improve the
performance of real-time techniques, for exam-
ple, the earthquake early warning system, which
relies on traditional picking approaches.

DATA AND RESOURCES

Waveform data are provided by the Data
Management Center (DMC) of the China
Earthquake Administration (CEA; Zheng et al.,
2010). Related software package is accessible on
the GitHub via https://github.com/YijianZhou/
CDRP_TF (last accessed February 2019).
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▴ Figure 6. (a) Event and noise detection performances are evaluated for signals
with different duration. Number of manually picked and DetNet detected events
and noises are plotted as white and gray bars. (b) Event detection performance is
evaluated for each station using the same setting of (a). (c) Event detection per-
formance is evaluated for segments with different signal-to-noise ratios (SNRs).
Event detection rate is plotted with a dashed curve using the axis on the right.

Table 1
Comparison of Pickers

P-Wave Arrival-Time
Error

(Mean ± St. Dev., s)

S-Wave Arrival-Time
Error

(Mean ± St. Dev., s)

P-Wave False
Detection

(Error> 5 s) (%)

S-Wave False
Detection

(Error> 5 s) (%)
Traditional algorithms 0.10 ± 0.63 −0.33 ± 1.67 6.4 15.8
PpkNet −0.03 ± 0.48 0.03 ± 0.56 0.26 0.7
PpkNet + algorithm 0.06 ± 0.47 0.14 ± 0.91 0.20 0.68

PpkNet, phase-picking network.
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