Yihong Sun

Yihong Sun
Cornell University | CU · Bowers College of Computing and Information Science

About

8
Publications
977
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
119
Citations
Citations since 2017
8 Research Items
119 Citations
20172018201920202021202220230102030405060
20172018201920202021202220230102030405060
20172018201920202021202220230102030405060
20172018201920202021202220230102030405060

Publications

Publications (8)
Article
Full-text available
Computer vision systems in real-world applications need to be robust to partial occlusion while also being explainable. In this work, we show that black-box deep convolutional neural networks (DCNNs) have only limited robustness to partial occlusion. We overcome these limitations by unifying DCNNs with part-based models into Compositional Convoluti...
Preprint
Analyzing complex scenes with Deep Neural Networks is a challenging task, particularly when images contain multiple objects that partially occlude each other. Existing approaches to image analysis mostly process objects independently and do not take into account the relative occlusion of nearby objects. In this paper, we propose a deep network for...
Preprint
Full-text available
Amodal segmentation in biological vision refers to the perception of the entire object when only a fraction is visible. This ability of seeing through occluders and reasoning about occlusion is innate to biological vision but not adequately modeled in current machine vision approaches. A key challenge is that ground-truth supervisions of amodal obj...
Preprint
Full-text available
Computer vision systems in real-world applications need to be robust to partial occlusion while also being explainable. In this work, we show that black-box deep convolutional neural networks (DCNNs) have only limited robustness to partial occlusion. We overcome these limitations by unifying DCNNs with part-based models into Compositional Convoluti...
Preprint
Full-text available
Detecting partially occluded objects is a difficult task. Our experimental results show that deep learning approaches, such as Faster R-CNN, are not robust at object detection under occlusion. Compositional convolutional neural networks (CompositionalNets) have been shown to be robust at classifying occluded objects by explicitly representing the o...

Network

Cited By