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Abstract

As 3GPP has completed Release 16 speci-
fications and worldwide 5G commercialization 
is speeding up, global interest in 6G is starting 
to grow. An interesting and important question 
is: will the rapid progress in artificial intelligence 
(AI) eventually alleviate the tremendous efforts 
required for future standardization of 6G and 
beyond? In this article, the potential impacts of AI 
on the air interface design and standardization are 
investigated. The AI-enabled network architecture 
is first discussed. The higher layer, physical layer, 
and cross-layer design empowered by AI capabil-
ity are further presented. Based on these designs, 
the future 6G and beyond are expected to enter 
into an AI era. For potential new use cases and 
more challenging requirements, the network is 
capable of automatic updating the air interface 
protocols, which may substantially reduce the 
standardization efforts and costs of wireless com-
munication networks.

Introduction
Wireless communication networks have been 
evolving from the first generation (1G) to the cur-
rent fifth generation (5G) to satisfy the ever-in-
creasing demands of mobile traffic [1]. According 
to the newly released 5G New Radio (NR) specs 
from the Third Generation Partnership Project 
(3GPP), new concepts and solutions have been 
studied or adopted, including, for example, the 
service-based network architecture, two-layer 
centralized unit/distributed unit (CU/DU) radio 
access network (RAN) architecture and signaling 
interfaces [2], and so on.

To many researchers and engineers, a natu-
ral and important question is, “Will 6G possibly 
come around in 2030, and what will its outstand-
ing features be?” Given the historical trend from 
1G to 5G, there will be even higher requirements 
for 6G networks [3], for example, peak data rate 
of terabits-per-second level, spectrum efficien-
cy 2–3 times that of 5G, user experienced data 
rate of 10–100 Gb/s, user plane latency of less 
than 0.1 ms, and mobility support of higher than 
1000 km/h. Meanwhile, 6G is expected to be 
on the verge of the all-pervasive wireless Inter-
net of Everything, capable of supporting mobile 
traffic in diversified scenarios with mixed key 

performance indicators. Following the current 
trend of standardization, one overwhelming fact 
is that for each generation of wireless cellular 
communications, the total cost in replacing the 
hardware and software of the RAN and the core 
network (CN) with the new versions will tremen-
dously increase, which places heavy burdens on 
the operators.

It is anticipated that artificial intelligence (AI) 
will play a critical role in future 6G networks. In 
[3], “pervasive intelligence” is proposed as one 
of the ultimate goals for the 6G network, which 
helps to form an auto-generating and auto-con-
figuration network paradigm. The authors in [4] 
envisioned 6G with ubiquitous AI services ranging 
from the CN to the end devices. In [5], several 
top challenges toward AI-enabled 6G were out-
lined to highlight future research in this field. The 
industry has also begun to explore the use of AI 
techniques in wireless networks. 3GPP launched 
study items on network data analytics function 
(NWDAF) and big-data-driven network archi-
tecture for 5G to anticipate a customized and 
improved service delivery via traffic characteris-
tic identification [5]. However, the AI-enabled air 
interface design is not within the current scope of 
3GPP, because the study on AI-enabled physical 
layer design is still in its infancy, and the frame-
work of network architecture, the protocol layers, 
and the physical layer of 5G has largely been fro-
zen. Therefore, while AI can be applied to some 
extent to 5G, it is 6G that would provide more 
room for AI to unleash its potential [6].

In this article, we mainly investigate the impact 
of AI techniques on the wireless RAN. Despite 
brilliant studies investigating how to apply AI to 
RAN functions, there is little work on how the 
air interface design and standardization would 
be impacted by these AI techniques. For future 
wireless communications, is it possible that the 
evolution or revolution of standardization can be 
substantially facilitated by the booming AI tech-
nologies so as to upgrade in an automatic way? 
For potential new use cases and more challenging 
requirements, the network is expected to auto-
matically configure the processing algorithms, 
signaling, and protocol procedures, which could 
substantially reduce the standardization efforts 
and costs in deploying new network infrastruc-
tures.
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The contribution and structures of this article 
are summarized as follows. First, the AI-enabled 
network architecture is presented, which is able 
to configure RAN functions and intelligent real-
time scheduling to provide flexible, elastic, cus-
tomized, and on-demand resource management. 
Second, AI-enabled physical (PHY) layer process-
ing is examined. Based on the presented example 
as well as other convincing studies on AI-enabled 
PHY design, we envision an “artificial intelligence 
plus human intelligence (AI+HI)” framework for 
future air interface design. After that, AI-based 
cross-layer optimization is proposed, where the 
air interface status information and application 
characteristics are analyzed to facilitate joint opti-
mization. Finally, this article is concluded.

AI-Enabled Network Architecture and 
Higher Layer Design

Motivations
There have been a number of studies on how 
to apply AI techniques (especially the emerging 
machine learning techniques) in RAN design. 
As summarized in [7], machine learning could 

play an important role in radio resource man-
agement/control (RRM/RRC), mobility man-
agement, networking, and so on. If we take the 
power control issue in spectrum sharing systems 
as an example, at least three kinds of approach-
es are available: reinforcement-learning-based 
approaches, supervised-learning-based approach-
es, and transfer-learning-based approaches. Rein-
forcement-learning-based approaches tend to 
directly learn the power control policy through 
interactions with the system environment, where 
Q-learning is the most widely used tool. In con-
trast, supervised-learning-based approaches aim 
to efficiently solve the complex non-convex opti-
mization problem via neural network unfolding 
methods. Transfer-learning-based approaches 
are somewhat similar to the reinforcement-learn-
ing-based approaches, but put more emphasis 
on reusing the learned models in other cells with 
similar settings. For more detailed technical elabo-
rations, one can refer to [6, 7, references therein].

However, it is not trivial to implement the afore-
mentioned impressive studies in practical networks. 
The existing RAN architecture and associated inter-
face design did not reserve sufficient design flex-
ibility for future potential network enhancements 
using AI approaches. For example, operators could 
find it difficult to improve the scheduling mecha-
nisms with user knowledge learned via big data 
analytics [8], since the RRM and medium access 
control (MAC) scheduling algorithms of their net-
work have been implemented by vendors, and 
there is no such open interface available for poten-
tial improvements. In addition, the emerging ser-
vices could require not only high data rate and 
ultra reliability, but also high positioning sensitivity 
and frequent interactions with users. Consequently, 
frequent release update is needed for the conven-
tional vertically hierarchical protocol stack architec-
ture to cope with these emerging services, which 
incurs significantly more efforts in the standardiza-
tion process. Therefore, a  new RAN architecture is 
urgently demanded to activate the potential gains 
brought by AI techniques, as addressed in the fol-
lowing subsection.

AI Enabled RAN Architecture

To alleviate the burden of standardization and 
maximize the potential gain of AI-enabled net-
work optimization, we propose an AI-enabled 
RAN architecture. As shown in Fig. 1, the RAN 
functions are controlled by one AI scheduler, 
which determines all the necessary RRC, RRM, 
protocol function elements (PFEs) configuration, 
and MAC layer scheduling. Compared to the tra-
ditional RRC, RRM, and MAC scheduling, this AI 
scheduler features more intelligent algorithms:
•	 Intelligent service identification: The services’ 

characteristics can be learned by various AI 
techniques including deep learning, reinforce-
ment learning, Q-learning, and so on. This 
information will enable the MAC scheduler to 
use more intelligent policy and algorithms.

•	 Intelligent protocol functions selection.
•	 Powerful MAC scheduling: The scheduler 

could be more efficient and intelligent based 
on the potential prediction of channels, data 
traffic, quality of service/quality of experi-
ence (QoS/QoE) indicator, and so on at 
either the AI controller or AI scheduler.Figure 1. Proposed AI-enabled RAN architecture.
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•	 Intelligent physical layer functions: For exam-
ple, AI-enabled channel coding and more 
advanced receivers are possible with AI 
capabilities.
In this way, the proposed architecture is able 

to transform the existing hierarchical protocol 
stack into a certain set of modularized PFE, thus 
providing flexible, elastic, customized, and on-de-
mand resource management to meet the diversi-
fied services’ requirements.

The high-level architecture of an AI-enabled 
network is illustrated in Fig. 2. The RAN AI con-
troller is responsible for the non-real-time AI pro-
cessing and has logical interfaces with the CN, 
network operations, administration and mainte-
nance (OAM) platform, and base station (BS). 
Via big data analytics [8], the AI controller is able 
to predict user mobility, traffic behavior, network 
loading fluctuation, and so on, which will then be 
sent to the BS to help the AI scheduler manage 
the RRC, RRM, PFE orchestration, and real-time 
MAC scheduling. The PFE may include all the nec-
essary functions as specified in the 4G and 5G 
protocol stacks, such as hybrid automatic retrans-
mission request (HARQ), header compression, 
and segmentation. The potential functions that 
will be needed in the future can also be includ-
ed. Note that the AI controller and AI schedul-
er are logical entities or functions, and can be 
physically implemented in the same entity like the 
CU. Furthermore, the AI controller can also be 
implemented in the OAM platform to have glob-
al intelligence capability and interact with the AI 
scheduler at BSs.

The AI scheduler is at the core of the pro-
posed RAN architecture, which could dynamically 
tailor and optimize the RAN by interacting with 
other basic RAN functions. There are two main 
types of interactions between the AI scheduler 
and other RAN functions.

Interaction with RRC and RRM Mechanisms: 
The AI controller and AI scheduler could utilize 
deep learning techniques based on historical data 
and new data to figure out a customized RRC and 
RRM functions set for a given UE in a specific sce-
nario. For example, in model 2 of RRC function 
and RRM for the UE part in Fig. 1, if the AI con-
troller detects that parts of the UEs are basically 
static for a certain time period through big data 
analytics, it can (re)train the models of RRC and 
RRM functions to relax or cancel the RRM mea-
surement reporting and mobility control functions 
to simplify the UE mobility control process. More-
over, if the AI controller detects that some UEs’ 
service always requires super-low latency, the traf-

fic pattern of the UE is difficult to predict, and the 
data volume is not very high, the AI scheduler will 
force UEs into RRC inactive mode instead of RRC 
idle mode and especially RRC connected mode 
in some cases. At the same time, the AI control-
ler can directly route the UEs’ traffic to the local 
content, rather than the cloud content, to reduce 
the latency.

Interaction with Other Protocol Function Ele-
ments: In addition to the above RRC and RRM 
schemes, the AI scheduler is also responsible 
for the configurations of the PFE for a specific 
service. From all the available PFEs, the sched-
uler will select a set of PFEs considering all the 
necessary information, for example, the non-real-
time application layer traffic characteristics and 
requirements, the near-real-time user network-side 
transmission indicator information, the real-time 
physical transport block (TB) resource informa-
tion, and so on. The above information could be 
efficiently obtained via applying popular machine 
learning approaches on traffic flows from the 
application layer, transport layer, or MAC and 
PHY layer. For example, based on a UE’s traffic 
pattern learned from application layer data, the 
network can directly allocate a reserved semi-stat-
ic resource, such as semi-persistent scheduling 
(SPS) and configured grant (CG) configuration(s), 
to the UE, instead of regular dynamic scheduling, 
as shown in model set n of protocol functions 
in Fig. 1. Similarly, a service’s specific require-
ment on reliability and survival time could also be 
reported, which helps the scheduler determine 
whether to trigger a duplication mechanism or 
repetition transmission for UEs.

Potential Standardization Impact and  
Future Challenges

For the proposed AI-enabled RAN architecture, 
parts that need to be standardized may be sig-
nificantly reduced in the long run compared to 
LTE and 5G NR systems. The mandatory features 
(which have been specified well in the current 
standards), the interfaces between the manda-
tory features and AI scheduler (i.e., interface A 
between the AI controller and CN, interface B 
between the AI controller and OAM, and inter-
face C between the AI controller [non-real-time] 
and AI scheduler [real-time or near-real-time], as 
illustrated in Fig. 2, need to be standardized. In 
contrast, optional features that are handled by 
the AI scheduler do not need to be standardized. 
This is particularly important, since many future 
functions/features can be realized without or with 
much reduced human efforts.

As more and more studies confirm the benefits 
of using AI techniques in RAN design, we need 
to put more efforts into addressing the imple-
mentation issue of these AI-enabled solutions in 
real-world networks. In addition to continuing our 
research on classic but critical issues such as data 
collection in wireless networks, we need to fur-
ther think about how to better support AI-based 
RAN solutions in terms of interface design and 
network architecture, and leave enough freedom 
for future emerging solutions. Only after solving 
these practical issues will we be able to truly vali-
date the benefits of AI techniques in wireless net-
works. At present, the industry has shown much 
interest in the above issues, and has conducted 

Figure 2. Architecture of an AI-enabled wireless 
network.
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some initial exploration, such as the radio intelli-
gence controller (RIC) investigated in the Open-
RAN (O-RAN) alliance. However, the preliminary 
results are still controversial. In the future, joint 
efforts from industry and academia are highly 
advocated to address these issues.

AI-Enabled Physical Layer Design

AI-Enabled Transceiver Implementation

Physical layer transceiver design has taken the 
form of a sequential module-by-module realiza-
tion since the initial commercialized communica-
tions. However, heavy and complicated internal 
interfaces and control signaling are required to 
enable the data signals to fluently flow among 
these modules, which makes the PHY layer design 
more bloated during the evolution of cellular 
communications. Although the joint design and 
optimization of a number of modules have been 
considered, the complexity of such schemes is 
usually significantly high.

The emerging AI-enabled PHY layer design is 
a promising approach to relieve the above issue. 
As proposed in [9], advanced artificial neural 
networks (NNs) in deep learning can be used to 
jointly optimize a number of physical layer mod-
ules. As an example, Fig. 3 demonstrates a sim-
ple system communicating over an additive white 
Gaussian noise (AWGN) channel, which is imple-
mented via an auto-encoder NN structure.

In Fig. 4, the performance of the NN imple-
mented transceivers is presented to illustrate its 

feasibility, where the transceivers are both imple-
mented through two-layer sequential fully con-
nected NNs. As a simple differentiable AWGN 
channel is considered, classical training algorithms 
in deep learning can be adopted to train the NN 
in an end-to-end manner. In our experiment, an 
Adam optimizer is adopted in a 7 dB signal-to-
noise ratio (SNR) environment to minimize the 
overall error rate of restoring messages at the 
receiver. During the training stage, 1e6 training 
data samples generated from simulation are uti-
lized, each of which is composed of a transmitted 
symbol, a received symbol, and an AWGN chan  
nel realization. Note that as we do not consider 
online adaptation in our example, it is unneces-
sary to retrain the model. However, online adap-
tation plays an important role when deploying 
AI-enabled PHY layer solutions in practical sys-
tems, where model retraining according to real-
time online data is a common approach. More 
discussions toward the online adaptation issue 
can be found in [10, 11, references therein].

From Fig. 4, we can see that the optimized 
NNs are able to accomplish transmitting messag-
es over an AWGN channel with almost the same 
performance compared to legacy modulations. 
Moreover, as the dimension of the system increas-
es, the NN implemented system outperforms the 
quadrature amplitude modulation (QAM) system, 
since a correlation between output symbols of the 
transmitter has been learned during the training 
[10]. In fact, the correlation between output sym-
bols learned by NNs is similar to a kind of channel 
coding with short length.

Based on the transceiver architecture shown 
in Fig. 3, we can further jointly optimize the 
dimensions and patterns of the modulation con-
stellations under specific SNRs, which helps to 
achieve a better trade-off between error rate and 
spectral efficiency in link adaptation. Particularly, 
given a specific SNR, we can train the transceiv-
ers to obtain the optimized constellation patterns 
regarding different constellation dimensions (i.e., 
the input message types). Note that the dimension 
of constellations in an NN implemented transceiv-
er can be any integer rather than constrained to 
a power of 2. Then the most suitable dimension 
and the corresponding pattern can be selected 
from the candidates to maximize the objective 
functions while satisfying an error rate constraint.

Figure 5 gives an example of the joint optimi-
zation of constellation dimensions and patterns. 
In this case, the best constellation is chosen to 
maximize the expected transmitted bits under an 
error rate threshold of 10–1, and the maximum 
modulation order is set to 16. The expected 
transmitted bits are defined as the product of the 
error rate in the given SNR and the transmitted 
bits (i.e., log2M), where M is the dimension of the 
constellation. For the baseline scheme, an adap-
tive modulation among quadrature phase shift 
keying (QPSK), 8-QAM, and 16-QAM is adopt-
ed. From Fig. 6, it can be found that the adaptive 
modulation among constellations optimized via 
AI approaches generally outperforms the conven-
tional method, since more choices for constella-
tion dimensions are supported. More importantly, 
we find that an AI-optimized constellation with 
8 (16) dimensions is adopted at 9 (12) dB SNR 
as illustrated by the ellipses in Fig. 6, while, in 

Figure 3. An illustration of an NN implemented transceiver [9].
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contrast, QPSK (8-QAM) is still chosen for the 
same link condition. This phenomenon suggests 
that the constellations designed by AI methods 
(Fig. 5) could achieve a better error rate than the 
conventional QAM constellations with the same 
dimension, especially in high order regions (e.g., 
8 or 16 points).

It is worth pointing out that deep learning 
techniques can also be utilized to enhance other 
PHY layer functions. For example, the authors in 
[12] leveraged deep learning techniques in chan-
nel coding design, where the NN was designed 
based on the “turbo principle” in classical turbo 
codes. The proposed deep learning enhanced 
codes in [12] are able to approach near-optimal 
performance under canonical channels and even 
demonstrate better reliability than some state-
of-the-art codes under non-canonical channels. 
In addition, deep learning has shown significant 
potential in massive multiple-input multiple-out-
put (MIMO) signal processing enhancement. 
In [13], the authors proposed to employ con-
volutional neural networks (CNNs) to explore 
channel correlations in the spatial, temporal, and 
frequency domains to improve the estimation 
accuracy and reduce overhead. More studies in 
this field can be found in [14, references there-
in]. Distinguished from the auto-encoder-based 
transceiver implementation, studies introduced 
in this paragraph mainly concentrated on specif-
ic air interface function enhancement more com-
patible with the conventional module-by-module 
framework.

In the above discussion, our first concern is 
whether the AI-enabled PHY layer solutions could 
improve the transmission performance (i.e., the 
block error rate). Meanwhile, it is also essential to 
pay enough attention to other performance indi-
cators such as the processing delay, which plays 
a critical role in a number of ultra-reliable and 
low-latency communication (URLLC) scenarios. 
As the structure of the NN is naturally suitable for 
parallel computing, there are papers discussing 
its potential advantage in low-latency communi-
cation [14]. Nevertheless, convincing conclusions 
on this issue should be drawn based on results 
from field trails. More future efforts from both 
academia and industry are needed to address 
these open questions.

Impact on Standardization

It is anticipated that the new features brought 
by AI-enabled PHY layer design will significantly 
impact future standardization. First of all, since 
a number of function modules can be merged 
through AI, the complicated internal interfac-
es could be significantly simplified. Second, 
as the basic PHY layer functions can be real-
ized through AI approaches and optimized in 
a self-learning manner, man-made efforts will 
mainly focus on the general framework designs. 
Additionally, the AI-enabled PHY layer design 
strongly evokes the application of general hard-
ware, which could implement various functions/
algorithms with similar hardware architecture. 
The utilization of general hardware offers much 
convenience in wireless network upgrade, which 
helps to reduce the network deployment and 
maintenance costs. Note that similar trends can 
be found in the undergoing 5G networks, where 

network function virtualization (NFV) has been 
introduced to decouple core network functions 
and hardware to save the costs of network 
updating and maintenance.

However, it is challenging for purely AI-based 
communications to operate in the practical wire-
less environments. For example, it is difficult for 
AI to learn how to communicate under multi-path 
channels, which is a common problem in commu-
nications. These issues, however, have been well 
addressed by human expert knowledge in the last 
few decades. Therefore, the integration of human 
intelligence (HI) and AI may be necessary for 
PHY layer design. For example, the basic frame 
structure, downlink and uplink synchronization 
signals, reference signals, measurement report 
mechanism, physical layer procedures, and so on 
need to be designed properly by HI. Therefore, 
while we believe that AI is sure to have huge or 
even disruptive impacts on the PHY layer stan-
dardization, it should be admitted that the chang-
es would come in a progressive manner. In the 
initial stage of this progress, AI tends to serve as 
an auxiliary tool or optimizer to enhance certain 
PHY layer functions. The application of AI tools in 
physical layer standardization might first occur in 
physical layer resource management, for example, 
power control or beam management.

AI-Enabled Cross-Layer Optimization
AI will help realize collaborative traffic optimiza-
tion between operators and over-the-top (OTT) 
players. This can not only improve user experi-
ence but also create new economic growth. 
Different from the traditional cross-layer optimi-
zation, which only enables simple open capability 
from the wireless network to applications [15], 
the AI-enabled higher layer will open up more 
opportunities between the wired and wireless 
worlds through the bidirectional interaction mech-
anism between BSs and application layer/trans-
port layer.

Generally, there are two modes BSs can select 
to report status information to the application 

Figure 5. Optimized constellation patterns.
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layer/transport layer: periodic mode (e.g., every 
100 ms) and event-triggering mode. The network 
fluctuation caused by unexpected events will 
have a signifi cant impact on the user experience. 
For example, in the early stage of 5G, 4G and 5G 
networks will coexist. As the UE switches from 5G 
to 4G, the available radio resources are likely to 
suddenly shrink due to the limited capability of 
4G. Because the applications cannot sense this 
change in time, the server or user will not be able 
to make adjustments in time and the user expe-
rience will deteriorate. As different applications 
require different status information (e.g., band-
width, round-trip time, and packet loss rate), tra-
ditional cross-layer optimization can only access 
simple and universal capabilities that are not tai-
lored for the specific traffic types. If a number 
of wireless capabilities are blindly opened at the 
same time, it will increase the burden of the BS, 
even wasting resources or causing confusion at 
the application layer. Relying on the AI function, 
the BS can open diff erent capabilities on demand 
and in time for different transport layer settings, 
which can perform traffic and rate adjustment 
directly based on such information.

The application layer can deliver traffi  c charac-
teristics information to BSs. Then the AI module 
of the RAN is able to utilize the collected data 
to conduct traffic modeling (e.g., wireless QoE 
modeling). The QoE model will directly act on 
the optional features of the fl attened higher layer, 
enabling different combinations of optional fea-
tures and corresponding operations of the pro-
tocol stack. The air interface can be optimized 
by inputting the application layer information 
obtained by the AI module in real time into the 
QoE model. The AI module needs to comprehen-
sively determine whether there are resources to 
meet the application requirements and whether it 
is suitable to change its scheduling priority. At the 
same time, the AI module can use the multi-user 
QoE model to determine whether the network 
needs to be expanded, and monitor the load bal-
ancing.

conclusIons
To meet the ever-increasing mobile communica-
tion requirements in an economic manner, gen-
eral-purpose hardware of the wireless network 
infrastructure with AI-enabled communication 
protocol, signaling, and data processing is antici-
pated to bring a paradigm shift of the air interface 
standardization. The traditional intensive efforts 
on physical and higher layer standardization may 
well be greatly alleviated, and the communication 
society may enter the AI era from 6G onward.
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