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Abstract: The DNA of all eukaryotic organisms is packaged into nucleosomes (a basic repeating unit of chromatin). A 

nucleosome consists of histone octamer wrapped by core DNA and linker histone H1 associated with linker DNA. It has 

profound effects on all DNA-dependent processes by affecting sequence accessibility. Understanding the factors that in-

fluence nucleosome positioning has great help to the study of genomic control mechanism. Among many determinants, 

the inherent DNA sequence has been suggested to have a dominant role in nucleosome positioning in vivo. Here, we used 

the method of minimum redundancy maximum relevance (mRMR) feature selection and the nearest neighbor algorithm 

(NNA) combined with the incremental feature selection (IFS) method to identify the most important sequence features 

that either favor or inhibit nucleosome positioning. We analyzed the words of 53,021 nucleosome DNA sequences and 

50,299 linker DNA sequences of Saccharomyces cerevisiae. 32 important features were abstracted from 5,460 features, 

and the overall prediction accuracy through jackknife cross-validation test was 76.5%. Our results support that sequence-

dependent DNA flexibility plays an important role in positioning nucleosome core particles and that genome sequence fa-

cilitates the rapid nucleosome reassembly instead of nucleosome depletion. Besides, our results suggest that there exist 

some additional features playing a considerable role in discriminating nucleosome forming and inhibiting sequences. 

These results confirmed that the underlying DNA sequence plays a major role in nucleosome positioning. 

Keywords: DNA flexibility, feature selection, nucleosome positioning, sequence word composition. 

INTRODUCTION 

 Nucleosomes are the basic unit of DNA packaging in 
eukaryotes and consist of a segment of DNA wound around 
a histone protein core Fig. (1). Often being compared to 
thread wrapped around a spool, nucleosomes are the funda-
mental building blocks of chromosomes. Actually, 75-90% 
[1-3] of eukaryotic genomic DNA is wrapped around by 
nucleosomes.  

 Nucleosome DNA, 165 bp long in Saccharomyces cere-
visiae [4], can be divided into the core and the linker DNA. 
The core DNA, an invariable length of 147 bp of double-
stranded DNA, is sharply bent and tightly wrapped around a 
disc-shaped histone protein octamer in 1.65 turns of a left-
handed superhelix [5, 6]. The histone octamer is composed 
of two copies each having four core histone proteins H2A, 
H2B, H3, and H4 [5, 6]. The linker histone H1 is associated 
with the linker DNA as well as with the nucleosome core 
particle itself [5, 6]. The length of linker DNA varies with 
species and cell types during the cell differentiation and gene 
activation [5-7]. It is about 18 bp in Saccharomyces cere-
visiae [5] and 38 bp in human [8]. 
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 Packaging DNA into nucleosomes affects sequence ac-
cessibility as opposed to the linear naked DNA in vivo [2, 9-
13]. This implies that nucleosome has fundamental influence 
on important DNA-dependent processes [14-17], such as 
DNA replication [18], gene transcription [19-21], DNA 
damage and repair [13], and DNA recombination in eukary-
otic cells. Nucleosome is critical for gene regulation [2, 14, 
22-28]. It can not only repress gene expression [29-33] but 
also facilitate gene transcription [34-36]. Therefore, a com-
plete understanding of genomic control mechanisms in eu-
karyotes requires a detailed description of the determinants 
of nucleosome positioning. 

 Nucleosome positioning refers to the position where the 

DNA helix adopts with respect to the histone core [3]. The 

majority of nucleosomes are well-positioned with regularity 

along DNA sequences [12, 13, 37, 38]. Nucleosome position 

may be determined by DNA sequences [2, 39-41], chromatin 

remodelers [42, 43], ionic strength [44], and several other 

factors [44-47]. However, the relative importance of these 

factors is difficult to estimate in vivo [40, 48, 49], and the 

rules underlying these positioning effects are not well under-

stood [7, 50]. Several studies have provided evidence of se-

quence-dependent manner for nucleosome positioning [39, 

51-54]. Some results indicate that the intrinsic DNA se-

quence has a dominant role in determining the position of 

nucleosomes in vivo [41, 50, 55-58]. It has been suggested 

that as much as 50% of in vivo nucleosome positions in Sac-
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charomyces is governed solely by the intrinsic genome DNA 

sequence [2]. Among multiple factors that are involved in 

determining the nucleosome positions, the underlying DNA 

sequence structure is essential [4].  

 Several DNA sequence motifs have been studied to 

search for the signals for nucleosome-positioning at the pri-

mary DNA sequence level [4, 40, 58-62]. Nevertheless, we 

are still not able to fully understand what the exact DNA 

sequence determinants are. It is anticipated that the power 

for genome-wide screening of the role of sequence-based 

nucleosome positioning is enhanced [63]. Previous limitation 

comes from the lack of large-scale experimental data with 

high-resolution. The purpose of this study is to use the ge-

nome sequence of Saccharomyces cerevisiae [18] to identify 

the nucleosome positions. This can increase the probability 

to detect nucleosome positioning signals. A number of stud-

ies have been performed in an attempt to determine nu-

cleosome positioning signals at the level of DNA sequence 

using different computational methods, such as matched mir-

ror position filter (MMPF) [64], and structure-based new 

developed scoring functions [65]. The present study was 

initiated in an attempt to use the method of minimum redun-

dancy maximum relevance (mRMR) feature selection to 

identify the most important sequence features that either fa-

vor or inhibit nucleosome positioning. 

MATERIALS AND METHODS 

Data Preparation 

 The sequence reads for the H3/H4-containing nu-

cleosomes were mapped by Mavrich et al. [38]. Saccharo-

myces cerevisiae genome sequences and genomic nu-

cleosome distributions data were downloaded from Pugh’s 

team website. We analyzed the data by combining W- and C-

strand datasets. Positions for 53,021 consensus nucleosome 

core particles were identified by at least three sequencing 

reads each with the length being greater than 100 bp (see the 

Supplementary Material S1 and S2 for details). The sites 

between nucleosomes core particles were defined as linker 

locations, and 50,299 linker DNA sequences with at least 

6bp were identified (see the Supplementary Material S3 and 

S4 for details). The 147 bp nucleosome-forming-related core 

DNA sequences were assigned as positive samples, while the 

nucleosome-inhibiting-related linker DNA sequences be-

tween 6bp and 2581bp were assigned as negative samples. 

We represent each sequence using the frequency of each 

overlapping k-mers, where k=1 to 6 (A, T, G, C, AA, AT, 

AG, AC, TA, TT, etc.). It is different to Reynolds’s work 

[59] which limits the set of k-mers to length 1, 2, and 3. In 

this paper, the k-mers were called sequence words, or the 

words for abbreviation. Thus, each sequence is converted 

into a fixed-length (5,460 for exactly) vector of word fre-

quencies and is labeled 1, 2 for core and linker sequences, 

respectively. Finally, we constructed a matrix (with se-

quences as row entries and with words as column entries), 

with the frequencies as its elements, as the input for mRMR 

feature selection as described below. 

MRMR Method 

 MRMR was originally developed by Peng et al. [66]. It 

ranks each feature based on both its relevance to the target 

and the redundancy between features. A “good” feature is 

characterized by the maximum relevance to the target vari-

able or by the minimum redundancy within the feature. Both 

relevance and redundancy are defined by mutual information 

(MI), which estimates how much one vector is related to 

another. MI is defined as follows: 

  

I(x, y) = p(x, y) log
p(x, y)

p(x) p( y)
dxdy                                (1) 

where x  and y  are two vectors; ( , )p x y  is the joint prob-

ability density; ( )p x
 
and ( )p y  are the marginal probability 

densities for x and y, respectively. The detailed description 

for the mRMR algorithm has been elaborated in [67-69], and 

hence isn't further repeated. 

NEAREST NEIGHBOR ALGORITHM 

 Nearest neighbor algorithm (NNA) is used to classify the 

location of a DNA sequence at the nucleosome or linker. 

NNA makes its decision by calculating the similarities be-

tween the test sample and all the training samples. Different 

distance scales can be applied for this purpose, such as the 

Euclidean distance [70], the Hamming distance [71], and the 

Mahalanobis distance [72]. Here, the similarity between vec-

tors Px and Py is defined by [73] 
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where 
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 is the inner product of Px  and Py , and 

  
|| P ||  

represents the module of vector  P . The smaller 
   
D(P

x
,P

y
)  

is, the more similar Px  to Py  is. In NNA, given a query vec-

tor Px  and a training set P = {P1, P 2, …, Pi, …, PN}, Px will 

be designated to the same class as its nearest neighbor Pi in 

P. In other words, if 

 μ = argmini D(Px ,Pi )                                          (3) 

where μ is the argument of i that minimizes D(Px ,Pi ) , and if 

Pi  belongs to the μ-th  class, then the query vector Px  is 

assigned to the same class. For a detailed description for 

NNA, refer to [74]. 

Feature Selection 

 The mRMR step is used to determine which features are 

better and more important than others. The next step is to 

determine how many and which features should be selected. 

Here we use the incremental feature selection (IFS) method 

to solve this problem. 

 In the mRMR step, we obtain N feature sets from the 

ordered feature set S, with the i-th set being 

  
S

i
= { f

0
, f

1
,..., f

i
}    (0 i N 1)                                        (4) 
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 For each i (0 <i < N 1) , an NNA predictor would be 

constructed with the feature set Si. And jackknife test [74] 

was adopted to check its prediction accuracy. Finally, we can 

obtain an IFS curve with index i as the x-axis and the overall 

accuracy as the y-axis. The feature set Soptimal = {f0, f1, …, fh} 

would be seen as the optimal feature set if the point in IFS 

curve with h as the x-axis is the highest in overall accuracy. 

The reason for selecting the jackknife test to examine the 

prediction quality is as follows. In the literature, the follow-

ing three cross-validation methods are usually used to assess 

a statistical predictor for its anticipated accuracy: independ-

ent dataset test, sub-sampling (K-fold cross-validation) test, 

and jackknife test [71]. However, as elucidated by [75] and 

demonstrated by Eq.1 in [76], among the three cross-

validation methods, the jackknife test is deemed the most 

objective that can always yield a unique result for a given 

benchmark dataset. This method has been increasingly used 

and widely recognized by investigators to examine the qual-

ity of various predictors [67, 68, 77-107]. 

 The following indices in statistics are often used in the 

literature to evaluate the prediction quality: 

  

sen
=

TP

TP+FN
             

spe
=

TN

TN+FP
             

 
acc

=
TP+TN

TP+FP+TN+FN

  
pos

=
TP

TP+FP
               

                           

(5) 

where 
 sen

, 
 spe

,
 acc

 and 
 pos

 reflect the sensitivity, 

specificity, accuracy, and the positive prediction rate, respec-

tively; TP and TN are the true positive and negative prob-

abilities, respectively; and FP and FN are the false positive 

and negative probabilities, respectively (see Fig. (2)).  

STATISTICAL ANALYSIS METHODS 

 By combining mRMR and IFS methods, we can obtain 

the optimal feature set, with the most important words affect-

ing nucleosome formation. Furthermore, we used the point 

biserial correlation coefficient [108] to classify each of these 

words as either the nucleosome-forming-related one or the 

nucleosome-inhibiting-related one. Instead of calculating the 

correlation between two continuous variables, we calculated 

the correlation between a binary variable via the point bise-

rial correlation coefficients using the following equation: 

 

pq
=

Y
p

Y
q

S
y

pq                                         (6) 

where Sy is the standard deviation of all the continuous vari-

able, and p, q are the proportions of the two values of the 

binary variables respectively. All the continuous variables 

are split into two parts based on their corresponding binary 

variables, and Yp, Yq represent the average value of the con-

tinuous variables in the two parts, respectively. 

 In this study, the point biserial correlation coefficients 
between the frequencies of each word and the type of sam-
ples (positive or negative ones) were calculated. The fre-
quency fi = ni/N, where ni is the number of the word’s copies, 
and N is the total number of all words available in this sam-
ple. T-test is also used to see whether there are significant 
differences between the feature’s frequencies in the two 
types of samples. If the feature’s point biserial correlation 
coefficient is significantly greater than 0 (p-value < 0.05 in t-
test), it means the frequency of this word is positively related 
to nucleosomes formation. On the other hand, if the point 
biserial correlation is significantly smaller than 0 (p-value  
 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A schematic illustration to show that nucleosomes are the basic unit of DNA packaging in eukaryotes, consisting of a segment of 
DNA wound around a histone protein core. 
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Fig. (2). An illustration to show (I) TP (true positive) quadrant 
(green) for correct prediction of positive dataset, (II) FP (false posi-
tive) quadrant (red) for incorrect prediction of negative dataset; (III) 
TN (true negative) quadrant (blue) for correct prediction of negative 
dataset; and (IV) FN (false negative) quadrant (pink) for incorrect 
prediction of positive dataset.  
 

< 0.05), this word is regarded as a feature negatively related 
to the appearance of nucleosomes, i.e., nucleosome inhibit-
ing. 

 In addition, to find out the factors that can change the 
effects of a word, we tested the independence between the 
contents of A+T or G+C in words and the types of words, 
using Pearson's Chi-squared test with Yates' continuity cor-
rection. All statistical analyses were done in R language 
[109], including the calculations of point biserial correlation 

coefficients, the t-test, and the Pearson's Chi-squared test 
with Yates' continuity correction.  

RESULTS 

MRMR Results 

 The mRMR analysis is the first step in the procedure of 
feature selection. We chose the parameter t = 1 to discretize 
our data to three categorical states according to the equation 
mean ± (t · std) (mean is the mean value and std is the stan-
dard deviation). The output of mRMR (for details, see Sup-
plementary Material S5) is a table called mRMR list record-
ing the feature indices in Eq.4. Meanwhile, mRMR also gen-
erated another table called MaxRel list to indicate the rele-
vance of all features with the class variable. However, here 
only the mRMR list was needed for the feature selection 
procedure. 

IFS Results 

 Each DNA sequence was represented by a vector with 
5,460 dimensions, each of which represents the correspond-
ing word frequency. In the IFS procedure, 5,460 feature sets 
based on the ordered feature set S obtained from the mRMR 
list were built, and 5,460 candidate models were constructed. 
For efficiency, we did not test all these models. Instead, we 
first tested the models with feature set S0, S10, S20, …, S480 
and S490. The detailed results of the 1

st
 IFS were given in 

Table 1. Fig. (3) showed the IFS curve, displaying that of 
these 50 models, the one with feature set S30 had the best 
performance: 0.7650 for the overall accuracy, 0.7400 and 
0.7913 for the sensitivity and specificity, respectively. Sub-
sequently, the candidate models that need to be considered 
should be around S30, i.e., S20, S21, S22, …, S39. The detailed 
results of the 2

nd
 IFS were given in Table 2. Fig. (4) showed 

the obtained IFS curve. The highest overall accuracy in the 
IFS analysis was 0.7653 with 32 features. The corresponding 
sensitivity and specificity were 0.7376 and 0.7944, respec-
tively. The feature set S32 was considered to be the optimal 
feature set. Table 3 listed the optimal features obtained in the 
IFS procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The IFS curve of the first IFS procedure. 
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Fig. (4). The IFS curve of the second IFS procedure. 

 

Table 1. The Results of the 1
st
 IFS Procedure. The 50 Models with the Feature Sets S0, S10, S20, …, S480 and S490 Were Tested 

Model_Index Overall_Accuracy Sensitivity Specificity 

0 0.513173 1 0 

10 0.736885 0.7567 0.715998 

20 0.758333 0.760774 0.755761 

30 0.765012 0.740009 0.791368 

40 0.76387 0.717206 0.813058 

50 0.760269 0.697554 0.826378 

60 0.757569 0.681428 0.83783 

70 0.754046 0.667283 0.845504 

80 0.751955 0.654175 0.855027 

90 0.748297 0.638294 0.864252 

100 0.745858 0.628298 0.869779 

110 0.741657 0.614474 0.875723 

120 0.738647 0.603591 0.881012 

130 0.735366 0.593557 0.884849 

140 0.732956 0.58524 0.888666 

150 0.731349 0.576092 0.895008 

160 0.728368 0.569058 0.8963 

170 0.727884 0.565663 0.898885 

180 0.7229 0.552611 0.902404 

190 0.72048 0.545784 0.90463 
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(Table 1) Contd…. 

 

Model_Index Overall_Accuracy Sensitivity Specificity 

200 0.718844 0.539541 0.907851 

210 0.715679 0.531808 0.909501 

220 0.714102 0.527357 0.910953 

230 0.711914 0.52036 0.913835 

240 0.708517 0.512797 0.914829 

250 0.707143 0.509308 0.915684 

260 0.706456 0.506158 0.917593 

270 0.702139 0.497539 0.917812 

280 0.702091 0.495728 0.919621 

290 0.700184 0.490881 0.920814 

300 0.698703 0.487995 0.920814 

310 0.696893 0.483808 0.921509 

320 0.696341 0.481262 0.92306 

330 0.693815 0.475661 0.923776 

340 0.691812 0.470851 0.92473 

350 0.690147 0.466777 0.925605 

360 0.689654 0.465815 0.925605 

370 0.688734 0.461798 0.927951 

380 0.687369 0.458196 0.928945 

390 0.685985 0.455291 0.929164 

400 0.685724 0.454443 0.929521 

410 0.684543 0.452142 0.929521 

420 0.683972 0.449445 0.931192 

430 0.682685 0.445937 0.932245 

440 0.681349 0.443051 0.932543 

450 0.679752 0.439788 0.932702 

460 0.678146 0.436544 0.932822 

470 0.676432 0.432338 0.933736 

480 0.675513 0.430452 0.933836 

490 0.674119 0.42768 0.933895 
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Table 2. The Results of the 2
nd

 IFS Procedure. The 20 Models with the Feature Sets S20, S21, S22, …, S39 Were Tested 

Model_Index Overall_Accuracy Sensitivity Specificity 

20 0.758333 0.760774 0.755761 

21 0.75965 0.757945 0.761447 

22 0.760317 0.755833 0.765045 

23 0.758885 0.750269 0.767968 

24 0.757414 0.746308 0.769121 

25 0.759785 0.747176 0.773077 

26 0.76053 0.746025 0.775821 

27 0.760889 0.74412 0.778564 

28 0.761489 0.741687 0.782362 

29 0.763444 0.741876 0.786179 

30 0.765012 0.740009 0.791368 

31 0.765273 0.737632 0.794409 

32 0.763947 0.733257 0.796298 

33 0.76325 0.731107 0.797133 

34 0.765225 0.731333 0.80095 

35 0.764005 0.727165 0.802839 

36 0.764102 0.724826 0.805503 

37 0.764799 0.724732 0.807034 

38 0.763705 0.721299 0.808406 

39 0.76384 0.719602 0.810473 

 

Table 3. The Features Responsible for Distinguishing the Nucleosome Forming from the Nucleosome Inhibiting Sequences 

Order Word Score Nucleosome Forming(+) or Inhibiting(-) 

1 CG 0.181 + 

2 TTAA 0.022 - 

3 CAA 0.062 + 

4 GG 0.032 + 

5 CCTG 0.024 + 

6 TTG 0.042 + 

7 GC 0.028 + 

8 AAAAT 0.022 - 

9 CC 0.035 + 

10 GAA 0.029 - 

11 ATT 0.022 - 
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(Table 3) Contd…. 

Order Word Score Nucleosome Forming(+) or Inhibiting(-) 

12 GCTC 0.021 + 

13 TTC 0.022 - 

14 CAGG 0.022 + 

15 AAT 0.024 - 

16 GAGC 0.021 + 

17 GTGC 0.021 + 

18 TTA 0.021 - 

19 GCAC 0.020 + 

20 GGCT 0.021 + 

21 AGCC 0.021 + 

22 TAA 0.022 - 

23 CTAG 0.021 + 

24 AC 0.023 + 

25 GT 0.022 + 

26 GACC 0.022 + 

27 GTCC 0.021 + 

28 TA 0.021 - 

29 GCCT 0.021 + 

30 CGGT 0.022 + 

31 GGAC 0.022 + 

32 TTT 0.022 - 

 

DISCUSSION 

 We classified 32 words into nucleosome forming and 
nucleosome inhibiting features (Table 3) by analyzing the 
point biserial correlation coefficients (rpb) and t-tests. The 
corresponding results were shown in Table 4 and the num-
bers of A+T and G+C for the two classes were counted (Ta-
ble 5). The independence test, using Pearson's Chi-squared 
test with Yates' continuity correction, showed that correla-
tions between the two classes were highly significant (p-
value=2.34 10

-9
). Both the contents of A+T and G+C are 

related to nucleosome forming and inhibiting. The AT-rich 
sequences highly inhibit nucleosome formation, while the 
GC-rich sequences favor nucleosome formation. This is con-
sistent with previous studies [4, 40]. The differences between 
the sequences preferring to nucleosomes formation and the 
sequences inhibiting nucleosomes formation may lie in the 
DNA flexibility. Sequence-dependent DNA flexibility has 
been suggested to play an important role in positioning nu-
cleosome core particles [1]. The flexible sequences would be 
more easily to wrap around the core histones than the rigid 
ones. It is well established that the inherently flexible DNA 
sequences can direct nucleosome assembly [56]. According 

to Packer’s study [110]: CG, GC and GG/CC are flexible; 
AT and AA/TT are rigid; and TA has context-dependent 
flexibility. This provides a sound explanation of why a high 
A+T content tends to inhibit while a high G+C content tends 
to favor the formation of nucleosome. 

 Like the findings of Peckham [4], all of the 10 features 
related to nucleosome exclusion are the transformations of 
A+T content. This further confirms that DNA rigidity has a 
role in nucleosome of exclusion [12]. Of the 22 features re-
lated to nucleosome formation, most are the transformations 
of G+C content. This is due to the lower energetic cost asso-
ciated with translational movements of GC-rich sequences 
[26]. But there are exceptions for the cases of CAA/TTG and 
AC/GT. This might be due to the following reason: although 
having little role in nucleosome positioning, they might play 
an important role in discriminating nucleosome forming and 
inhibiting sequences with other features together. Our 
method has made it possible to collectively consider all these 
features so as to lead to the best distinction of the two groups 
of sequences, as shown by the compelling results in Table 4. 

 A study on tetranucleotide structure [111] has shown that 
the dinucleotides AA/TT, AT, and TA are context independ-
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ent, while CC/GG, CG, and GC are strongly context depend-
ent. There are 22 features related to nucleosome formation 
(Table 3) in which tetranucleotides consist of the majority 
(14/22=63.6%), while dinucleotides and trinucleotides con-
sist of the majority (8/10=80%) in 10 features related to nu-
cleosome exclusion. Thus, dinucleotides that inhibit nu-
cleosome formation are generally rigid regardless of their 
context, while those that favor nucleosome formation are 
flexible with their structure depending on their tetranucleo-

tide context. This is also fully consistent with Peckham’s 
work [4]. 

 In the top 32 features, there are more words related to 
nucleosome formation (22 words, 74 nucleotides) than to 
nucleosome exclusion (10 words, 32 nucleotides). This is 
inconsistent with Yuan’s work [50] which showed that most 
of the top ranked sequence features appear to be related to 
nucleosome exclusion rather than formation. The difference 

Table 4. The Words Related to Nucleosome Forming or Inhibiting by Ranking Point Biserial Correlation Coefficients(rpb) 

Nucleosome Forming(+) Nucleosome Inhibiting(-) 

Order Word rpb p-value Order Word rpb p-Value 

7  GC  0.1335 0 28  TA  -0.1952 0 

9  CC  0.0936 0 11  ATT  -0.1448 0 

12  GCTC  0.0925 0 15  AAT  -0.1447 0 

4  GG  0.0899 0 18  TTA  -0.1434 0 

5  CCTG  0.0875 0 22  TAA  -0.1422 0 

16  GAGC  0.0858 0 32  TTT  -0.1116 0 

14  CAGG  0.0845 0 2  TTAA  -0.0639 0 

21  AGCC  0.0810 0 8  AAAAT  -0.0506 0 

17  GTGC  0.0781 0 13  TTC  -0.0252 0 

19  GCAC  0.0775 0 10  GAA  -0.0224 0 

20  GGCT  0.0767 0     

29  GCCT  0.0765 0     

1  CG  0.0744 0     

30  CGGT  0.0734 0     

26  GACC  0.0719 0     

27  GTCC  0.0665 0     

31  GGAC  0.0621 0     

23  CTAG  0.0604 0     

24  AC  0.0572 0     

25  GT  0.0563 0     

3  CAA  0.0031 0.3189     

6  TTG  0.0022 0.4702     

 

Table 5. Contingency Table for Independence Test 

 A/T G/C Total 

Nucleosome forming 21 53 74 

Nucleosome inhibiting 30 2 32 

Total 51 55 106 
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may be because their methods only consider dinucleotides 
but we analyze more features. The binding sites of most tran-
scription factors (TF) are short and the degenerate sequences 
which occur frequently in the genome by chance [112]. Ac-
cordingly, many more matches to the known transcription 
factor binding sites (TFBS) may occur in the genome than 
previously thought [112]. Our results support the notion [25] 
that the genome sequence facilitates the rapid nucleosome 
reassembly instead of nucleosome depletion. This may be 
used to address the question partly why there are fewer func-
tional TFBS than potential TFBS if nucleosomes control the 
binding activity of TFs by providing differential access to 
DNA binding sites. Strong evidence [11, 12] exists for nu-
cleosomes regulating the accessibility of potential transcrip-
tion factor binding sites. Thus, nucleosome positioning is a 
global determinant for the transcription factor access [12]. 

 Up to 81% of the Saccharomyces cerevisiae genome 
DNA are organized into nucleosomes [40] and approxi-
mately 70% of nucleosomes in yeast are well positioned [12, 
113, 114]. Linker regions between nucleosomes are often 
short (<50 bp) [40]. In our data, however, the average length 
of 53,005 linker DNA sequences was 80.59 (=4271586/ 
53005) bp, and the base pair percent of nucleosome se-
quences was 64.6% (=7794087/ (7794087+4271586)), indi-
cating that several percents of the genome, which are actu-
ally nucleosome sequences, were wrongly treated as linker 
sequences. Undoubtedly, this would affect the predicted re-
sults. It is anticipated that it will certainly improve our pre-
dicted results with high-resolution data available in future.  

 Here we used Saccharomyces cerevisiae in our study for 
its simple and the high quality and large scale of the experi-
mental data. But the mRMR can be used in mammalian sys-
tems too, Homo sapiens, Mus musculus, Rattus rattus, and so 
on. It only needs a high-resolution nucleosome positioning 
data on a large scale and the genome sequence. 

CONCLUSION 

 A feature selection method called mRMR combined with 
the incremental feature selection (IFS) method was applied 
to a benchmark dataset of 53,021 nucleosome DNA se-
quences and 50,299 linker DNA sequences. Different from 
other approaches, the mRMR method can find the motifs 
with minimum redundancy and maximum relevance. As a 
result, 32 important features were abstracted from the 5,460 
features. The performance of our method achieves the over-
all success rate of 76.5%. Moreover, the inherent mechanism 
of these features to nucleosome positioning was analyzed. 
The findings thus obtained may provide useful insights and 
hints for in-depth analyzing nucleosome positioning signals 
and predicting the positions of nucleosome. 
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SUPPORTIVE/SUPPLEMENTARY MATERIAL 

 S1. Genomic nucleosome sites. It shows the chromosome 
that each nucleosome is located in as well as the start and 
end position of each nucleosome. 

 S2. Genomic nucleosome sequences. It shows all of the 
Saccharomyces cerevisiae genomic DNA sequences in nu-
cleosomes. 

 S3. Genomic linker sites. It shows the positions of all 
linkers between nucleosomes. It is similar to S1, showing the 
chromosome as well as the start and end position of each 
linker. 

 S4. Genomic linker sequences. It shows the genomic 
DNA sequences of all linkers between nucleosomes. 

 S5. mRMR analysis output. It shows the MaxRel list and 
mRMR list. 
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