Yi Zeng

Yi Zeng
  • Ph.D.
  • Professor at Institute of Automation, Chinese Academy of Sciences

About

231
Publications
46,087
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,991
Citations
Introduction
I am generally interested in Artificial Intelligence, with a focus on Brain-inspired AI, Cognitive Robotics, AI Ethics and Governance. My current research interests focus on the following directions: (1) Brain-inspired Neural Networks. (2) Cognitive and Neural Robotics. (3) Robot Self-Consciousness. (4) AI Ethics and Governance. My recent work can be found at http://bii.ia.ac.cn/~yizeng/

Publications

Publications (231)
Article
Full-text available
The neural correlates and nature of self-consciousness is an advanced topic in Cognitive Neuroscience. Only a few animal species have been testified to be with this cognitive ability. From artificial intelligence and robotics point of view, few efforts are deeply rooted in the neural correlates and brain mechanisms of biological self-consciousness....
Article
Full-text available
Achieving the global benefits of artificial intelligence (AI) will require international cooperation on many areas of governance and ethical standards, while allowing for diverse cultural perspectives and priorities. There are many barriers to achieving this at present, including mistrust between cultures, and more practical challenges of coordinat...
Article
Full-text available
Despite advances in artificial intelligence models, neural networks still cannot achieve human performance, partly due to differences in how information is encoded and processed compared to human brain. Information in an artificial neural network (ANN) is represented using a statistical method and processed as a fitting function, enabling handling...
Article
Full-text available
The spiking neural network (SNN) mimics the information-processing operation in the human brain. Directly applying backpropagation to the training of the SNN still has a performance gap compared with traditional deep neural networks. To address the problem, we propose a biologically plausible spatial adjustment that rethinks the relationship betwee...
Preprint
Artificial Intelligence (AI) systems are becoming increasingly powerful and autonomous, and may progress to surpass human intelligence levels, namely Artificial Superintelligence (ASI). During the progression from AI to ASI, it may exceed human control, violate human values, and even lead to irreversible catastrophic consequences in extreme cases....
Article
Human beings often experience stress, which can significantly influence their performance. This study explores whether Large Language Models (LLMs) exhibit stress responses similar to those of humans and whether their performance fluctuates under different stress-inducing prompts. To investigate this, we developed a novel set of prompts, termed Str...
Article
Dynamic Vision Sensors (DVS) capture event data with high temporal resolution and low power consumption, presenting a more efficient solution for visual processing in dynamic and real-time scenarios compared to conventional video capture methods. Event data augmentation serves as an essential method for overcoming the limitation of scale and divers...
Preprint
Full-text available
Cognitive functions in current artificial intelligence networks are tied to the exponential increase in network scale, whereas the human brain can continuously learn hundreds of cognitive functions with remarkably low energy consumption. This advantage is in part due to the brain cross-regional temporal development mechanisms, where the progressive...
Article
Full-text available
Acute stress results from sudden short-term events, and individuals need to quickly adjust their physiological and psychological to re-establish balance. Chronic stress, on the other hand, results in long-term physiological and psychological burdens due to the continued existence of stressors, making it difficult for individuals to recover and pron...
Preprint
Full-text available
Brain-inspired spiking neural networks (SNNs) have garnered significant research attention in algorithm design and perception applications. However, their potential in the decision-making domain, particularly in model-based reinforcement learning, remains underexplored. The difficulty lies in the need for spiking neurons with long-term temporal mem...
Preprint
Full-text available
The rapid advancement of Artificial Intelligence (AI) technology is profoundly transforming human society and concurrently presenting a series of ethical, legal, and social issues. The effective governance of AI has become a crucial global concern. Since 2022, the extensive deployment of generative AI, particularly large language models, marked a n...
Preprint
Humans interpret and perceive the world by integrating sensory information from multiple modalities, such as vision and hearing. Spiking Neural Networks (SNNs), as brain-inspired computational models, exhibit unique advantages in emulating the brain's information processing mechanisms. However, existing SNN models primarily focus on unimodal proces...
Preprint
The extremely high computational and storage demands of large language models have excluded most edge devices, which were widely used for efficient machine learning, from being viable options. A typical edge device usually only has 4GB of memory capacity and a bandwidth of less than 20GB/s, while a large language model quantized to 4-bit precision...
Preprint
Recent research on robot manipulation based on Behavior Cloning (BC) has made significant progress. By combining diffusion models with BC, diffusion policiy has been proposed, enabling robots to quickly learn manipulation tasks with high success rates. However, integrating diffusion policy with high-capacity Transformer presents challenges, traditi...
Preprint
Full-text available
Reasoning and question answering, as fundamental cognitive functions in humans, remain significant hurdles for artificial intelligence. While large language models (LLMs) have achieved notable success, integrating explicit memory with structured reasoning capabilities remains a persistent difficulty. The Differentiable Neural Computer (DNC) model,...
Preprint
Spiking Neural Networks (SNNs) hold promise for energy-efficient, biologically inspired computing. We identify substantial informatio loss during spike transmission, linked to temporal dependencies in traditional Leaky Integrate-and-Fire (LIF) neuron-a key factor potentially limiting SNN performance. Existing SNN architectures also underutilize mod...
Article
Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain. Although this binarized form of representation dramatically enhances the energy efficiency and robustness of SNNs, it also leaves a large gap between the performance of SNNs and Artificial Neural...
Preprint
Full-text available
With the widespread application of Artificial Intelligence (AI) in human society, enabling AI to autonomously align with human values has become a pressing issue to ensure its sustainable development and benefit to humanity. One of the most important aspects of aligning with human values is the necessity for agents to autonomously make altruistic,...
Article
Social intelligence manifests the capability, often referred to as the Theory of Mind (ToM), to discern others’ behavioral intentions, beliefs, and other mental states. ToM is crucial in multi-agent and human-machine interaction contexts, where each participant need grasp the mental states of others to respond, interact, and collaborate more effect...
Preprint
Spiking Neural Networks (SNNs) has the ability to extract spatio-temporal features due to their spiking sequence. While previous research has primarily foucus on the classification of image and reinforcement learning. In our paper, we put forward novel diffusion policy model based on Spiking Transformer Neural Networks and Denoising Diffusion Proba...
Preprint
By exploiting discrete signal processing and simulating brain neuron communication, Spiking Neural Networks (SNNs) offer a low-energy alternative to Artificial Neural Networks (ANNs). However, existing SNN models, still face high computational costs due to the numerous time steps as well as network depth and scale. The tens of billions of neurons a...
Article
The intricate and distinctive evolutionary topology of the human brain enables it to execute multiple cognitive tasks simultaneously, and this automated evolutionary process of biological networks motivates our investigation into efficient architecture optimization for Spiking Neural Networks (SNNs). Diverging from traditional manual-designed and h...
Preprint
Full-text available
As AI closely interacts with human society, it is crucial to ensure that its decision-making is safe, altruistic, and aligned with human ethical and moral values. However, existing research on embedding ethical and moral considerations into AI remains insufficient, and previous external constraints based on principles and rules are inadequate to pr...
Conference Paper
Full-text available
The audio-visual event localization task requires identifying concurrent visual and auditory events from unconstrained videos within a network model, locating them, and classifying their category. The efficient extraction and integration of audio and visual modal information have always been challenging in this field. In this paper, we introduce CA...
Preprint
Full-text available
Biological brains have the capability to adaptively coordinate relevant neuronal populations based on the task context to learn continuously changing tasks in real-world environments. However, existing spiking neural network-based continual learning algorithms treat each task equally, ignoring the guiding role of different task similarity associati...
Preprint
Full-text available
Large Language Models (LLMs) remain vulnerable to jailbreak attacks that bypass their safety mechanisms. Existing attack methods are fixed or specifically tailored for certain models and cannot flexibly adjust attack strength, which is critical for generalization when attacking models of various sizes. We introduce a novel scalable jailbreak attack...
Preprint
As large language models (LLMs) become integral to various applications, ensuring both their safety and utility is paramount. Jailbreak attacks, which manipulate LLMs into generating harmful content, pose significant challenges to this balance. Existing defenses, such as prompt engineering and safety fine-tuning, often introduce computational overh...
Article
Developmental plasticity plays a prominent role in shaping the brain's structure during ongoing learning in response to dynamically changing environments. However, the existing network compression methods for deep artificial neural networks (ANNs) and spiking neural networks (SNNs) draw little inspiration from brain's developmental plasticity mecha...
Preprint
Human beings often experience stress, which can significantly influence their performance. This study explores whether Large Language Models (LLMs) exhibit stress responses similar to those of humans and whether their performance fluctuates under different stress-inducing prompts. To investigate this, we developed a novel set of prompts, termed Str...
Preprint
Full-text available
The hierarchical architecture has become a mainstream design paradigm for Vision Transformers (ViTs), with Patch Merging serving as the pivotal component that transforms a columnar architecture into a hierarchical one. Drawing inspiration from the brain's ability to integrate global and local information for comprehensive visual understanding, we p...
Preprint
Systolic architectures are widely embraced by neural network accelerators for their superior performance in highly parallelized computation. The DSP48E2s serve as dedicated arithmetic blocks in Xilinx Ultrascale series FPGAs and constitute a fundamental component in FPGA-based systolic matrix engines. Harnessing the full potential of DSP48E2s in ar...
Article
Spiking neural networks (SNNs) are expected to be a promising alternative to artificial neural networks (ANNs) due to their strong biological interpretability and high energy efficiency. Specialized SNN hardware offers clear advantages over general-purpose devices in terms of power and performance. However, there is still room to advance hardware s...
Preprint
Spiking Neural Networks (SNNs), with their brain-inspired structure using discrete spikes instead of continuous activations, are gaining attention for their potential of efficient processing on neuromorphic chips. While current SNN hardware accelerators often prioritize temporal spike sparsity, exploiting sparse synaptic weights offers significant...
Preprint
Full-text available
The audio-visual event localization task requires identifying concurrent visual and auditory events from unconstrained videos within a network model, locating them, and classifying their category. The efficient extraction and integration of audio and visual modal information have always been challenging in this field. In this paper, we introduce CA...
Conference Paper
Spiking Neural Networks (SNNs), as the third generation of neural networks, have gained prominence for their biological plausibility and computational efficiency, especially in processing diverse datasets. The integration of attention mechanisms, inspired by advancements in neural network architectures, has led to the development of Spiking Transfo...
Article
Spiking Neural Networks (SNNs) have attracted significant attention from researchers across various domains due to their brain-inspired information processing mechanism. However, SNNs typically grapple with challenges such as extended time steps, low temporal information utilization, and the requirement for consistent time step between testing and...
Preprint
Full-text available
Event data captured by Dynamic Vision Sensors (DVS) offers a unique approach to visual processing that differs from traditional video capture, showcasing its efficiency in dynamic and real-time scenarios. Despite advantages such as high temporal resolution and low energy consumption, the application of event data faces challenges due to limited dat...
Preprint
Full-text available
This paper presents a novel approach leveraging Spiking Neural Networks (SNNs) to construct a Variational Quantized Autoencoder (VQ-VAE) with a temporal codebook inspired by hippocampal time cells. This design captures and utilizes temporal dependencies, significantly enhancing the generative capabilities of SNNs. Neuroscientific research has ident...
Article
Full-text available
Spiking neural networks (SNNs) are rich in spatio-temporal dynamics and are suitable for processing event-based neuromorphic data. However, event-based datasets are usually less annotated than static datasets. This small data scale makes SNNs prone to overfitting and limits their performance. In order to improve the generalization ability of SNNs o...
Article
Full-text available
This paper addresses how people understand Explainable Artificial Intelligence (XAI) in three ways: contrastive, functional, and transparent. We discuss the unique aspects and challenges of each and emphasize improving current XAI understanding frameworks. The Ritual Dialog Framework (RDF) is introduced as a solution for better dialog between AI cr...
Article
Full-text available
Spiking neural networks (SNNs) can do inference with low power consumption due to their spike sparsity. Although SNNs can be combined with neuromorphic hardware to achieve efficient inference, they are often difficult to train directly due to discrete non-differentiable spikes. As an alternative, ANN-SNN conversion is an efficient way to achieve de...
Article
Full-text available
Studies suggest that the brain’s high efficiency and low energy consumption may be closely related to its small-world topology and critical dynamics. However, existing efforts on the performance-oriented structural evolution of spiking neural networks (SNNs) are time-consuming and ignore the core structural properties of the brain. Here, we introdu...
Article
Full-text available
This paper presents social data and knowledge collective intelligence platform for TRaining Ethical AI Models (STREAM) to address the challenge of aligning AI models with human moral values, and to provide ethics datasets and knowledge bases to help promote AI models “follow good advice as naturally as a stream follows its course”. By creating a co...
Article
Spiking Neural Networks (SNNs), with their brain-inspired structure using discrete spikes instead of continuous activations, are gaining attention for their potential of efficient processing on neuromorphic chips. While current SNN hardware accelerators often prioritize temporal spike sparsity, exploiting sparse synaptic weights offers significant...
Article
Spiking Neural Networks (SNNs) have been widely applied not only for their advantages in energy efficiency with discrete signal processing but also for their natural suitability to integrate multi-scale biological plasticity. However, most SNNs still adopt the structure of the well-established Deep Neural Networks (DNNs), with few attempts at imple...
Article
Yuxuan Zhao, associate professor, Enmeng Lu, research engineer, and Yi Zeng, professor and lab director, have proposed a brain-inspired bodily self-perception model based on biological findings on monkeys and humans. This model can reproduce various rubber hand illusion (RHI) experiments, which helps reveal the RHI’s computational and biological me...
Article
In the future society, the development of Artificial Intelligence, Augmented Intelligence, Digital Technology, Brain science and Neuroscience is very likely to lead to the emergence of life forms with intelligence levels that reach or even surpass those traditionally associated with naturally evolved humans. How humanity can coexist with such vario...
Article
The core of bodily self-consciousness involves perceiving ownership of one’s body. A central question is how body illusions like the rubber hand illusion (RHI) occur. Existing theoretical models still lack satisfying computational explanations from connectionist perspectives, especially for how the brain encodes body perception and generates illusi...
Article
Full-text available
The architecture design and multi-scale learning principles of the human brain that evolved over hundreds of millions of years are crucial to realizing human-like intelligence. Spiking neural network based Liquid State Machine (LSM) serves as a suitable architecture to study brain-inspired intelligence because of its brain-inspired structure and th...
Article
Full-text available
Humans often unconsciously perceive social robots involved in their lives as partners rather than mere tools, imbuing them with qualities of companionship. This anthropomorphization can lead to a spectrum of emotional risks, such as deception, disappointment, and reverse manipulation, that existing approaches struggle to address effectively. In thi...
Article
Full-text available
In biological neural systems, different neurons are capable of self-organizing to form different neural circuits for achieving a variety of cognitive functions. However, the current design paradigm of spiking neural networks is based on structures derived from deep learning. Such structures are dominated by feedforward connections without taking in...
Preprint
Full-text available
The complex and unique neural network topology of the human brain formed through natural evolution enables it to perform multiple cognitive functions simultaneously. Automated evolutionary mechanisms of biological network structure inspire us to explore efficient architectural optimization for Spiking Neural Networks (SNNs). Instead of manually des...
Preprint
The natural evolution of the human brain has given rise to multiple forms of synaptic plasticity, allowing for dynamic changes to adapt to an ever-evolving world. The evolutionary development of synaptic plasticity has spurred our exploration of biologically plausible optimization and learning algorithms for Spiking Neural Networks (SNNs). Present...
Preprint
Full-text available
Children possess the ability to learn multiple cognitive tasks sequentially, which is a major challenge toward the long-term goal of artificial general intelligence. Existing continual learning frameworks are usually applicable to Deep Neural Networks (DNNs) and lack the exploration on more brain-inspired, energy-efficient Spiking Neural Networks (...
Article
Full-text available
Spiking neural networks (SNNs) have been widely used due to their strong biological interpretability and high-energy efficiency. With the introduction of the backpropagation algorithm and surrogate gradient, the structure of SNNs has become more complex, and the performance gap with artificial neural networks (ANNs) has gradually decreased. However...
Conference Paper
Children possess the ability to learn multiple cognitive tasks sequentially, which is a major challenge toward the long-term goal of artificial general intelligence. Existing continual learning frameworks are usually applicable to Deep Neural Networks (DNNs) and lack the exploration on more brain-inspired, energy-efficient Spiking Neural Networks (...
Article
Full-text available
Spiking neural networks (SNNs) serve as a promising computational framework for integrating insights from the brain into artificial intelligence (AI). Existing software infrastructures based on SNNs exclusively support brain simulation or brain-inspired AI, but not both simultaneously. To decode the nature of biological intelligence and create AI,...
Preprint
Full-text available
The prevalence of violence in daily life poses significant threats to individuals' physical and mental well-being. Using surveillance cameras in public spaces has proven effective in proactively deterring and preventing such incidents. However, concerns regarding privacy invasion have emerged due to their widespread deployment. To address the probl...
Article
The backpropagation algorithm has promoted the rapid development of deep learning, but it relies on a large amount of labeled data and still has a large gap with how humans learn. The human brain can quickly learn various conceptual knowledge in a self-organized and unsupervised manner, accomplished through coordinating various learning rules and s...
Article
Full-text available
During dynamic social interaction, inferring and predicting others' behaviors through theory of mind (ToM) is crucial for obtaining benefits in cooperative and competitive tasks. Current multi-agent reinforcement learning (MARL) methods primarily rely on agent observations to select behaviors, but they lack inspiration from ToM, which limits perfor...
Preprint
Spiking neural networks have gained significant attention due to their brain-like information processing capabilities. The use of surrogate gradients has made it possible to train spiking neural networks with backpropagation, leading to impressive performance in various tasks. However, spiking neural networks trained with backpropagation typically...
Preprint
The biological neural network is a vast and diverse structure with high neural heterogeneity. Conventional Artificial Neural Networks (ANNs) primarily focus on modifying the weights of connections through training while modeling neurons as highly homogenized entities and lacking exploration of neural heterogeneity. Only a few studies have addressed...
Preprint
Generative models based on neural networks present a substantial challenge within deep learning. As it stands, such models are primarily limited to the domain of artificial neural networks. Spiking neural networks, as the third generation of neural networks, offer a closer approximation to brain-like processing due to their rich spatiotemporal dyna...
Preprint
Full-text available
Spiking Neural Networks (SNNs) have received considerable attention not only for their superiority in energy efficient with discrete signal processing, but also for their natural suitability to integrate multi-scale biological plasticity. However, most SNNs directly adopt the structure of the well-established DNN, rarely automatically design Neural...
Preprint
Full-text available
Spiking neural networks have attracted extensive attention from researchers in many fields due to their brain-like information processing mechanism. The proposal of surrogate gradient enables the spiking neural networks to migrate to more complex tasks, and gradually close the gap with the conventional artificial neural networks. Current spiking ne...
Preprint
Full-text available
The architecture design and multi-scale learning principles of the human brain that evolved over hundreds of millions of years are crucial to realizing human-like intelligence. Spiking Neural Network (SNN) based Liquid State Machine (LSM) serves as a suitable architecture to study brain-inspired intelligence because of its brain-inspired structure...
Preprint
Full-text available
Spiking neural networks (SNNs) have rich spatial-temporal dynamics, which are suitable for processing neuromorphic, event-based data. However, event-based datasets are usually less annotated than static datasets used in traditional deep learning. Small data scale makes SNNs prone to overfitting and limits the performance of the SNN. To enhance the...
Preprint
Full-text available
Spiking Neural Networks (SNNs) can do inference with low power consumption due to their spike sparsity. ANN-SNN conversion is an efficient way to achieve deep SNNs by converting well-trained Artificial Neural Networks (ANNs). However, the existing methods commonly use constant threshold for conversion, which prevents neurons from rapidly delivering...
Preprint
Full-text available
At the core of bodily self-consciousness is the perception of the ownership of one's body. Recent efforts to gain a deeper understanding of the mechanisms behind the brain's encoding of the self-body have led to various attempts to develop a unified theoretical framework to explain related behavioral and neurophysiological phenomena. A central ques...
Article
Full-text available
Even state-of-the-art deep learning models lack fundamental abilities compared with humans. While many image distortions have been proposed to compare deep learning with humans, they depend on mathematical transformations instead of human cognitive functions. Here, we propose an image distortion based on the abutting grating illusion, which is a ph...
Preprint
Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain. Although this binarized form of representation dramatically enhances the energy efficiency and robustness of SNNs, it also leaves a large gap between the performance of SNNs and Artificial Neural...
Preprint
Full-text available
Inspired by the information processing with binary spikes in the brain, the spiking neural networks (SNNs) exhibit significant low energy consumption and are more suitable for incorporating multi-scale biological characteristics. Spiking Neurons, as the basic information processing unit of SNNs, are often simplified in most SNNs which only consider...
Preprint
Reasoning and question answering as a basic cognitive function for humans, is nevertheless a great challenge for current artificial intelligence. Although the Differentiable Neural Computer (DNC) model could solve such problems to a certain extent, the development is still limited by its high algorithm complexity, slow convergence speed, and poor t...
Preprint
Spiking neural networks (SNNs) have been widely used due to their strong biological interpretability and high energy efficiency. With the introduction of the backpropagation algorithm and surrogate gradient, the structure of spiking neural networks has become more complex, and the performance gap with artificial neural networks has gradually decrea...
Preprint
Spike-based neuromorphic hardware has demonstrated substantial potential in low energy consumption and efficient inference. However, the direct training of deep spiking neural networks is challenging, and conversion-based methods still require substantial time delay owing to unresolved conversion errors. We determine that the primary source of the...
Preprint
Brain-inspired Spiking Neural Networks (SNNs) have attracted much attention due to their event-based computing and energy-efficient features. However, the spiking all-or-none nature has prevented direct training of SNNs for various applications. The surrogate gradient (SG) algorithm has recently enabled spiking neural networks to shine in neuromorp...
Article
Full-text available
Introduction Pain is a crucial function for organisms. Building a “Robot Pain” model inspired by organisms' pain could help the robot learn self-preservation and extend longevity. Most previous studies about robots and pain focus on robots interacting with people by recognizing their pain expressions or scenes, or avoiding obstacles by recognizing...
Article
Full-text available
Few-shot learning (learning with a few samples) is one of the most important cognitive abilities of the human brain. However, the current artificial intelligence systems meet difficulties in achieving this ability. Similar challenges also exist for biologically plausible spiking neural networks (SNNs). Datasets for traditional few-shot learning dom...
Preprint
Full-text available
Developmental plasticity plays a vital role in shaping the brain's structure during ongoing learning in response to the dynamically changing environments. However, the existing network compression methods for deep artificial neural networks (ANNs) and spiking neural networks (SNNs) draw little inspiration from the brain's developmental plasticity m...
Preprint
Spiking Neural Networks (SNNs) are more biologically plausible and computationally efficient. Therefore, SNNs have the natural advantage of drawing the sparse structural plasticity of brain development to alleviate the energy problems of deep neural networks caused by their complex and fixed structures. However, previous SNNs compression works are...
Article
Full-text available
Biological systems can exhibit intelligent swarm behavior through relatively independent individual, local interaction and decentralized decision-making. A major research challenge of self-organized swarm intelligence is the coupling influences between individual behaviors. Existing methods optimize the behavior of multiple individuals simultaneous...

Network

Cited By