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Abstract—Instant delivery has developed rapidly in recent
years and significantly changed the lifestyle of people due to its
timeliness and convenience. In instant delivery, the order dispatch
process is concurrent. Couriers take new orders continuously
and deliver multiple orders in a delivery trip (i.e., a batch).
The delivery time of orders in a batch is often overlapped and
interlinked with each other. The pickup and delivery sequence
of the existing orders in a batch changes dynamically due to
time constraints and real-time overdue possibility (i.e., the rate of
deliveries that are not finished in promised time). Most of existing
order dispatch mechanisms are designed for independent order
dispatch or concurrent delivery without strict time constraints,
hence are incapable of handling real-time concurrent dispatch
with strict time constraints in on-demand instant delivery. To
address the challenge, we propose a Time-Constrained Actor-
Critic Reinforcement learning based concurrent dispatch system
called TCAC-Dispatch to enhance the long-term overall revenue
and reduce the overdue rate. Specifically, we design a deep
matching network (DMN) with a variable action space, which
integrates the state embedding (including route behaviors encod-
ing) and actions embedding features into a long-term matching
value. Then the Actor-Critic model tackles the concurrent order
dispatch problem considering strict time constraints and stochas-
tic demand-supply in instant delivery. An estimated time-based
action pruning module is designed to ensure time constraints
guarantee and accelerate the training as well as dispatching
processes. We evaluate the TCAC-Dispatch with one-month data
involved with 36.48 million orders and 42,000 couriers collected
from one of the largest instant delivery companies in China, i.e.,
Eleme. Empirical experiments are conducted on a data-driven
emulator deployed on the development environment of Eleme
and results show that our method achieves 22% of the increase
in total revenue and reduces the overdue rate by 21.6%.

Index Terms—Instant Delivery, Concurrent Order Dispatch-
ing, Reinforcement Learning

I. INTRODUCTION

Thanks to the rapid development of online digital platforms,
instant delivery services (e.g., Instacart [1], Uber Eats [2],
and Eleme [3]) have become a popular choice for people to
order food, medicine, and groceries online, especially after
the impact of COVID-19. In the third quarter of 2019, the
number of instant delivery service customers in China reaches
470 million, and the market scale reaches 11.8 billion USD
dollars [4]. In instant delivery, the delivery process needs to be
finished in a short time [3] because packages to be delivered
contain food or other urgent items. For example, Amazon
Prime Now promises one-hour delivery for some orders [5].
Instant delivery platforms provide a big discount or even make
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the order free if the courier fails to deliver the order within
the promised time window [3]. Given such a conflict between
the massive number of orders and the limited couriers, it is
essential to improve the efficiency of the dispatching system
by solving concurrent order dispatch (i.e., instant delivery
platforms assign orders to couriers) in a timely fashion.

Many studies have been conducted on real-time applica-
tions and systems such as real-time order dispatch and fleet
management in ride-sharing [6]-[9] and real-time scheduling
for electric vehicles [10]-[13]. For example, some studies
solve the independent order dispatch problem in ride-sharing
systems with reinforcement learning to enhance the profitabil-
ity [14]-[17]. Compared to existing studies, however, there
are two unique characteristics in the order dispatch problem
for instant delivery. (1) Overlapping Delivery Time due to
Concurrent Dispatch: Order dispatch and delivery process in
instant delivery are concurrent, i.e., couriers carry multiple
orders simultaneously in a trip, and the delivery time of
these orders is overlapped especially in rush hours, while
most existing studies focus on independent order dispatch; (2)
Delivery Time Constraints: Instant delivery imposes a strict
delivery deadline for each order, whereas the time constraints
in traditional logistics and online retail are relatively loose.
So the dispatch decision should be appropriate to avoid
order overdue. Concurrent order dispatch in instant delivery
should consider time constraints of orders and time constraints
relations in subsequent dispatching.

Concurrent order dispatch decisions in the instant delivery
are sequential and highly repetitive, thus generating massive
historical dispatch and route records, which gives us a new
opportunity to train reinforcement learning based methods to
learn optimal dispatching decisions and improve efficiency.
However, to seek an optimal concurrent order dispatch policy
from historical decision data is not straightforward due to two
challenges: (i) conflicts between enhancing the future overall
revenue of concurrent orders and reducing the overdue rate
of existing orders; (ii) instant delivery imposes a strict order
delivery deadline and the delivery time of orders in a delivery
trip is overlapped. To complete a concurrent delivery process,
couriers will match orders “on the fly” many times. When we
dispatch a new order to a courier, the delivery sequence and
delivery time of orders that the courier already has changed
dynamically, which may make existing orders overdue. In ad-
dition, future revenues and impacts in subsequent dispatching
are also critical for concurrent dispatch. An urgent or long-
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distance order leaves couriers little time to take other orders.

To conquer these challenges, we model concurrent order
dispatch as a sequential decision-making problem and propose
a Time-Constrained Actor-Critic (TCAC for short) based order
dispatch system. Specifically, we have the following novel
designs in TCAC. (i) We design a Deep Matching Network
(DMN) with a variable action space because when conducting
the order-courier matching in instant delivery, the action space
for different agents (i.e., couriers) in the different time slot
is not fixed in advance, and the number of actions is based
on real-time order locations, courier locations and number
of couriers nearby, whereas traditional multi-agent actor-critic
reinforcement learning algorithms have either a discrete action
space (as output) or a continuous action space with a given
range. Both of them are fixed in advance. With the variable
action space, the DMN integrates time constraints of orders,
couriers’ real-time status, dynamic demand and supply, and
other real-time contextual information into a long-term match-
ing value. We construct the matching graph with the value
and then conduct online order dispatch. (ii) Considering the
overlapping delivery time of existing orders and future orders,
we design a time-constrained action pruning module to prune
dispatch actions that could lead to overdue and accelerate both
the training and dispatching processes. In summary, the key
contributions of our work are as follows.

« In particular, by modeling concurrent dispatch as a sequen-
tial decision problem with strict time constraints, we design
TCAC-Dispatch, a Time-Constrained Actor-Critic based
order Dispatch system. TCAC-Dispatch learns an efficient
concurrent dispatch policy considering the spatial-temporal
distribution of supplies and demands, orders’ delivery dead-
line, couriers’ uncertain route behaviors, and contextual
factors in the offline learning phase. In the online dis-
patching phase, TCAC accounts for real-time environmental
information and determines appropriate dispatch decisions
between couriers and orders with strict time constraints.

o We design a time-constrained Actor-Critic based dispatch
algorithm, which integrates a Deep Matching Network
(DMN) and a value network (Critic). (i) The DMN has a
variable action space considering the nature of concurrent
dispatch. (ii) The DMN takes both state embedding features
(integrates dynamic environmental factors and courier’s
route behaviors embedding) and vectorized action features
(order features and order-courier matching features) as input
and outputs the long-term matching score. (iii) A time-
constrained action pruning module is designed to satisfy
practical time constraints and to filter the actions to speed
up training and improve the dispatching efficiency.

o To train the Deep Matching Network and evaluate TCAC-
Dispatch, we design a data-driven emulator to emulate real-
time concurrent order dispatch activities and deploy it on the
development environment of the Eleme platform. Then we
evaluate our TCAC-Dispatch with one-month data involved
with 36.48 million orders and 42,000 couriers collected from
Eleme. The experimental results show that TCAC-Dispatch

achieves a 22% increase in total revenue and reduces the
overdue rate by 21.6%. In addition, we rigorously evaluate
the effectiveness of the time-constrained actor-critic module
and present both the training and dispatching time cost
comparison in Sec. VI-C.

II. MOTIVATION
A. Characteristics of Concurrent Dispatch

As an Online-platform-to-Offline-delivery (O20) service,
the paradigm of instant delivery includes the following steps
[3]. (1) Customers place orders online on the platform with
mobile phones; (2) Merchants receive orders online from the
platform and start to prepare these orders; (3) The platform
dispatches orders to appropriate couriers; (4) Couriers pick
up and deliver the orders to customers [18]. After customers
receive orders, couriers, merchants, and the platform obtain
corresponding revenue.

There are two unique characteristics in instant delivery
systems. (1) Concurrent order dispatch and dynamic delivery
sequence: Instant delivery involves multiple destinations in
a delivery batch, which is much more complicated than
delivering orders one by one independently, and hence calls for
an efficient framework to optimize the concurrent dispatching
and sequencing problem. In instant delivery services, couriers
take multiple orders in one delivery trip of which the delivery
time is overlapped, and new orders may arrive during a
delivery trip. Taking a new order on the way, and other real-
time changes in spatial-temporal information require dynamic
updates of delivery sequence “on the fly”. (2) Strict delivery
time requirements: While customers of ride-sharing systems
are more tolerant about arrival time [18], customers of instant
delivery expect delivery in the promised time window [19].
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Particularly, we conduct a detailed analysis of 42,000
couriers and 36.48 million order records from 2019/09/01 to
2019/09/30 in Shanghai. As shown in Fig. 1, the median
of the number of orders that one courier served per day
is 23, and the median of the number of orders per trip is
2. Fig. 2 illustrates the cumulative distribution function of

TABLE I
AN EXAMPLE OF DELIVERY SEQUENCE CHANGES

Timestamp | Order Set | New Order ‘ Delivery Sequence

12:01 1%} A {A,, Aq}
12:05 A B {Bo, Ba, Aa}
12:11 A B c {Co, Ba, Aq,Ca}
12:25 A B,C @ {Ba, Aa, Cq}
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delivery sequence change times per trip. We observe that
less than 30% of order delivery sequences do not change,
while the delivery sequences of some couriers may change
as many as six times in one trip due to new orders. Given the
similar problem setting, delivery sequences of passengers in
real-time ride-sharing hardly change considering passengers’
willingness and potential complaints.

We further analyze the concurrency of order dispatch and
changes of delivery sequence with an example. As shown in
Table. 1, the courier takes order A at 12:01. Then she/he picks
up order A at 12:05 and takes new order B, the sequence
changes to {B,, By, Aq}. The courier delivers B firstly in
this example. It is because that order B is an order on the
way or order B has a more urgent due time. At 12:11, the
courier picks up order B and takes new order C, the sequence
changes to {C,, By, Aq,Cy}. After that, the sequence does
not change since the courier does not take new orders on this
trip. While dynamic delivery sequence and strict delivery time
constraints make concurrent order dispatch more challenging,
they also bring the potential to dramatically improve the user
experience (e.g., less delivery time) and courier experience
(e.g., more profit).

B. Order Delivery Time Coupling

Upon identifying the unique challenges for order dispatch
in instant delivery, we analyze and present the coupling
delivery time and conflicting relationships between the impact
of existing orders and future revenue. The delivery time of
orders in the same delivery trip is coupling and interacts
with each other due to concurrency and overlapped delivery
time of orders. When dispatching a new order to a courier,
the impact is as follows: (1) the impact on existing orders:
the current order dispatch may increase the delivery time of
existing orders and even make them overdue. In addition,
existing orders influence the dispatch decision because it is
a good decision to dispatch the order to the courier if there
is a high degree of path coincidence between the new order
and existing orders; (2) the impact on future revenue, that is,
if an urgent order or a long-distance order is received, due
to constraints of delivery time, there will be less time for the
courier to take future orders. Therefore, the current dispatch
will have an impact on possible future revenues.

III. SYSTEM AND FORMULATION
A. System Framework

Fig. 3 overviews the system framework of TCAC-Dispatch,
which consists of two phases: offline learning and online
dispatching. The offline learning phase has three components:
the data-driven emulator for instant delivery, action features
and state extraction, and TCAC model. (1) The emulator
provides emulated environment derived from real-world order
tracking data and courier trajectory data for model training.
The emulator for instant delivery also accounts for time
prediction and route prediction, which is detailed in Sec. V-B.
(2) Given real-world order data, courier data, and other con-
textual factors from environments, action features and state
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Fig. 3. System architecture of TCAC

extraction module is utilized to extract couriers’ states and
orders’ features for ease of following model learning. (3) The
TCAC model captures the dynamic spatial-temporal features,
courier’s state, and order-courier matching features at each
time step to train the RL model. TCAC consists of two
networks: actor and critic. We apply a deep matching network
as the actor, which aims to learn a policy to choose the best
action for each courier. The critic is a value network to evaluate
dispatch actions, which also helps achieve a more stable and
efficient model learning process.

In the online order dispatching phase, in each time step,
we collect the information of new orders and couriers nearby
in the same dispatch region and then calculate the long-
term expected revenue value ) with the TCAC model. Then
we match couriers and orders with ) value continuously.
Considering the complex real-time factors and the concurrent
features in instant delivery, the state of the courier updates
dynamically and the order delivery sequence also changes
dynamically after the courier takes a new order. After finishing
order dispatch and delivery, we calculate the total revenue of
platforms and the overdue rate of orders.

B. Problem Formulation

We model the concurrent order dispatch problem in instant
delivery as a sequential decision task and then tackle it
with deep reinforcement learning (DRL). The first goal of
concurrent order dispatch in our problem is to maximize the
total revenues of orders per day. In addition, to promote user
experience and improve the service quality, couriers should
finish delivering within the ToD (i.e., the promised delivery
time of one order), otherwise, the order is overdue. Hence,
another goal for our system is to reduce the overdue rate by
assigning orders to couriers appropriately.

Then we formulate the concurrent order dispatch in instant
delivery as a Markov decision process. Couriers choose actions
to take orders at each time step and get rewards continuously.
The state of a courier will change when she/he takes an
action, i.e., the route plan and the total delivery time will
change correspondingly after a courier takes a new order.
Formally, this problem is characterized by four major compo-
nents: {S, A,R,w}. w is the policy to make action-choosing
decisions and we will discuss it in the model design section.
The {S, A, R} are listed as follows.

State S: The state of an agent is defined as s; = {p;, g¢, ¢t}
and the state sf of the courier k at time step t is defined as
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sk = {pF gk, cF}. where pF is personal state of courier k
and g¥ is the global demand and supply information that the
agent observes from a dispatch region. In addition, since traffic
status (e.g., congestion or not), weather conditions (e.g.,rainy
or sunny), and day of the week (e.g., weekend or weekday)
affect the delivery behaviors of the courier, we form them
into a vector as contextual state and utilize cf to represent the
spatial-temporal features at time step t.

e pi: py is the personal state information and is defined as p; =
{loct, t,ne, DT, route}. loc, is the real-time location of the
courier. ¢ is current time step. n. is the current capacity of
the courier. DT is the total delivery time of existing orders
of this courier. route is the route plan of all stops (i.e.,
orders’ origin and destination) of existing orders. To model
courier’s route behavior, we utilize a GRU network [20] to
encode courier’s route sequences into a vector

route; = GRU (s;, route;_1) (1)

where route; is the embedding vector of total j stops
produced by the GRU network, s; is the vector of j-th stop,
and route;_; is the hidden vector of first j — 1 stops.

e g¢: g¢ is the global demand and supply distribution observed
from the environment at time step ¢. g; consists of V;
and D;. Two matrices capture the distribution of couriers
and order requests at time step ¢, which characterizes the
supplies and demands at a certain spatial-temporal point.

o ¢;: contextual spatial-temporal features at time step t. ¢; con-
sists of weather conditions (e.g., sunny, cloudy, fog, haze,
heavy-rain, light-rain, partly-cloudy) and day of the week as
well as real-time traffic status. We process these contextual
spatial-temporal features through one-hot encoding and form
them into a vector as the additional hints for model training.

Note that the g; and ¢; are updated at the beginning of each
time slot, whereas the personal state information p{ is updated
in real-time when we dispatch a new order to courier k.

Action A: An action means one matching between a courier
and an order. In instant delivery, the number of couriers around
each order is different, so the action space is variable due to
real-time order locations, courier locations, and the number
of couriers nearby. To address the variable action space and
concurrent dispatch, we utilize a vector to represent action
features. The action features consist of two parts: (1) Orders’
features including the merchant location [, , the user location
lg , price rev;, delivery fee fee,, and remaining time (i.e.,
the difference between the promised delivery time and current
time). (2) Order-courier matching features including distance
and time cost between the merchant and the current location of
the courier, the increased delivery time 73, of this matching.
The increased time is defined as T3, = DT;; — DT;, where
DT; is the total delivery time of the courier’s existing orders
based on current route plan, and D7T;,; is the new total
delivery time after he/she receives order ¢ and adds this order
to his/her route plan, which will be detailed in Sec. IV-A.

Reward R: Given the state s¥ of the courier k and the action
a; of the order 7, the immediate reward for this match is

defined as r!. When an available courier takes and delivers
an order, the courier receives the immediate reward 7;.

. N,
ri =42 x rev; x N (2)

where At = tff:p is the time step number of the increased
delivery time when a courier adds the new order to her/his
route plan. v € [0, 1] is the discount factor. ¥ accounts
for the influence of increased time. Increased delivery time
serves as a penalty term here. The longer the increased time,
the less the corresponding reward. When a new order is added
to a courier’s route, if the Tj, is high, the reward will be
discounted. We estimate the delivery time of order ¢ when we
try to dispatch it to courier £ and compare the delivery time
with ToD of this order, the reward is set as ri = 0 if the order
1 is overdue. rev; is the price of order ¢. N, is the total number
of orders in the destination grid of this action (e.g., picking up
an order and arriving at the grid of merchant of this order ),
N, is the total capacity of all couriers in the destination grid
and denoted as N, = >_n¥. n¥ is current capacity of courier
k. % captures the capacity supply and order demand, which
helps conduct courier-order matching considering future orders
distribution. The higher the % the greater reward that this
courier obtains when he/she takes action ai, so that she/he will
be more likely to be assigned to areas with higher demand.

State Transition: At the beginning of the next time step, we
obtain the global demand and supply information g4 . The
route plan will change when the courier takes a new order and
the personal state p, will also change correspondingly. Then
we integrate {p; {1, gi41, Ce+1} to the next state sy, ; of courier
k. Note that personal state p; changes continuously since the
courier takes new orders continuously and the order delivery
sequence will also change continuously due to new orders.
The global demand and supply g; changes at the beginning of
each time step.

IV. CONCURRENT DISPATCH MODEL DESIGN

In this paper, we design a time-constrained actor critic
model to conduct concurrent order dispatch considering (i)
time constraints and matching reward; (ii) possible overdue
rate and long-term revenue. In this section, we first present
an increased delivery time estimate model, which utilizes
XGBoost Ranking [21] to predict couriers’ uncertain route and
estimate the increased time cost. Then the time estimate model
eliminates the infeasible dispatch action by judging whether
the dispatch action is time-constraint satisfying. Then we intro-
duce details of the time-constrained actor-critic reinforcement
learning model, which consists of a Deep Matching Network
(Actor) and a state-value network (Critic). Lastly, we present
the online order dispatching module in Sec. IV-E.

A. Time Cost Estimated and Constrained Action Pruning

We estimate the increased delivery time cost by predicting
the possible new route of the courier when we try to dispatch
an order to a courier. The goal of the time estimate module is to
make sure that every exploration of dispatch action guarantees
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instant time constraints, which can accelerate offline learning
and improve online dispatching of RL methods.

Estimated Delivery Time based on Route Prediction: In
food delivery, the courier’s route is the list of all stops, i.e.,
orders’ origin (pickup stop) and destination (delivery stop).
We generate couriers’ routes by predicting the next stop one
by one. Once the next-stop prediction is finished, we move the
courier’s location to the next stop and then predict the next
stop. Particularly, we utilize the XGBoost ranking model [21]
to predict couriers’ route because (i) XGBoost can deal with
massive data and be trained efficiently, which is suitable to
process massive courier route data in instant delivery; (ii)
XGBoost model is explicable and provides the importance of
features which further help to choose features for our DRL
model. The features of each stop item consist of the stop (an
order origin or destination) location, the distance and time cost
between the courier’s current location and the candidate stop,
and the remaining time to the promised time of this order.
We feed them into the ranking model to obtain the possibility
of each stop and choose the stop with the largest value in a
greedy manner. When the courier’s new route is generated,
we obtain the increased delivery time 73, by calculating the
difference of the total delivery time between the new route
and the current route. Finally, we utilize the actual historical
delivery route in the XGBoost ranking training phase.

Time-Constrained Dispatch Action Space Pruning: In
instant delivery, algorithms of real-time order dispatch are
required to be rather efficient (i.e., dispatch orders in a short
time) and time-constraint satisfying (i.e., orders will not be
overdue when being dispatched to couriers in the current
situation). Our observation from real-world delivery data in-
dicates that for an order, due to picking up time and waiting
time constraints, only its nearby couriers can be dispatched.
For each new order, we collect couriers nearby the order
(i.e., usually within a few kilometers) and define C’f as the
candidate courier-set of order ¢ at time step ¢t. Couriers in
C;} are the possible ones who take order i. After estimating
delivery time, we filtrate couriers who cannot guarantee the
time constraints from C{ (the estimating delivery time is larger
than the promised delivery time of the order), which safely
prunes possible courier-order matching pairs and achieves the
action space pruning for RL decisions. The time-constrained
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dispatch action space pruning module estimates the delivery
time and prunes matching pairs that do not satisfy time
constraints, which shrinks the action space of RL and improves
the learning performance.

B. Deep Matching Network

Deep Matching Network is used to calculate the long-
term revenue of the matching between couriers and orders. In
reinforcement learning, we aim at maximizing the expected
reward in each episode [22]. In our problem, we set one day
as an episode. At each time step ¢ , the expected discounted
return is >_,° o y*ri, . . where 7 is the discount factor. For a
new order i, we collect nearby couriers and add them to the
candidate couriers set C; of order i at time step ¢. Couriers in
C} are the possible ones who take order i. Traditional deep Q-
learning network (DQN) takes the state as input and returns a
vector of @) values whose dimension is equal to the dimension
of fixed action space. In instant delivery, however, the number
of orders around a courier is different from other moments.
When we define serving an order as an action, we cannot
guarantee the action space is consistent along with the whole
episode [23]. Besides, in the concurrent order dispatch process,
a courier takes multiple orders continuously and the delivery
process of these orders is overlapped.

We design Deep Matching Network whose network struc-
ture is shown in Fig. 5. We utilize the pair (state, action)
to represent the input of Deep Matching Network and the
matching value as the single output. The deep model first
converts the sparse input features of states into dense features,
and then we feed state embedding and action vectors into
feature embedding layers respectively. The embedding is to
represent each category of high dimensional sparse features by
a compact feature vector. Then we concatenate two features
and get the matching value @) after feeding these features
into the feed-forward hidden layers. Specifically, we define
weight 0, as the weight of the deep matching network, i.e.,
actor (policy) network. For each order, we get its candidate
couriers set C} and collect all (state,action) pairs. Then
we run the Deep Matching Network forward to calculate the
matching value Q(s;,a;), which represents the possible long-
term reward of this order dispatch. The larger the matching
value, the more likely the courier will take this order.
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C. Matching Policy (7)

After calculating all possible Q(s,a) through Deep Match-
ing Network, we utilize policy g, (sf = c|al) to make order
dispatch decisions. Given all possible (state, action) pairs, we
calculate the matching value corresponding Q(s¥,at). Then,
the policy function 7y, (sf = c|a}) and is given by a softmax
function [24]:

exp(Q(st = c, at))
S, cap(Q(st = ¢/ a}))’

where sf is the candidate courier for order 7 at time step t
and 6, as the weight of policy network(Actor). Since we aim
to obtain an optimal policy to make order dispatch decisions,
we train our model of the deep matching network and save
the final weight 6,, which is utilized to make decision in the
order dispatch process.

3)

7o, (sy = cla) =

D. Learning through Critic

The critic is another function approximator, which receives
the state of agents as input and outputs the state value (V-
value) for the given pair. As Fig. 4 shows, the critic is used to
evaluate the action and give feedback to the actor. The state
value function Vj_(sF) is denoted as expected long-term value
of courier k at time step ¢ under state sf. For each courier,
at time step t, the expected long-term value in the remaining
steps of an episode is defined as

Vo.(sf) =E [Fer1+77e42 s+ " ], @

where v € [0,1] is the discounted ratio of future rewards. 6,
collects the weights of value network (critic).

We update weights of the critic using time difference
methods [25]. We dispatch orders to couriers sequentially and
store the transitions (s}, 77, ,s;,) to the experience memory
D (i.e., store experience samples of agents) [26]. Then we
sample some transitions for further training critic. The network
parameters 6. are updated by minimizing the following loss
function, with respect to the transitions collected from all
agents

Lo, = glrbes +Va.(sba) = Vo ()]
where 6. includes parameters of value network. We utilize
the state s and state sy, , in next time step ¢ + 1 as the
input of Critic Network. The output of the Critic Network is
a scalar V(s), which represents the long-term value when a
courier is at state s; after choosing action a. Then we evaluate
all available state-order pairs. The update process of DMN is
based on an advantage function

&)

A(sf al) =1y + Vo, (st1) — Vo, (sh). (6)

where the advantage function is used to reduce the high
variance of policy networks and stabilize the model. We utilize
Deep Matching Network to try to choose a good dispatch
action and the advantage function tells us how better the action

is by a TD method [25]. With the advantage function, we

define the gradient of actor by
Vo, J(0) = Vo, log 7, (57, a;) A(st, ap), (7

where 6, is the weight of actor model and 7y, (s, a?) is the
policy probability function. In the Offline Learning phase,

ALGORITHM 1: Time-Constrained Actor-Critic for
Concurrent Order Dispatch

Input: Historical order demand and courier supply,
historical delivery process
1 Initialize value network(critic) V' with parameter 6.
2 for m = 0 to maxlteration do
3 for t =0to T do
4 for each order i do
5 Pre-matching: Compute order similarity
and search the candidate courier set.
6 Find optimal match (dispatch action) :
Sample optimal state-action pair according
to state-action matching probability
computed by Equation 3, given all
constraint candidate < sy, a; > pairs.

7 Execute a;: update courier’s state base on
his/her route plan.
8 Compute V (sF) and A(s},af) and store

the transitions < s¥, af rk, sfH > to
replay memory D.

9 Updating parameters
10 for 5 = 0 to criticMaxUpdateStep do

11 Sample a batch of experience
< sf,rfﬂ,s,’f_,_l > from D
12 Update value network(critic) by minimizing the

| loss according to Equation 5
13 for 7 = 0 to actorMaxUpdateStep do

14 Sample a batch of experience
< sf,af,rf,sfH > from D

15 Update policy network (actor) according to
Equation 8

we train the Deep Matching Network by sampling a batch
historical transition {s}’,ay,rf,sF ;} from Replay Memory.
Then, based on the gradient in Eq. (7), we update the actor’s
neural network parameters 6, by the gradient descent rule as

®)

where « is the learning rate. The detailed descriptions and
learning process of TCAC are summarized in Algorithm 1.

0o < 04 + Vg, J(0),

E. TCAC Online Dispatching

In the offline learning phase, we train the DMN through the
TCAC framework. In the online dispatching phase, we make
appropriate dispatch decisions based on the learned policy
network to promote total revenue and reduce the overdue rate.
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TCAC based Online Concurrent Order Dispatch: For each
order ¢ at a certain time step, we obtain the candidate courier
set C}, which consists of couriers around the order in the same
region. Then, we formulate the order dispatch as a bipartite
graph matching problem and utilize the Kuhn and Munkres
(KM) Method [27] to solve it. In the online dispatching phase,
the dispatch problem is represented as a directed graph. In this
graph, there is a set U of order vertices u, a set C' of courier
vertices ¢, and a set E of edges e = (u,c). Based on Deep
Matching Network, we calculate the long-term value Q(s,a)
for each courier-order pair. Then we set the Q(s,a) as the
weights of edges. Suppose there are M orders and IV couriers
in a region at a certain time step, order dispatch is to find
a proper match between the M orders and N couriers. For
each iteration, the graph contains vertices of the first NV placed
orders and N couriers. Then, we aim to find the optimal match
which is formulated by Eq. (9) and KM method.

N N
arg max = Z Z aikQ(sF, al) 9)

Gik i=0 k=0

The Q(s¥,al) is calculated through the Actor-Critic model. If
courier k is in the search set C* of order 4, then we set a;;, = 1.
It means that courier & is the candidate one who takes order
i. Otherwise, we set a;; = 0, then there is no edge between
courier k£ and order ¢ in the orders-couriers bipartite graph.

F. Training and Dispatching Computation Time Analysis

Considering massive orders of instant delivery services
in rush hours and the strict delivery deadline constraint,
we accelerate our TCAC through the following two aspects
and leverage the time constraints as the opportunity: (i) In
the offline learning phase of TCAC, we shrink the action
space and constrain the solution space by time-constrained
action pruning. The action pruning module ensures that every
exploration of order dispatch action is efficient and time-
constraint satisfying and thus reduces the training time of
DRL algorithms. (ii) In the online dispatching phase, the time-
constrained courier-order matching pairs pruning module can
eliminate edges representing matching actions that could cause
overdue orders. With the time constraints, we eliminate most
of the edges in the matching graph described in Sec. IV-E to
reduce the dispatching time. Sec. VI-D gives the computation
time cost comparison. The results show that after the deep
matching network and value network have been learned,
dispatching a batch of orders to couriers at region-level takes
less than 40 milliseconds, which is efficient to meet time
requirements of the order dispatch in instant delivery services.

V. IMPLEMENTATION

We deploy our data-driven emulator in the real-world devel-
opment environment of Eleme, one of the largest instant food
delivery companies in China. In this section, we first introduce
how we plug our emulator in the development environment and
the overview of the platform. Then we detail our data-driven
emulator for order dispatch.

Delivery Create Accept Pickup .
Process ’ Order ’ Order Order Deliver
L) [} T ¥
I I — —>
Order Data Historical | |Order-Courier i )
) - Data Matching - Routing
Trajectory T T T System
4 oo B foeeeee Vo
! : ¥ Plugin ! b
- ! 1 1 | ToD Estimate Module
= n (ET)
ODPS - -
Database Computing Platform [Development enwronment]
Fig. 6. [Illustration of TCAC and Emulator deployment in development

environment of an Instant Delivery Platform

A. Plug in System Development Environment

Before implementing TCAC in real-world production envi-
ronment, we first train and test our model in development envi-
ronment. The development environment has the same dataflow
and interfaces with real-world production environment in an
instant delivery company (e.g., Ele.me Inc.). Fig. 6 plots
main components of the instant delivery system. In real-world
delivery processes, customers, merchants, and couriers upload
the real-time order status and trajectories to the platform and
the platform stores these data in ODPS database [28]. We
access these historical data in the development environment
and conduct feature generation. Our emulator and TCAC-
dispatch system perform as plug-in components. The data-
Driven emulator emulates instant delivery scenarios with his-
torical data and simulates the real-time situation of order
dispatch. TCAC system makes dispatch decisions and feeds
courier-order matching results to the emulator. The emulator
and the TCAC system are realized in Python 3.7 and deployed
in the computing platform.

B. Data-Driven Emulator in Development Environment

We design a systematic emulator to emulate instant delivery
scenarios with real-world datasets. We apply the emulator
to train our TCAC-Dispatch model and evaluate the timely
dispatch performance.

Extracting patterns and distributions from data. Partic-
ularly, we first extract patterns and distributions from the
trace data and order record data and then apply them to the
emulation framework. The processes of extracting patterns
are as follows. (i) Couriers’ online/offline distribution and
initial location distribution are obtained from order tracking
records and trajectories using a maximum likelihood estima-
tion. Orders are generated from historical order records in the
emulator. (ii) Couriers’ speed is the average speed extracting
from trajectories in the same road and time slot, which is also
affected by contexts such as weather conditions and conges-
tion. In instant delivery services, the main transport mode of
couriers is the electric bike. So the delivery speed is affected
by spatial-temporal factors and contexts and is less affected by
the mode of transportation. (iii) The number of couriers in our
emulator is time-variant according to online/offline distribution
extracting from real-world data.
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Contextual Information. Contexts such as weather condi-
tions, traffic status, and day of the week are considered in
two aspects: (i) Contexts are part of the agent’s real-time state
and input of our model (details in Sec. III-B); (ii) Contexts are
implicitly considered in the time estimate module and routing
module because weather conditions, traffic status, and day of
the week can affect the speed of couriers.

Dispatch Region. As a local delivery service, order dispatch
in instant delivery is conducted by regions. A dispatch region
is a small part of a city, which is about a few square
kilometers (e.g., 5 kmx 5 km) because the delivery scope of
instant delivery ranges from 3 to 5 km. A courier is usually
responsible for one region so that she/he is familiar with
the region and road networks. In real-world instant delivery
systems, each city is discretized into several regions and each
region is discretized into L., X L;4: rectangular grids. Each
grid is about 100 mx 100 m and the shape of each grid
is altered to reflect the existence of buildings, rivers, roads,
etc. We count the real-time distribution of couriers and orders
at grid-level to capture the fine-grained demand and supply
distribution and the order dispatch is conducted at region-level.

Emulator timelines. As is shown at the top of Fig. 6, at each
time step, the timeline of a new order is as follows: (1) Add
new orders to the emulator. (2) Extract order features and get
couriers’ state including their route plan. (3) Conduct the order
dispatch algorithm and return courier-order matching pairs. (4)
Execute matching results to the emulator and update the state
and route plan of each courier.

Revenue definition. The total revenue of the platform is
the sum of all orders’ revenue. The revenue for an order is
defined as its price minus three items: (1) the payment to the
merchant for production (e.g., food is produced by merchants
instead of the platform, similar to UberEat), (2) the couriers’
compensations for delivery (e.g., human resource), (3) the
discount caused by potential delivery overdue. Because (1) and
(2) are usually fixed after an order is placed by a customer, our
dispatch algorithm is to minimize overdue time to maximize
the total revenue of the platform.

VI. SYSTEM EVALUATION
A. Dataset Description

We evaluate our design based on the real-world dataset
collected from Eleme and build a data-driven emulator. The
details and implementation of the Emulator are introduced in
Sec. V-B. (i) Order tracking records: The order tracking
data-set includes 36.48 million orders involved with 42,000
couriers in Shanghai. The period of this dataset is from
2019.09.01 to 2019.09.30. Due to the agreement with Eleme
company, we are able to show the evaluation results in a sub-
region of Shanghai (i.e., 6km x 6km) including 110853 orders
and 1054 couriers. The sub-region is further discretized into
60 x 60 grids and the grid size is the same as that of the real-
world platform The primary fields and detailed information
of the tracking order dataset are shown in Table.Il. The
order information consists of order id, price, delivery fee, key
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temporal information, and key spatial information. (ii) Road
network: We obtain road networks from OpenStreetMap [29]
in some regions of Shanghai including road information with
road types and road lengths, unidirectional or not, and detailed
location node information with latitude and longitude.

TABLE 11
AN EXAMPLE OF ORDER TRACKING DATASET.

R Merchant Lat. Merchant Long. User Lat. User Long.
Spatial
31.6043 114.4268 31.6243 114.4356
Create Order Accept Order Pick up Delivered
Temporal
2019/9/1 11:23  2019/9/1 11:25  2019/9/1 11:35  2019/9/1 12:14

B. Experimental Setup

1) Evaluation Configuration: We implement the proposed
model and other baselines with TensorFlow 1.14, Python 3.6
environment and train these with 16GB memory and Tesla
V100-SXM2 GPU. The default order dispatch mechanism
is batch dispatch where orders are packed into batches and
dispatched to couriers. The one-month data are divided into
four weeks. We use the first three weeks’ data to train the
deep network and the last week’s data as evaluation.

2) Parameters Setting: The hyper-parameters are set as
follows. The hidden layers of both the DMN and the value
network are three-layer networks (256, 128, 64). Each network
layer of two networks has a ReLLU activation function. The
batch size of two networks is 256 and the size of experience
replay memory is le 4+ 5. The optimizer is Adam Optimizer
with a learning rate of 0.001. The size of experience replay
memory is set to be 10° and the batch size is set to be 256.
We use AdamOptimizer as the optimizer with a learning rate
of 0.001. The discount factor v = 0.9. We set 5 min as a time
slot, so that one day is divided into 288 time slots.

3) Baselines:

SD2 is the Shortest Distance based Dispatch (SD2)
method [30]. For each new order, it will be dispatched to the
nearest courier without considering time requirements and
other factors. By default, the dispatch mechanism of SD2 is
sequential dispatch.

OSquare: OSquare is a novel dispatch method under se-
quential dispatch mechanism in instant delivery [18]. For
each new order, OSquare searches for couriers around this
order and estimates these couriers’ overdue rate and the
increased journey distance with the route prediction. The
order will be dispatched to the courier with the least overdue
rate and the least increased journey distance.

e Double DQN with action search (DDQN-as): DDQN-
as [23] is a Double-DQN with spatio-temporal action search
based dispatch method from a single driver perspective in
ride-sharing. This method utilizes a deep Q network to
obtain the () value of all feasible action sets (i.e., all possible
order-driver matching pairs or particular trips to a driver).
The reward function only considers the total fee of each trip.
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TABLE III
PERFORMANCE COMPARISON IN TOTAL REVENUE AND OVERDUE RATE

Method Per day Revenue per hour in midday | Revenue per hour in evening
Total Revenue Overdue Rate 11:00-12:00 12:00-13:00 17:00-18:00 18:00-19:00
SD2 [30] 100.0% =+ 0.6% 3.94% + 0.09% 100.0% 100.0% 100.0% 100.0%
OSquare [18] 106.5% =+ 0.8% 1.85% £ 0.12% 113.7% 104.1% 104.5% 105.7%
DDQN-as [23] 112.9% + 0.8% 1.64%=+ 0.09% 112.3% 106.5% 107.8% 108.8%
MPBM [31] 113.1% £+ 1.1% 1.47% + 0.16% 115.9% 114.8% 108.8% 108.2%
TCAC-Dispatch | 122.9% + 0.9% 1.45% + 0.18% 132.6% 115.3% 111.4% 122.1%
o Multi-Iteration Packing Based Matching (MPBM): —— TCAC -#- MPBM —*— DDQN-as -®- OSquare -4-- SD2
MPBM [31] is a constrained optimization-based order dis- By m 10
patch method considering order price. The order dispatch s 5]
problem is represented as a directed graph. There is a set g 9 % ]
U of order vertices u, a set C' of courier vertices ¢, and a E 6 E
set E of edges e = (u,c). The weight of e is profit gain 5 3 Y
considering the price and the increased time calculated from & 0 3 e = 7 "

route prediction. MPBM runs the KM method for several
iterations to complete the order dispatch process.

4) Metric: The evaluation metrics are as follows.

Total revenue of platform: Total revenue of the platform
is the sum of orders’ revenue minus compensations for
overdue orders. We also calculate the percentage increase
of total revenue of each algorithm comparing with SD2.
Overdue rate: For N orders, overdue rate
{Oilei>tii=L....N} i defined as the number of overdue
orders divided by the total number of orders, where O;
is the order 4, t; is the ToD of O; and e; is the actual
delivery time of O;.

C. Experimental Results

Main Performance. We first present the comparison in terms
of the total revenue and overdue rate during a day. Table. III
shows that our model is better than baseline models in both
the total revenue and overdue rate. Our TCAC model achieves
22.9% of the increase in total revenue compared with shortest-
distance based Order dispatch (SD2). Besides, our model
reduces the overdue rate to 1.45%, which is lower than that
of other methods. Then, we study the model performance in
rush hours during one day. Table. III also shows performance
comparison in four rush hours one day. The performance of
TCAC is better than baselines in all these hours. From 11:00
to noon, TCAC achieves 32.6% of the increase in total revenue
compared with SD2. It demonstrates that TCAC is suitable for
high-concurrency order dispatch scenarios. Table. III shows
that TCAC-Dispatch model greatly increases the revenue of
instant delivery platforms and reduces the overdue rate given
massive number of orders and limited couriers.

Impact of Time of Day on Total Revenue Performance.
Fig. 7 illustrates the performance in maximizing total rev-
enue in midday and evening peak. As shown in Fig. 7, the
performance of TCAC-Dispatch and other baselines dispatch
methods is about the same at nine o’clock because the total
number of orders is limited and the couriers’ capacity is
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Fig. 7. Performance comparison in midday and evening peaks

enough in the systems. Then, as the number of orders increases
in the following hours, the TCAC-Dispatch model always
has better performance in revenue hourly. The curves in
Fig. 7 illustrate that our model has the largest increase in
overall revenue at noon compared with other models. The
TCAC-Dispatch model has a better performance in peak hours
because our model assigns abundant orders to limited couriers
appropriately, which proves the effectiveness of the proposed
TCAC model in maximizing the total revenue of platforms.

Ablation Study of Actor-Critic Component under Two
Dispatch Mechanisms. We evaluate the effectiveness of the
actor-critic module by comparing it with “TCAC-”, OS-
quare, and SD2. “TCAC-" is the TCAC without the actor-
critic module, which only includes a deep matching network
and utilizes epsilon-greedy to choose actions. In real-world
systems, to satisfy different scenarios and objectives, there
are two dispatch mechanisms, i.e., batch order dispatch and
sequential order dispatch. In batch dispatch, orders are packed
into batches and dispatched to couriers. In the sequential
order dispatch, we dispatch orders one by one sequentially.
We evaluate the effectiveness of time-constrained actor-critic
design by comparing with the aforementioned three baselines
under two different dispatch mechanisms respectively. In each
dispatch mechanism, TCAC leverages the actor to choose
dispatch actions and uses critic to evaluate actions. OSquare
and SD2 are sequential order dispatch algorithms mentioned
in section VI-B3. “OSquare-b” and “SD2-b” are the versions
of “OSquare” and “SD2” under the batch dispatch mechanism.
Fig. 8 shows that TCAC has a better performance in reducing
the overdue time of overdue orders in the batch dispatch mech-
anism. From Fig. 9, the performance is better in enhancing the
total revenue when we choose TCAC as the order dispatch
scheduler. TCAC increases 14.89 % of total revenue than
“SD2-b” under the batch order dispatch mechanism.
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From Fig. 10, we find that TCAC also has a better perfor-

between one order is created and is assigned) in real-world
systems is less than 5 minutes. Fig. 15 shows that TCAC
makes dispatch decisions for a batch of orders in each time slot
within 40 milliseconds in the online dispatching phase, which
is less than DDQN-as and MPBM and is faster enough for
the real-time order dispatching requirements compared with
the accepted duration in practical environments. Also, we find
that “TCAC-t” has a longer dispatching time because of the
lack of time-constrained dispatch action pruning module. Note
that two heuristic baselines (SD2 and OSquare) are faster but
their performances are far worse than the proposed method.

mance in enhancing total revenue and reducing the overdue
time of overdue orders under both the sequential dispatch
mechanisms. Fig. 11 shows that the total revenue of TCAC
increases high to 22.9 % than SD2. The CDF of overdue time
and the total revenue in both batch order dispatch and sequen-
tial order dispatch prove the effectiveness of the actor-critic
module. In addition, combined with the main performance, we
find that TCAC not only reduces the overdue rate of all orders
but also reduces the overdue time of these overdue orders.
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Fig. 10. Seq. dispatch Fig. 11. Seq. dispatch

D. Convergence of TCAC and Computation Time Comparison

Convergence of TCAC: Fig. 12 demonstrates that the training
of the value network (Critic) converges to a near-optimal
solution after 3,000 steps of training.

30 =
2 25 E2s
% 20 é
R=) 15 =20
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0 =
0 3000 6000 9000 12000

Training step TCAC TCAC-t DDQN-as

Fig. 12. Loss of critic module Fig. 13. Training time cost

Training Time Cost Comparison: To make the comparison
of computation cost, we implement and train the proposed
model, DDQN-as, and “TCAC-t” (i.e., “TCAC-t” is the TCAC
without the time-constrained action pruning module) with
16GB memory and Tesla V100-SXM2 GPU. As is shown in
Fig. 13, in the offline learning phase, we use average 15.3
minutes to train TCAC in our experiments, which is less
than other deep reinforcement learning based baselines, i.e.,
“TCAC-t” (23.9 minutes) and DDQN-as (18.2 minutes).

Dispatching Time Cost Comparison: Fig. 14 shows that
64% of the accept duration of orders (i.e., the time duration
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VII. DISCUSSION
A. Insights and Lessons Learned

Concurrent order dispatch should consider the time-
constrained dynamic route of couriers. Based on our data-
driven analysis and evaluation results, we learned the follow-
ing lessons. (i) Courier’s route changes in real-time due to
accepting new orders. An inappropriate dispatch decision will
increase the detour time and delivery time of existing orders
(even make them overdue). (ii) The route changes due to
matching new orders also have an impact on future revenues.
An appropriate order dispatch helps the courier match more
similar orders “on the fly” to improve the efficiency of the
courier and reduce average the delivery time of orders.

B. Practical Impacts

Although TCAC is not fully adopted in the dispatching pro-
cess yet, we have achieved the following practical impacts: (i)
It is a tentative step towards deep-learning-based dispatch from
traditional operations-research-based (OR) dispatch, showing
the potential obstacles; (ii) Compared to the traditional open-
loop optimization-based solutions, potential time increase due
to dispatching (which is strongly related to overdue rate) is
used as the real-time feedback in a closed-loop fashion.

C. Implication to Real-time Cyber-Physical Systems

We study the time-constrained concurrent order dispatch for
on-demand delivery to reduce the overdue rate and improve
revenues. In other real-time cyber-physical systems, we could
also find similar needs to dispatch and schedule appropriately
to satisfy strict time constraints and improve efficiency and our
TCAC has the potential to be generalized to these scenarios
with minor changes. For example, drivers or couriers in ride-
sharing and logistics systems need to pick up customers or
packages in limited time windows. ambulances need to pick
up and transport patients to hospitals as soon as possible.
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D. Limitations

In designing, implementing, and deploying a deep-learning-
based dispatch system, we met the following obstacles: (i)
Compatibility. Given the compatibility requirements on a
commercial platform, it is difficult to completely replace the
existing system (e.g., OR-based dispatch) with a brand new
system (DL-based), because massive work is needed to remold
the lower-layer input modules (e.g., data collection) and the
upper-layer application modules (e.g., software development
kit (SDK) on courier APPs). (ii) Across-City Generalizability.
In this paper, we study the instant delivery data from Shang-
hai, which may provide some obstacles when deploying our
model to other cities. However, we believe this obstacle is
manageable and our model has the potential to be generalized
to other cities. This is because we did not use any city-specific
model design and data collected in Shanghai are representative
compared to other tier-1 cities in China.

E. Ethics, Consent, and Privacy

we have taken three steps for privacy protection: (i)
Anonymization: All data analyzed is anonymized by service
providers. All identifiable IDs, such as courier IDs, order
tracking IDs, merchant IDs are replaced by serial identifiers;
(ii) Minimal Exposure: We process data that are useful for our
order dispatch project, including timestamps, locations, and
GPS trajectory records. Then we drop other information for the
minimal exposure; (iii) Aggregation: Our model analyzes the
aggregated results and does not focus on an individual courier
or a specific user. Hence, the learned model is less likely to
reveal sensitive information about specific individuals.

F. Data Release for Reproducibility

To make our work reproducible and beneficial for the RTSS
community, we share one-week data used in this paper for
future research'.

VIII. RELATED WORK

Extensive studies have been conducted to optimize the
real-time order dispatch process in transportation and 020
scenarios. We have witnessed unprecedented advances in ap-
plying reinforcement learning algorithms to complicated order
dispatch in real-world systems [25], [26], [32]. Among existing
order dispatch research, most of them aim to optimize indepen-
dent order dispatch, while some others cooperatively optimize
concurrent order dispatch. Based on this two dimensions, we
divide order dispatch research into four different categories,
which is shown in Table IV.

TABLE IV
CATEGORIES OF RELATED WORKS ON ORDER DISPATCH

Order Dispatch Independent Concurrent

Non-Learning based | [15]-[17], [33] [18], [34]-[37]

Learning based [71-19], [14] TCAC(Our work)

Uhttps://tianchi.aliyun.com/dataset/dataDetail ?datald=103969

A. Non-Learning based Methods

Independent Dispatch: Tong et al. [15] develop a prediction-
based online dispatching algorithm to reduce the time com-
plexity of task assignment. Some optimization-based schemes
have been proposed for urban taxi dispatching with passenger-
driver matching stability [33]. To reduce idle driving, Xie et
al. [16] present a dispatching technique for vehicles based on
a demand and supply model.

Concurrent Order Dispatch: There are some existing works
for concurrent order dispatch. Xu and Chen et al. [38] formu-
lated the dispatching problem as a non-linear multiple choice
knapsack problem with KL-divergence as objective function,
which is able to quickly dispatch agents to given spatial
distributions. Steever et al. [34] provide a mixed-integer linear
programming formulation about food delivery and develop
an auction-based heuristic dispatch method. Yildiz et al. [35]
model food delivery problem as a dynamic vehicle routing
and pay attention to routing problems of couriers. But most
of them are based on small-scale data and work on a simplified
problem setting. Zhang et al. [18] study the route prediction
in instant delivery and conduct order dispatch based on route
prediction. A task grouping method [36] is proposed for 020
take-out food ordering and delivery services. They group
delivery tasks into groups with high share-ability to improve
food delivery efficiency.

B. Learning based Methods

Independent Dispatch: Reinforcement learning has been used
in ride-sharing to efficiently assign orders to drivers one by
one independently. Most of previous works [7]-[9] study fleet
management and model the order dispatch in ride-sharing as a
decision-making task considering both immediate and future
rewards. Besides, Li et al. [39] apply reinforcement learning in
express delivery to guide couriers to deliver and serve express
orders. Oda et al. [40] propose a convolutional neural networks
based system to relocate connected taxicabs. Jin et al. [14] pro-
pose a hierarchical multi-agent reinforcement learning solution
to combine order dispatching and fleet management for ride-
sharing. The delivery process in these studies is independent.
These systems dispatch a new order to a driver when she/he
finishes the previous order.

Concurrent order Dispatch: Our TCAC is the first one
in this category. Different from existing works, this paper
proposes a practical reinforcement learning based order dis-
patch framework for instant delivery. We conduct extensive
data analysis and evaluation with a large-scale dataset. To
our best knowledge, this is the first work that applies deep
reinforcement learning to real-time concurrent order dispatch
in instant delivery scenarios.

IX. CONCLUSION

In this work, we propose an actor-critic based order dis-
patch method for instant delivery, which aims at reducing
the delivery overdue rate and maximizing the total revenue.
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We first conduct an empirical data analysis based on real-
world order tracking data and couriers’ data, and then identify
patterns and potential problems of current dispatch systems.
Taking into account the characteristics of the real-time dispatch
process, we propose the TCAC-Dispatch to promote the total
revenue and reduce the overdue rate. We evaluate our method
based on a real-world dataset from an instant delivery company
called Eleme. The experimental results show that our method
achieves a 22% increase in total revenue and reduces the
overdue rate by 21.6% at the same time.
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