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Multiphoton processes, where transparency appears, have long fascinated physicists. Plasma
screening effects are investigated on three-color three-photon bound-bound transitions in hydrogen
atom embedded in Debye plasmas; where photons are linearly and circularly polarized, two left
circular and one right circular. All possible combinations of frequency and polarization are
considered. Analytical wave functions are used for initial and final states along with the pseudostate
wave functions for intermediate states. The analytical wave functions are obtained from the
modified wave functions for screening Coulomb potential �Debye model� using Ritz variational
method. Here, we have found three-photon transparency for lower values of Debye length. This type
of phenomenon occurs due to energy level shifting in the presence of Debye plasma environments.
The description of resonance enhancements and three-photon transparency is reported in the present
context along with the region of resonance enhancements and three-photon transparency. © 2009
American Institute of Physics. �doi:10.1063/1.3258665�

I. INTRODUCTION

Currently, there is a rapid growth in both experimental
and theoretical studies of multiphoton processes and multi-
photon spectroscopy of atoms, ions, and molecules in chem-
istry, physics, biology, material science, etc., for a collection
of review papers in these areas we refer to the book edited by
Lin et al.,1 where a comprehensive bibliography can be
found. Nonlinear optical method such as two-photon and
three-photon absorption are powerful tools to investigate
electronic properties. Because of additional degree of free-
dom in experiments, where more than one photon is partici-
pating in an elementary absorption process, one expects ad-
ditional information as compared to one-photon absorption.
Due to different selection rules new electronic resonances
can be excited.

Plasma physics plays an enormous role both in the natu-
ral world and in the world of technology. We use plasmas for
lighting �candle flames, campfires, fluorescent lights, sodium
vapor lights, etc.�, industrial processing �microchips, studies
of chemical reactions, etc.�, fusion energy research and neu-
tron production, x-ray lasers, etc. Presently, considerable in-
terest has been cultivated in the study of atomic processes in
plasma environments2–18 because of the plasma screening ef-
fect on the plasma-embedded atomic systems. A number of
studies have been conducted on the investigation of the in-
fluence of plasma on scattering processes. The screening ef-
fects have played a crucial and significant part in the inves-
tigation of plasma environments over the past several
decades. Different theoretical methods have been employed
along with the Debye screening to study plasma
environments.12–29 Debye plasma is considered here, the
concept of the Debye screening is valid only in a steady,
thermodynamical equilibrium, and linear plasma.

The hydrogen atom has special significance in quantum
mechanics and quantum field theory as a simple two-body
problem physical system which has yielded analytical solu-
tion in closed form. Many surveys have been conducted on
the simplest atom, resulting in the vast accumulation of data
and reports which have been systematically arranged and
well documented in the literature. In the present context,
linearly and circularly polarized three-color three-photon
spectroscopy of the 1s-2p transition in hydrogen atom �free
and immersed in Debye plasmas� is studied theoretically for
the first time, to our knowledge.

The Hamiltonian of a hydrogen atom surrounded by De-
bye plasmas in atomic unit is

H = − �2 −
1

r
e−r/�D, �1�

where −�1 /r�e−r/�D is the Debye screening potential for a
hydrogen atom with �D being the Debye screening length.

II. THEORY

Our goal is to calculate transition amplitudes of hydro-
gen atom in Debye plasma environment. For our present
study, we have considered variational method for initial and
final states and adopted pseudostate summation technique for
intermediate states. Below we show the entire analytical cal-
culation of the current context by three subsections.

A. Linearly polarized three-color three-photon

The purpose of the work is a study of the excitation of
ground state atomic hydrogen, by simultaneous absorption of
three photons of frequencies �1, �2, and �3. Here, all the
possible values of �1, �2, and �3 are considered. Six Feyn-
man diagrams �Fig. 1� of third order are associated with thea�Electronic mail: spaul@pub.iams.sinica.edu.tw.
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process in which three photons are absorbed. In the dipole
approximation, the amplitude of the process is constructed
using a third-order tensor as follows:

M = 1
6 ���1�2�3

��1,�12� � + ��1�3�2
��1,�13� �

+ ��2�3�1
��2,�23� � + ��2�1�3

��2,�21� �

+ ��3�1�2
��3,�31� � + ��3�2�1

��3,�32� �� , �2�

where

��j�k�l
= �

n,n�

�f ��� j · r��n��n���k · r��n���n����l · r��i�
�En − � jk� ��En� − � j�

, �3�

�j ,k , l� corresponds to the six permutations �1, 2, 3�, �1, 3, 2�,
�2, 3, 1�, �2, 1, 3�, �3, 1, 2�, and �3, 2, 1� for three different
frequencies. Here, � j� is the unit polarization vector of the
incident radiation field with frequency � j. From energy con-
servation, we have Ef −Ei=��1+��2+��3, where Ei and Ef

are energies of initial state �i� and final state �f�, respectively.
In the above expression, �n� and �n�� are intermediate states
and En, En� are corresponding energies. The parameters � j

and � jk� corresponding to the six Feynman diagrams in Fig. 1
are

� j = Ei + �� j, � jk� = Ei + �� j + ��k. �4�

For simplicity, we consider all three photons are linearly po-
larized, i.e., � j� =�k� =�l� =��. Therefore, the expression �3� re-
duces to an elementary form, given below,

��j�k�l
= �

n,n�

Cnn�

�En − � jk� ��En� − � j�
, �5�

where

Cnn� = �f ��� · r��n��n��� · r��n���n���� · r��i� . �6�

Here we consider linear polarization, so

�� · r� = � 4
3��1/2rY10�r̂� . �7�

There are two available angular momentum channels for
three-photon 1s-2p transition, one is s-p-s-p channel and the

second is s-p-d-p channel. The expressions of Cnn� for dif-
ferent channels are varied as given below: for s-p-s-p
channel,

Cnn� =
1

3	3
�R2p�r�Rns��Rns�r�Rn�p��Rn�p�r�R1s� , �8�

and for s-p-d-p channel,

Cnn� =
4

15	3
�R2p�r�Rnd��Rnd�r�Rn�p��Rn�p�r�R1s� . �9�

We consider variation method for initial and final states and
pseudostate summation technique for intermediate states,
which includes both discrete and continuum. R1s, R2p are
radial part of the variational wave functions �Eq. �2� in Ref.
30� and Rnp, Rn�s, Rn�d are radial part of the pseudostate wave
function �Eq. �3� in Ref. 27�. We denote D1s-p-s-2p

�3�L and
D1s-p-d-2p

�3�L as the transition amplitudes for 1s-2p transitions
followed by s-p-s-p channel and s-p-d-p channel, respec-
tively. Again we consider

D1s-2p
�3�L = D1s-p-s-2p

�3�L + D1s-p-d−2p
�3�L , �10�

where D1s-2-p
�3�L are the transition amplitudes for 1s-2p transi-

tion. L indicates linearly polarized photons.

B. Circularly polarized three-color three-photon

Here, we study 1s-2p transition in hydrogen atom, by
simultaneous absorption of three photons �1, �2, and �3 of
frequencies �1, �2, and �3. The orientations of three photons
�1, �2, and �3 are left circular, right circular, and left circular,
respectively. Here all possible values of �1, �2, and �3 are
considered. We regard circular polarization, two photons are
left circular and one is right circular. The process of two left
and one right circular polarized photons is equivalent to the
process of two right and one left circular polarized photons.
There are two available angular momentum channels for
three-photon 1s-2p transition, one is s-p-s-p channel and the
second is s-p-d-p channel. All possible combinations of po-
larization and frequency are presented in Fig. 2 along with
corresponding Feynman diagrams. There are three possible
combinations of circular polarization, these are left-right-left
�LRL�, right-left-left �RLL�, and left-left-right �LLR�. Selec-
tion rule indicates that LLR circular polarization arrange-
ment is impossible for s-p-s-p channel. In the dipole ap-
proximation, the amplitude of the general process is
constructed using a third-order tensor, followed by the Feyn-
man diagrams �Fig. 2�, as follows:

M =
1

np
���1�2�3

LRL + ��3�2�1

LRL + ��2�1�3

RLL + ��2�3�1

RLL

+ ��1�3�2

LLR + ��3�1�2

LLR � , �11�

where superscripts denote sequence of circular polarization
�left and right� and np is the total number of possibilities.
Here

FIG. 1. �Color online� Feynman diagrams associated with the process of
excitation of the hydrogen atom initially in the ground state, by three-photon
absorption, all of the different frequency.
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��i�j�k

IJK = �
n,n�

�f ���I · r��n��n���J · r��n���n����K · r��g�
�En − �ij� ��En� − �i�

, �12�

where �I� is the unit polarization vector of the incident radia-
tion field with frequency �i. I is either L or R corresponding
to left and right circular polarization. From energy conserva-
tion, we have 	E=Ef −Eg=��1+��2+��3, where Eg and Ef

are energies of the initial state �g� and the final state �f�,
respectively. In the above expression, �n� and �n�� are inter-
mediate states and En, En� are the corresponding energies.
The parameters �i and �ij� corresponding to the six Feynman
diagrams in Fig. 2 are

�i = Eg + ��i, �ij� = Eg + ��i + �� j . �13�

Here we consider circular polarization, so

��I · r� = � 4
3��1/2rY1
I

�r̂� , �14�

where 
I=1 for left circular polarization �I=L� and 
I=−1
for right circular polarization �I=R�. After evaluating the an-
gular integrations, Eq. �12� reduces to an elementary form,
given below,

��i�j�k

IJK = FIJK�
n,n�

Cnn�

�En − �ij� ��En� − �i�
, �15�

where FIJK is the angular integration factor and

Cnn� = �Rf�r�Rn��Rn�r�Rn���Rn��r�Rg� . �16�

In the above expression, Rg and Rf are radial parts of the
initial and final state wave functions, respectively, and Rn,
Rn� are that of intermediate states. Analytical wave functions
are used for initial and final states; for screening Coulomb
potential �Debye model�, we use modified wave function29

based on Ritz variation method. Rn and Rn� are calculated by
using pseudostate summation technique30 with basis size of
30. The factor FIJK is the product of three angular integra-
tion, express as

FIJK = 
4�

3
�3/2

�Yl1m1
�Y1
I

�Yl2m2
� � �Yl2m2

�Y1
J
�Yl3m3

�

��Yl3m3
�Y1
K

�Yl4m4
� , �17�

where 
N=+1, 	l= �1, 	m=+1 for left circular polariza-
tion and 
N=−1, 	l= �1, 	m=−1 for right circular polar-
ization. We denote D1s-p-s-2p

�3�C and D1s-p-d-2p
�3�C as the transition

amplitudes for 1s-2p transitions followed by s-p-s-p channel
and s-p-d-p channel, respectively. The expressions of
D1s-p-s-2p

�3�C and D1s-p-d-2p
�3�C are given below,

D1s-p-s-2p
�3�C = − 1

4 ���1�2�3

LRL + ��3�2�1

LRL + ��2�1�3

RLL + ��2�3�1

RLL � ,

�18�

D1s-p-d-2p
�3�C = − 1

6 ���1�2�3

LRL + ��3�2�1

LRL + ��2�1�3

RLL + ��2�3�1

RLL

+ ��1�3�2

LLR ��3�1�2

LLR � . �19�

Again we consider

D1s−2p
�3�C = D1s-p-s-2p

�3�C + D1s-p-d-2p
�3�C , �20�

where D1s-2p
�3�C are the transition amplitudes for 1s-2p transi-

tion. C indicates circularly polarized photons.

C. Method

We calculate the initial �1s� and final �2p� states by
variation method, a short description of the approach is pre-
sented here �for detail, see Ref. 29�. The radial Schrödinger
equation for hydrogen atom in dense plasma would be given
by

�−
�2

2m

 d2

dr2 −
l�l + 1�

r2 � −
Ze2

r
e−r/�D�Pnl�r� = EnlPnl, �21�

where Pnl�r� is the radial wave function for the nlth shell.
The numerical solutions and higher order perturbation calcu-
lation have been evaluated for Eq. �21�. Here we shall con-
sider a simple analytical method to obtain the solution. Our
approach is the same as the procedure of Jung12 but in a
more general way. Jung has calculated for the 1s, 2s, and 2p
states only. The solutions for Eq. �21� are assumed to be in
the hydrogenic form with a variation parameter. The trial
wave function is considered, as follows:

FIG. 2. �Color online� Combinations of circular polarizations �left side of
the figure� and corresponding Feynman diagrams �right side of the figure�,
associated with the process of excitation of the hydrogen atom by absorption
of three photons. Arrangement: diagram 1, left-right-left; diagram 2, right-
left-left; diagram 3, left-left-right. �1, �2, and �3 are three photons of fre-
quencies �1, �2, and �3 and polarization left circular, right circular, and left
circular, respectively.
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Pnl�r� � rRnl�r�

=
1

n

 �n − l − 1�!


�n + l�! �1/2
 2r

n

�l+1

Ln−l−1
2l+1 
 2r

n

�e−r/n
, �22�

where 
 is the variational parameter and


 → az for �D → � , �23�

az=a0 /z, a0 is Bohr radius, and �D→� indicates plasma free
situation. Ln-l-1

2l+1 is the usual Laguerre polynomial. Substitute
the expression of trial wave function into the Schrödinger
equation, we get

�Enl� = −
�2

2m
 1

n2
2 −
2



�

0

�

Pnl�r�
1

r
Pnl�r�dr�

− Ze2�
0

�

Pnl�r�
1

r
e−r/�DPnl�r�dr . �24�

After evaluating the integrations and simplification, we have

�Enl� =
�2

2m

1

n2
2 −
Ze2

n2

·

1


1 +
n


2�D
�2n

� �
k=0

n−l−1 
n + l

k
�
n − l − 1

k
�
 n


2�D
�2k

, �25�

which is the expectation value of the nl state energy of hy-
drogen atom in plasmas. Equation �25� shows that the energy
level of hydrogen atom in plasmas depends on both n �the
principal quantum number� and l �the orbital quantum num-
ber�. The parameter 
 is obtained from the minimization
condition of �Enl�, i.e., � /�
�Enl�=0 which gives


 = az
1 +
n


2�D
�2n� n2
 


�D
�


1 +
n


2�D
� �

k=0

n−l−1

Ak
 n


2�D
�2k

+ �
k=0

n−l−1

�1 − 2k�Ak
 n


2�D
�2k�

−1

, �26�

where

Ak = 
n + l

k
�
n − l − 1

k
� . �27�

The variational parameter 
 is calculated by fixed point it-
eration method with the initial condition 
0=az �by the help
of condition �23��. We calculate the intermediate states by
using the pseudostate summation method �for detail, see
Refs. 28 and 29�. The basis functions of the pseudostate
method are taken of the form �Drachman et al.30�

� j = e−arrl+jYlm��,��, j = 0,1, . . . ,N − 1, �28�

where a is the basis parameter, l is the orbital angular mo-
mentum, and N is the basis size. Here it should be noted that
the parameter a is adjustable. We consider the values of the

adjustable parameter a=1 for s-states, a=0.5 for p-states,
and a=0.3 for d-states. The value of N is 30 in the present
calculations.

The wave functions are expanded in terms of linear com-
binations of the basis functions as

�n = �
j=0

N−1

C�j,n�� j �29�

and we have

�n�H�n�� = En	nn�, �n�n�� = 	nn�. �30�

The finite-dimensional eigenvalue problem corresponding to
the Hamiltonian of a hydrogen atom in plasmas field is the
following:

�H� − En	� ��n� = 0, �31�

where H� and 	� are the Hamiltonian matrix and the overlap
matrix, respectively �for more detailed see the Ref. 27�.

III. RESULTS AND DISCUSSION

In the present section, we demonstrate some calculated
data with a short description about resonance enhancement
and three-photon transparency.

A. Linearly polarized photons

Figure 3 shows three-photon 1s-2p transition amplitudes
for free hydrogen atom as a function of �1 and �2, the fre-
quencies of photons. In Figs. 4 and 5, we observe the partial
transition matrix elements due to the s-p-s-p and s-p-d-p
channels, respectively. These figures show that the partial
transition amplitudes of s-p-s-p channel dominate that of for
s-p-d-p channel. In Figs. 3–5, we observe three resonance
enhancements when the pair of frequencies ��1 ,�2�,

FIG. 3. �Color� Transition matrix elements D1s-2p
�3�L for 1s-2p transition in free

hydrogen atom as a function of photon frequencies �1 and �2. L indicates
linearly polarized photons.
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��2 ,�3�, and ��3 ,�1� each reaches minimum values. There
is no three-photon transparency for free hydrogen. In the
presence of Debye plasma field with Debye length of 7, we
observe three-photon transparency �shown in Fig. 6� and
resonance enhancements, similar to the free hydrogen case,
when frequencies of two photons are very small. As free
hydrogen case, the magnitudes of transition amplitude for the
s-p-s-p channel �Fig. 7� are always greater than those of for
s-p-d-p channel �Fig. 8�. In Figs. 6 and 7, we observe some
stripe in the curve surfaces. Those are no physical signifi-

cance. To construct the prominent figures, the used software
package automatically generates such type of ribbon. In the
case of s-p-d-p channel transition amplitudes, there is no
three-photon transparency. We calculate three-photon transi-
tion amplitudes for �D=�, 100, 50, 10, 9, 8, and 7. Three-
photon transparency remains absent from large values of De-
bye length up to �D=10, for �=9, three photon transparency
is started to appear. The shapes of the curves for three-
photon 1s-2p transition amplitudes are more or less the same
for �D=�, 100, 50, and 10; only the bottom of the curves
become flatter as �D decreasing. The diagrams of transition
matrix elements for �D=9, 8, and 7 are similar. In Tables I
and II, we report some numerical data of partial transition
matrix elements D1s-p-s-2p

�3�L and D1s-p-d-2p
�3�L for �D=� and �D

FIG. 4. �Color online� Partial transition matrix elements D1s-p-s-2p
�3�L for 1s-2p

transition in free hydrogen atom as a function of photon frequencies �1 and
�2. L indicates linearly polarized photons.

FIG. 5. �Color online� Partial transition matrix elements D1s-p-d-2p
�3�L for 1s-2p

transition in free hydrogen atom as a function of photon frequencies �1 and
�2. L indicates linearly polarized photons.

FIG. 6. �Color� Transition matrix elements D1s-2p
�3�L for 1s-2p transition in

hydrogen atom embedded in Debye plasma with Debye length of 7 as a
function of photon frequencies �1 and �2. L indicates linearly polarized
photons.

FIG. 7. �Color online� Partial transition matrix elements D1s-p-s-2p
�3�L for 1s-2p

transition in hydrogen atom embedded in Debye plasma with Debye length
of 7 as a function of photon frequencies �1 and �2. L indicates linearly
polarized photons.
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=7, respectively. Here, we present transition matrix elements
for �D=7. The computed one-color three-photon transition
amplitudes for �1=�2=�3 agree excellently with the results
of Thayyullathil et al.31 and our earlier work.29 In our pervi-
ous calculation29 we used pseudostate summation method,
the basis functions are different from the usual basis func-
tions, to evaluate initial and final state wave functions.

1. Resonance enhancement

The process is said to be resonant whenever an interme-
diate state of the target spectrum is closely reached from the
initial state by absorption of one or two photons. In the
present section, we discuss about resonance enhancement for
individual channel. From Eqs. �2�, �4�, and �5� the transition
matrix element M can be expressed as

M =
1

6 �
n,n�

Cnn�
�
i=1

6
1

Di
� . �32�

The denominators Di �i=1,2 , . . . ,6� are given below,

D1 = �	n� − ��1��	n − ��1 − ��2� ,

D2 = �	n� − ��1��	n − 	E + ��2� ,

D3 = �	n� − ��2��	n − 	E + ��1� ,

�33�
D4 = �	n� − ��2��	n − ��2 − ��1� ,

D5 = �	n� − 	E + ��1 + ��2��	n − 	E + ��2� ,

D6 = �	n� − 	E + ��1 + ��2��	n − 	E + ��1� ,

where 	n=En−Eg and 	n�=En�−Eg. The six conditions of
resonance, i.e., where the denominators become close to zero
�need not be zero� are presented below,

��1 � 	n�, ��2 � 	n�, ��1 + ��2 � 	E − 	n�,

�34�
��1 � 	E − 	n, ��2 � 	E − 	n, ��1 + ��2 � 	n,

we observe resonance enhancement when 	n and 	n� belong
to the interval �0,	E�. We notice that for s-p-s-p channel
	1� belongs to the interval �0,	E� for free hydrogen atom �it
should be noted that 	1� is very close to 	E, the difference is
less than 10−30� and 	1� and 	2 belong to �0,	E� when
�D=7. The values of 	E for �D=� and �D=7 are different.
It follows from the set of inequalities �34�, there are three
resonances for free hydrogen atom �satisfy three conditions
in Eq. �34�� and six resonances for �D=7 �satisfy six condi-
tions in Eq. �34��. In the case of s-p-d-p channel only 	1�
belongs to the interval �0,	E� for both cases, free hydrogen
and in the presence of Debye plasmas with Debye length of
7. Therefore we get only three resonances for s-p-d-p chan-
nel in both cases.

FIG. 8. �Color online� Partial transition matrix elements D1s-p-d-2p
�3�L for 1s-2p

transition in hydrogen atom embedded in Debye plasma with Debye length
of 7 as a function of photon frequencies �1 and �2. L indicates linearly
polarized photons.

TABLE I. Linearly polarized three-photon transition amplitudes for free
hydrogen atom as a function of incident photon frequencies in atomic unit.

�1 �2 D1s-p-s-2p
�3�L D1s-p-d-2p

�3�L

0.045 0.3000 737.330 62 194.871 28

0.120 0.1500 122.556 03 65.392 57

0.150 0.1800 202.814 57 78.431 27

0.165 0.1500 161.793 66 72.728 05

0.180 0.0300 284.645 05 85.116 59

0.180 0.1200 146.923 97 71.293 30

0.180 0.1800 541.814 47 95.038 02

0.195 0.1500 290.180 01 86.710 52

0.210 0.1200 220.975 99 84.371 90

0.240 0.1200 629.175 09 111.625 89

0.270 0.0975 1457.971 62 154.650 08

0.300 0.0600 1120.215 70 201.912 44

TABLE II. Linearly polarized three-photon transition amplitudes for hydro-
gen atom in the presence of Debye plasmas with Debye length of 7 as a
function of incident photon frequencies in atomic unit.

�1 �2 D1s-p-s-2p
�3�L D1s-p-d-2p

�3�L

0.003 47 0.066 00 −6260.761 52 337.980 35

0.052 10 0.066 00 386.053 13 142.378 95

0.148 20 0.118 10 180.904 97 89.140 26

0.162 10 0.162 10 575.237 41 122.806 82

0.192 20 0.088 00 241.182 66 105.809 86

0.192 20 0.118 10 360.419 88 117.084 89

0.206 10 0.044 00 336.276 06 121.305 19

0.206 10 0.088 00 297.733 18 117.877 47

0.206 10 0.118 10 633.859 87 136.387 04

0.222 30 0.030 10 523.573 41 143.949 79

0.236 20 0.030 10 591.852 22 161.976 51

0.310 30 0.002 32 −7616.260 06 783.915 16
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2. Three-photon transparency

Transparency is the material property of allowing light
to pass through, i.e., photons are not absorbed. In case of
three-photon transparency some values of M, the transition
matrix element, in Eq. �32� are negative. Thus the condition
of transparency will be evaluated if we can determine the
condition of M �0. It is happened when any one of Di �i
=1,2 , . . . ,6� in expressions �33� is negative near a resonance
point, the corresponding range of ��1 and ��2, the energies
of two photons, are given below,

���c	n�, ����c	E − 	n,

���c	n�, ����c	E − 	n,

���c	n�, �� + ����c	n,

�35�
���c	n�, �� + ����c	n,

�� + ����c	E − 	n�, ����c	E − 	n,

�� + ����c	E − 	n�, ����c	E − 	n.

In expressions �35� � and �� are either �1 or �2 but for a
particular range, as example �35a�, when we consider �=�1,
�� must be �2. x�cy indicates that x is greater than and close
to y. The energy conservation relation implies one more con-
dition 0���1+��2�	E. The three-photon transparency
appears when 	n or 	n� or both �for one or more values of n
and n�� belong into the interval �0,	E−��, where � should
be greater than minimum possible values of photon energy.
For �D=� �in both the channel calculation� and �D=7 �in
s-p-d-p channel computation�, we find 	E−��	1��	E �in
the present calculation � is less than 10−30� and 	n, 	n�
�	E for all n and n��2 which does not satisfy the condi-

tion of transparency. Numerically we observe 0�	2�	1�
�	E−� for s-p-s-p channel, which satisfies the condition of
transparency at �D=7.

B. Circularly polarized photons

Figure 9�a� shows three-photon 1s-2p transition ampli-
tudes for free hydrogen atom as a function of �1 and �2, the
frequencies of two photons. There is no three-photon trans-
parency for free hydrogen, although resonance enhancements
are present. In the presence of Debye plasma field with De-
bye length of 5, we observe three-photon transparency
�shown in Fig. 9�b�� and resonance enhancement for 1s-2p
transition. No three-photon transparency occurs from �D=�
�free hydrogen atom� up to �D=10. For �D=9, transparency
is started to appear. Three-photon transparency is observed
for �D=9,8 , . . . ,5 �integer value�, when �D�4 the bound
state 2p is disappeared. Figure 9�a� shows three resonance
peaks; the magnitudes of the peaks are different, one large,
one medium, and the last one is very small �inset of Fig.
9�a��. In Fig. 9�b�, seven resonances have been found with
different magnitudes. In the resonance section, we shall dis-
cuss the phenomena briefly. In Figs. 10�a� and 10�b�, we
present the partial transition matrix element due to the
s-p-s-p channel for �D=� and �D=5, respectively. In the
case of s-p-d-p channel transition amplitude, there are no
three-photon transparency for both cases, �D=� �Fig. 10�c��
and �D=5 �Fig. 10�d��. We observe only three resonance
peaks in two cases, Figs. 10�c� and 10�d�. Those figures
show that the partial transition amplitudes of s-p-s-p channel
dominate that of s-p-d-p channel. Some numerical data of
the transition matrix elements are presented in Table III.

FIG. 9. �Color� Transition matrix elements D1s-2p
�3�C as a function of photon frequencies �1 and �2 for 1s-2p transition in �a� free hydrogen atom and �b�

hydrogen atom embedded in Debye plasma with Debye length of 5. C indicates circularly polarized photons.
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1. Resonance enhancement

The process is said to be resonant whenever an interme-
diate state of the target spectrum is closely reached from the
initial state by absorption of one or two photons. In the
present section, we discuss about resonance enhancement for
individual channel. For s-p-s-p channel, from Eqs. �15�,
�16�, and �18� we get that the transition matrix elements
D1s-p-s-2p

�3�C are the sum of four different factions,

D1s-p-s-2p
�3�C =

1

12	3
�
n,n�

Cnn�
 1

D1
+

1

D2
+

1

D3
+

1

D4
� . �36�

TABLE III. Circularly polarized three-photon transition amplitudes as a
function of incident photon frequencies in atomic unit.

�1 �2

D1s-p-s-2p
�3�C D1s-p-d-2p

�3�C

�D=� �D=5 �D=� �D=5

0.1 0.1 118.181 196.848 50.533 73.272

0.1 0.2 214.619 1 315.770 35.77 69.219

0.2 0.1 153.126 1 119.822 54.475 109.904

0.005 0.3 4383.990 −12 773.338 63.290 621.964

FIG. 10. �Color� Partial transition matrix elements as a function of photon frequencies �1 and �2 �a� D1s-p-s-2p
�3�C for 1s-2p transition in free hydrogen atom, �b�

D1s-p-s-2p
�3�C for 1s-2p transition in hydrogen atom embedded in Debye plasma with Debye length of 5, �c� D1s-p-d-2p

�3�C for 1s-2p transition in free hydrogen atom,

�d� D1s-p-d-2p
�3�C for 1s-2p transition in hydrogen atom embedded in Debye plasma with Debye length of 5. C indicates circularly polarized photons.
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The denominators of those factions are given below,

D1 = �	n� − ��1��	n − ��1 − ��2� ,

D2 = �	n� − ��3��	n − ��3 − ��2� ,

�37�
D3 = �	n� − ��2��	n − ��2 − ��1� ,

D4 = �	n� − ��2��	n − ��2 − ��3� ,

where 	n=En−Eg and 	n�=En�−Eg. Using the energy con-
servation relation, the above set of divisors reduces to

D1 = �	n� − ��1��	n − ��1 − ��2� ,

D2 = �	n� − 	E + ��1 + ��2��	n − 	E + ��1� ,

�38�
D3 = �	n� − ��2��	n − ��1 − ��2� ,

D4 = �	n� − ��2��	n − 	E + ��1� .

Mathematically the condition of resonances, i.e., where the
denominators become close to zero �need not be zero� are
given below,

��1 � 	n�, ��1 � 	E − 	n, ��2 � 	n�,

�39�
��1 + ��2 � 	n, ��1 + ��2 � 	E − 	n�,

where 	n and 	n� belong to the interval �0,	E�. If 	n and
	n� belong to the interval �0,	E� for n=1,2 , . . . , i and n�
=1,2 , . . . , j; the total number of resonance surfaces is 2i
+3j, provided all the elements of the pairs �	n� ,	E−	n� and
�	n ,	E−	n�� are distinct. If 	m� and 	E−	m are the same
for m�� j, m� i, the two resonance surfaces corresponding
��1�	m� and ��1�	E−	m coincide. Similar things hap-
pen when 	k and 	E−	k� are the same for k� i, k�� j.
Numerically it is observed that 	1� belongs to the interval
�0,	E� for plasma free situation. Therefore, there are three
resonance surfaces �Fig. 10�a�� for plasma-free partial tran-
sition, followed by s-p-s-p channel. For �D=5, we observe
that 	1, 	2, and 	1� belong to the interval �0,	E� which
implies seven resonance surfaces. Here it should be noted
that the value of 	E is dissimilar for different �D. Consider-
ing only equal sign, the set of Eq. �39� reduces to a branch of
straight line equations.

Using the similar procedure, we get the condition of
resonances for s-p-d-p channel as follows:

��1 � 	n�, ��1 � 	E − 	n, ��2 � 	n�,

�40�
��2 � 	E − 	n, ��1 + ��2 � 	n, ��1 + ��2 � 	E − 	n�,

where 	n and 	n� belong to the interval �0,	E�. If 	n and
	n� belong to the interval �0,	E� for n=1,2 , . . . , i and n�
=1,2 , . . . , j; the total number of resonance surfaces is
3�i+ j�, provided all the elements of the pairs �	n� ,	E−	n�
and �	n ,	E−	n�� are distinct. If 	m� and 	E−	m are the
same for m�� j, m� i, we observe two resonance surfaces
instead of four resonance surfaces corresponding ��1�	m�,
��1�	E−	m, ��2�	m�, and ��2�	E−	m. If 	k and

	E−	k� are the same for k� i, k�� j, the two resonance
surfaces corresponding ��1+��2�	k and ��1+��2�	E
−	k� turn into one surface. Numerically it is observed that
	1� belongs to the interval �0,	E� for plasma-free case and
for �D=5. Therefore, there are three resonance surfaces for
both the cases.

2. Three-photon transparency

Transparency is the material property of allowing light
to pass through, i.e., photons are not absorbed. The detailed
expression of partial transition matrix element D1s-p-s-2p

�3�C for
s-p-s-p channel, where three-photon transparency occurs for
�D=9,8 , . . . ,5, has been already presented in Eq. �36�. In the
case of three-photon transparency some values of D1s-p-s-2p

�3�C

are negative. Thus the condition of transparency will be
evaluated if we can determine the condition of D1s-p-s-2p

�3�C �0.
From Eq. �36� we can easily see that D1s-p-s-2p

�3�C �0, when
denominator �denominators� becomes �become� negative
near a resonance point. From the set of Eq. �37�, we obtain
eight stipulations for which the denominators D1, D2, D3,
and D4 are negative, respectively. The energy conservation
relation implies one more condition 0���1+��2�	E. The
three-photon transparency appears when 	n or 	n� or both
�for one or more values of n and n�� belong into the interval
�0,	E−��, where � is greater than minimum possible values
of photon energy. For �D=�, we find 	E−��	1��	E and
	n, 	n��	E for all n and n��2 which does not satisfy the
condition of transparency. Numerically we observe 0�	2

�	1��	E−� which satisfies the condition of transparency
at �D=5. This type of phenomena happen because due to
Debye plasma environments energy levels of hydrogen atom
are shifted.

IV. CONCLUSION

The transition matrix elements are presented in the con-
text for three-color three-photon 1s-2p transition in hydrogen
atom, free and in the presence of Debye plasma field. The
three-photon transparency appears when hydrogen atom em-
bedded in weakly coupled Debye plasmas. Here, we consider
that three photons are linearly polarized and circularly polar-
ized. Present results show that Debye plasma environments
have a considerable effect on the three-photon bound-bound
transitions.

The dynamic motion of the plasma electrons has to be
considered in order to investigation the plasma screening ef-
fect on hydrogen atom can be considered qualitatively by the
introduction of the plasma dielectric function.32 The effects
may be very important for high density plasma, but for low
density plasma the effect can be neglected. The static plasma
screening formula obtained by the Debye–Huckel model
overestimates the plasma screening effects on the hydrogen
atom in dense plasma. The static screening result presented
here is subject to the condition that the plasma is a thermo-
dynamically equilibrium plasma and neglect the contribu-
tions from ions in plasma since electrons provide more ef-
fective shielding than ions. In the static plasma screening, we
observe that the two-photon transition amplitude is mainly
determined by the Debye length, which in turn is determined
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by the plasma temperature and density. With increase in
plasma density at a given temperature, the Debye length de-
creases, and thus the effect from plasma temperature and
density cannot be neglected.
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