
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lfnn20

Fullerenes, Nanotubes and Carbon Nanostructures

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lfnn20

The effect of structure on the conductivity
of disordered carbon (the case of graphene-
containing shungite)

Igor Antonets, Yevgeny Golubev & Vladimir Shcheglov

To cite this article: Igor Antonets, Yevgeny Golubev & Vladimir Shcheglov (2023): The effect of
structure on the conductivity of disordered carbon (the case of graphene-containing shungite),
Fullerenes, Nanotubes and Carbon Nanostructures, DOI: 10.1080/1536383X.2023.2226273

To link to this article:  https://doi.org/10.1080/1536383X.2023.2226273

Published online: 10 Jul 2023.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lfnn20
https://www.tandfonline.com/loi/lfnn20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/1536383X.2023.2226273
https://doi.org/10.1080/1536383X.2023.2226273
https://www.tandfonline.com/action/authorSubmission?journalCode=lfnn20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lfnn20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/1536383X.2023.2226273
https://www.tandfonline.com/doi/mlt/10.1080/1536383X.2023.2226273
http://crossmark.crossref.org/dialog/?doi=10.1080/1536383X.2023.2226273&domain=pdf&date_stamp=2023-07-10
http://crossmark.crossref.org/dialog/?doi=10.1080/1536383X.2023.2226273&domain=pdf&date_stamp=2023-07-10


The effect of structure on the conductivity of disordered carbon (the case of
graphene-containing shungite)
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ABSTRACT
Understanding the mechanisms of conductivity in disordered carbon materials is one key to creat-
ing applied materials based on them. We present a new promising approach to quantitatively
assessing the effect of structural parameters on the conductivity of disordered sp2 carbon materi-
als within the framework of a simplified current tube model. Stacks of graphene layers of complex
shape and chaotic in contacts as an aggregate of sequentially located and parallel tubes were pre-
sented. This approximation made it possible to obtain a reliable quantitative estimate of the influ-
ence of the stacks size of graphene layers and their size distribution, as well as the size of the
gaps between the stacks on the conductivity. The theoretical positions of the model were tested
using the experimentally obtained parameters of the structure of two typical natural disordered
carbon materials (shungites).

ARTICLE HISTORY
Received 14 April 2023
Accepted 12 June 2023

KEYWORDS
Graphene-containing shun-
gite carbon; disordered
carbon; conductivity;
electrical resistivity; current
tubes model

1. Introduction

The electromagnetic properties of sp2 carbon materials are
widely used in modern industry and technology. The most
demanded properties are the accumulation and storage of
charge in electrochemical capacitors, shielding of electro-
magnetic radiation in a wide range of wavelengths.[1–8]

The electrical conductivity of carbon materials depends
primarily on their chemical nature and structure.[9–13] A sig-
nificant contribution to the conducting properties of dis-
persed carbon materials is made by the resistance of
contacts of the dispersed phase, which depends both on the
morphology of carbon particles (size, shape) and on the
nature of the electrical contact between them. In addition,
in porous carbon materials, there is additional resistance
associated with the length of the current-carrying path
bypassing the pores.

In recent decades, the electromagnetic properties and the
possibility of application of disordered nanostructured car-
bon materials, such as glassy carbon have been actively
studied because of their heat resistance, mechanical strength,
and chemical stability. A promising way is the application of
natural analogues of synthetic glassy carbon, primarily shun-
gite.[14,15] Shungite is a carbonaceous rock, the carbon part
of which is a natural analogue of low-temperature glassy
carbon.[16–19] The complex structure of shungite provides
effective absorption of radio emission in the frequency range
from a few megahertz to tens and hundreds of tera-
hertz.[20–22]

The applied properties of carbon materials are deter-
mined by their conductivity, which depends on the

concentration of carbon in the material and its intrinsic
conductivity.[22] The carbon content in shungite varies from
3 to 98% for samples from different deposits. Since the con-
ductivity of shungite is controlled by disordered carbon,
understanding its electrically conductive properties is
extremely important.

Shungite carbon has a complex quasi-dispersed structure
from stacks of graphene layers, which are sometimes
grouped into globules and ribbons.[18,19,23,24] The sizes of
the stacks are in units of nanometers, and the globule and
ribbon sizes reach several tens of nanometers. However, the
relative content of globules and ribbons in the shungite
structure is small compared to the members. Chaotic distri-
bution and orientation of graphene stacks[18,24] complicate
the quantitative analysis of both their geometric parameters
and the integral conductivity of shungite carbon.

The quasi-dispersion of the shungite structure leads to
the formation of extended electrically conductive paths,
often interrupted by structural defects. For shungite to be
conductive at constant current (static conductivity), such
paths must be closed. Microwave conductivity (dynamic)
requires the circulation of currents inside the paths, without
the required condition of their mutual overlap. An example
of such structures is amorphous nanogranular composite
films,[25] consisting of a conducting ferromagnetic metal in
a dielectric matrix. They have high static and microwave
conductivity,[26] the latter being provided by the mechanism
of intragranular currents.[22] For shungites, a similar model
of their microstructure was used by Golubev et al.[22] This
model describes well the electrical properties of shungite
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samples with a carbon content of <64%. For shungites with
a carbon content of more than 75%, it is necessary to con-
sider models of the conductivity of pure carbon taking into
account the structural features of disordered carbon.

To analyze the conductivity of such structures, the
method of current tubes was proposed by Antonets et al.,[27]

where the current in a block limited in space flows through
straight tubes without branching or passing from one tube
to another. The tubes consist of a sequence of graphene
stacks that follow one another at regular intervals.

The orientational disorder of stacks in shungite limits the
capacity of the tube model. At the same time, it can be
assumed that the statistical properties of the stacks are not
very varied to prevent the use of the tube model. We propose
an algorithm that makes it possible to reduce the chaotic
nature of the structure of shungite carbon to a regular model
that allows to use the tube model as a first approximation to
the representation of an electroconductive model of disor-
dered carbon using the example of shungite. �nf vjltk�
jcyjdfyf yf utjvtnhbxtcrjv hfccvjnhtybb cnhernehß,
cjcnjzøtØ bÅ �ktvtynjd, ghjdjlbvjcn� rjnjhß[
Åflfyf, b yt hfccvfnhbdftn vt[fybÅvß nhfycgjhnf
�ktrnhjyjd yf �ktrnhjyyj-fnjvyjv ehjdyt.

This work is devoted to the theoretical analysis of the inte-
gral conductivity of disordered carbon based on the tube
model for the example of shungite samples using the experi-
mentally calculated structural parameters of these samples, as
well as to the assessment of the effect on the conductivity of
the sizes of graphene layers stacks and the gaps between them.

2. Objects and methods

To analyze the conductive properties of shungite carbon,
typical samples of Karelian shungite with a carbon content
of (97 ± 1)% from the Maxovo deposit (with integral con-
ductivity (2500 ± 200) S/m) and Nigozero deposit (with con-
ductivity (1500 ± 150) S/m) were selected[16,22]). The
supermolecular structure of these samples was previously
studied using STEM and described in Antonets et al.[28]

3. Results

3.1. The current tube model

In the model of current tubes, it is assumed that the current
within a block limited in space flows through the tubes, without
branching or passing from one tube to another. The block is a
rectangular parallelepiped. Straight tubes are parallel to each
other from one surface of the block to another and have a con-
stant cross-section. They consist of graphene stacks following
each other (Figure 1). This is an initial approximation to the
model of non-crystalline carbon material. A typical carbon
structure of shungites is shown in the inset in Figure 1. It can
be seen from the figure that the stacks containing several paral-
lel graphene layers are separated by gaps where the orientation
of the layers is chaotic. The average sizes of stacks of graphene
layers for Maxovo and Nigozero are (1.50±1.12) and
(2.39±1.62) nm, respectively.[28]

The thickness of one graphene layer can be estimated
from the covalent radius of the carbon atom as about
0.08 nm. In this case, taking into account the average inter-
planar distance in graphene stacks (0.3458 nm),[19] we obtain
the size of the gap between the layers of 0.2658 nm. All of
the above parameters will be further used to calculate the
tube model.

For geometric parameters, we will use the following des-
ignations: G—graphene layer; P—stack; T—a tube; B—the
gap between two graphene layers inside one stack; D—the
gap between two adjacent stacks inside the tube; H—the gap
between the two tubes inside the block; S—the block as a
whole. For electrical parameters, we will use the designa-
tions: q—resistivity, r—specific conductivity, R—absolute
electrical resistance.

We will consider the tube structure within the framework
of the model of regular distribution of stacks (scheme in
Figure 1). Let us assume that all tubes are oriented along
the same axis in the plane of the sample, and the graphene
layers inside the stacks are parallel to the plane of the sam-
ple. The coordinate system is oriented in such a way that
the plane Oxy is parallel to the planes of the graphene

Figure 1. Schematic representation of the tube model. A block of parallel flow tubes (top) and a tube that consists of sequentially and evenly spaced packs of gra-
phene layers (bottom). On the right is the structure of shungite carbon (fragment of STEM image).
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layers, and the axis Oz is perpendicular to them. The cur-
rent flows along the graphene layers.

3.2. Methods for calculating conductivity by the tube
model

For calculations, we introduce the following geometric
parameters:

Sx, Sy, Sz are block sizes along all coordinate axes;
Gx, Gy, Gz are the sizes of the graphene layer along all
coordinate axes;
Pz is the size of the stack along the axis Oz;
Bz is the size of the gap between graphene layers inside
the stack along the axis Oz;
Dx is the size of the gap between the stacks inside the
tube along the axis Ox;
Hy and Hz are the sizes of the gaps between the tubes
inside the block along the axes Oy and Oz:
We also define the following electrical parameters:
RTx is the absolute electrical resistance of the tube along
the axis Ox;
RGx is the absolute electrical resistance of the graphene
layer along the axis Ox;
RPx is the absolute electrical resistance of the stack along
the axis Ox;
RBx is the absolute electrical resistance of the gap between
graphene layers along the axis Ox;
RDx is the absolute electrical resistance of the gap between
the stacks along the axis Ox;
qGx is the resistivity of the graphene layer along the
axis Ox;
qBx is the resistivity of the gap between graphene layers
inside the stack along the axis Dx;
qDx is the resistivity of the gap between stacks in the tube
along the axis Ox;
qHx is the resistivity of the gap between the tubes inside
the block along the axis Ox:

Let’s first consider one layer of graphene. If its dimen-
sions in three coordinates Gx, Gy, Gz, as well as the resist-
ivity qGx along the axis Ox are specified, then the electrical
resistance of the graphene layer:

RGx ¼ qGxGx

GyGz
(1)

We believe that the stack consists of graphene layers of
the same size, lying exactly one above the other, therefore,
the dimensions of the gap between two graphene layers
along the axes Ox and Oy are equal Gx and Gy, respectively,
and along the axis Oz is equal Bz: Then, the electrical resist-
ance of the gap between graphene layers along the axis Ox
will take the form:

RBx ¼ qBxGx

GyBz
(2)

Let us assume that the stack contains NPz graphene
layers. Since graphene layers alternate with gaps, it
contains NPz � 1 gaps. Thus, the size of the stack along the

axis Oz is:

Pz ¼ NPzGz þ NPz � 1ð ÞBz (3)

From relation (3), we find the number of graphene layers
in a stack:

NPz ¼ Pz þ Bz

Gz þ Bz
(4)

Now let’s find the electrical resistance of the stack RPx

along the axis Ox: This resistance is formed by the parallel
connection of the resistances of the graphene layers and
gaps along this axis. The resistance of the parallel-connected
layers NPz is RGx=NPz, and the resistance of the parallel-
connected gaps is RBx=ðNPz � 1Þ: Since these resistances in
the stack are also connected in parallel, the stack resistance
along the axis Ox will take the form:

RPx ¼ NPz

RGx
þ NPz � 1

RBx

� ��1

¼ RGxRBx

NPzRBx þ NPz � 1ð ÞRGx
(5)

After calculating the electrical parameters for one stack,
we proceed to calculate the electrical parameters of the
tube. If the block dimensions Sx, Sy, Sz, are specified,
then the tube length along the axis Ox is equal to the
block length Sx, and the dimensions along the other two
axes are determined by the size of the stack along these
axes, that is, along the axis Oy by the size of the gra-
phene layer Gy, and along the axis Oz by the size of the
stack Pz: The space between stacks inside the tube is sized
Dx: The dimensions of the gap along the other two axes
are determined by the dimensions of the stack Gy and
Pz, respectively.

Let the tube contain NTx stacks and NTx � 1 gaps. Then
the total tube length, equal to the block length Sx is:

Sx ¼ NTxPx þ NTx � 1ð ÞDx (6)

From equation (6), the number of stacks in the tube is
expressed as:

NTx ¼ Sx þ Dx

Gx þ Dx
(7)

The current flows only along the tube; therefore, we will
further evaluate the tube resistance along the axis Ox: This
resistance is the sum of the resistances of stacks RPx and
gaps RDx: If the specific resistance of the gap qDx along the
axis Ox is specified, then the electrical resistance of the gap
can be defined as:

RDx ¼ qDxDx

GyPz
(8)

The total resistance of the tube along the axis Ox is the
resistance of the series-connected resistances of the stacks
NTx and the resistances of the gaps NTx � 1:

RTx ¼ NTxRPx þ NTx � 1ð ÞRDx (9)

Now let’s move on to calculating the resistance along the
axis Ox for the block as a whole. Along the axes Oy and Oz
the tubes are spaced at equal intervals Hy and Hz,
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respectively. If these gaps are given, then the total block size
along these axes:

Sy ¼ NSyGy þ NSy � 1ð ÞHy; (10)

Sz ¼ NSzPz þ NSz � 1ð ÞHz, (11)

where the number of tubes, placed in the block NSy and
NSz :

NSy ¼
Sy þ Hy

Gy þHy
; (12)

NSz ¼ Sz þHz

Pz þHz
: (13)

The number of tubes over the cross-section of the block
is NSyNSz: The area occupied by all tubes in the cross-section
of the block is NSyNSzGyPz, and the area of the entire block
in the cross-section is SySz: Subtracting the transverse area
of all tubes from the transverse area of the block, we obtain
the total transverse area of the gaps SySz � NSyNSzGyPz:

The total resistance of all tubes connected in parallel
across the cross-section of the block is RTx=ðNSyNSzÞ: If the
specific resistance of the gaps qHx along the axis Ox is speci-
fied, then the total resistance of all gaps is determined by
the expression qHxSx=ðSySz � NSyNSzGyPzÞ, taking into
account that the length of each of the gaps is equal to the
length of the block Sx: The total resistance of the block is
determined by the parallel connection of the resistances of
all tubes and the resistance of all gaps:

RSx ¼
NSyNSz

RTx
þ SySz � NSyNSzGyPz

qHxSx

� ��1

(14)

or after mathematical transformations:

RSx ¼ qHxSxRTx

qHxSxNSyNSz þ RTx SySz � NSyNSzGyPzð Þ (15)

Block resistivity along the axis Ox is:

qSx ¼
RSxSySz

Sx
(16)

If we substitute (15) in (16) we get:

qSx ¼
qHxSySzRTx

qHxSxNSyNSz þ RTx SySz � NSyNSzGyPzð Þ (17)

Finally, the specific conductivity of the block as a whole
along the axis Ox is the reciprocal of (17), that is:

rSx ¼
qHxSxNSyNSz þ RTx SySz � NSyNSzGyPzð Þ

qHxSySzRTx
(18)

In this formula, the parameters Sx, Sy, Sz can be chosen
arbitrarily, and if they are 103 nm and more, then according
to Antonets et al.,[27] the resistivity does not depend on
them.

3.3. Theoretical calculations within the tube model

For calculations, geometric parameters Gx, Gy, Gz, Pz, Bz,
Dx, Hy, Hz were previously estimated for samples of

shungite from the Maxovo and Nigozero deposits based on
the analysis of STEM images.[28] The resistivity of graphene
along its plane qGx ¼ 2:5 � 10�8X �m is known from the
literature.[29,30]

We estimate the resistivity of the gap between graphene
layers inside the stack by four orders of magnitude higher:
qBx ¼ 10�4X �m–10�3X �m: Considering that the indicated
resistance was determined for graphite with an interplanar
distance between graphene layers of 0.335 nm, and in shun-
gites this distance was increased to 0.347–0.350 nm, the real
resistance between the layers can be even higher. However,
in this work, we will take the value of graphite resistance as
a basis. We will consider the parameter qDx to be compar-
able to qBx :

qDx ¼ NDxqBx (19)

where NDx is a numerical coefficient, from several tenths to
several units. In further calculations for simplicity NDx ¼ 1:

Taking into account that the integral conductivity of the
structure is determined by the tubes, the value of the resist-
ivity of the gaps between the tubes should be taken at least
5–10 times more than qDx: When calculating, we will
assume qHx ¼ 2:5 � 10�3X �m: Verification shows that with
all other parameters unchanged, an increase qHx above this
value does not affect the value of the integral conductivity.
The key geometrical parameters controlling the conductivity
in the proposed model are the sizes of stacks of graphene
layers and the size of the gaps between them. For samples
from the Maxovo and Nigozero deposits in Antonets
et al.,[28] the average sizes of the stacks and the size distribu-
tions having a lognormal appearance were determined. For
the sizes of the intervals between the stacks, we know only
the average sizes. Further, within the framework of the tube
model, the following calculations were carried out: deter-
mination of the dependence of the integral conductivity on
the average size of the stack; assessment of the contribution
of the lognormality of the size distribution of stacks to the
integral conductivity; assessment of the specific and elec-
trical resistance of tubes depending on the size of the gaps
between the stacks of graphene layers; determination of the
resistance of the gaps between the stacks.

3.4. Parameter values used in the current tube model

We used the following values in the calculations of the cur-
rent tube model:

Geometric parameters:

Sx ¼ 3000 nm, Sy ¼ 1000 nm, Sz ¼ 1000 nm;Gz ¼ 0:08 nm;Bz

¼ 0:2658 nm;

Electrical parameters:

qGx ¼ 2:5 � 10�8X �m; qHx ¼ 2:5 � 10�3X �m;

qBx ¼ 0:5 � 10�3X �m:

The values of the remaining parameters varied for each
test sample (Table 1). The integral conductivity of the sam-
ples was obtained using the four-probe method.[22]
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3.5. Dependence of the specific conductivity on the size
of stacks and the distribution of their sizes

Lognormal size distributions of stacks for the Maxovo and
Nigozero samples were obtained in the work.[28] These dis-
tributions (Figure 2) were taken as the basis for calculating
the dependence of the specific conductivity rSx on the stacks
size Gx using the formula (18) (Figure 3). The sizes of stacks
Gy and Pz change similarly Gx:

As seen in Figure 3, with an increase in the size of the
stacks, the conductivity of the samples increases, this corre-
sponds to the classical concepts. In this case, the conductiv-
ity of the Maxovo sample grows faster than the conductivity
of the Nigozero sample and has large values for the same
stacks sizes. For example, the Maxovo sample conductivity
is more than twice that of Nigozero sample
when Gx ¼ 2:5nm:

Let us consider the dependence of the specific conductiv-
ity on the size of the stacks Gx taking into account their fre-
quency of occurrence rPSx: For this, we normalize to the
maximum value of specific conductivity rSx (Figure 3) for
the Maxovo (3:335 � 103S=m) and Nigozero (2:153 � 103S=m)
samples, and then multiply the resulting value by Px: As
seen from Figure 4, the key contribution to the conductivity
of the samples is made by stacks in the size range 1.4–
1.75 nm for Maxovo and 2.20–2.80 nm for Nigozero, which
is determined by the shape of the size distribution of the
stacks. The modal size of the stacks at the maximum con-
ductivity is 1.6 nm for Maxovo and 2.4 nm for Nigozero.

Let us compare this result with the calculations of the
tube model. The maximum conductivity for the Maxovo
and Nigozero samples is the integral conductivity of the
whole sample, shown in Table 1.

The straight line of integral conductivity intersects the
dependence for Nigozero (Figure 3) at a point Gx ¼ 2:4nm,
which exactly coincides with the experimentally estimated
modal size of stacks (Figure 4), and for Maxovo, the inter-
section occurs at a point Gx ¼ 1:9nm, which differs from
the stacks size obtained experimentally (1.6 nm). This differ-
ence is probably due to the fact that we consider the resist-
ivity of the gap between the tubes inside the block
qHx ¼ 2:5 � 10�3X �m to be the same for Maxovo and
Nigozero. The condition for the correspondence of the
modal size of the stacks with the maximum conductivity
to their experimental value (1.6 nm) is the resistivity of
the gap between the tubes in the Maxovo sam-
ple qHx ¼ 0:8 � 10�3X �m:

3.6. Dependence of conductivity on the gap size
between the stacks in the tube

The average gap size between the stacks for Maxovo and
Nigozero was calculated by Antonets et al.[28] To estimate
the dependence of the conductivity rSx on the size of the
gaps between the stacks in the tube Dx, we plotted these
dependences in a specially selected range of gap sizes (0.6–
1.6 nm for Maxovo and 1.4–2.7 nm for Nigozero with an

Table 1. Geometric parameters based on the results in Antonets et al.[28]

rx, S=m Gx , nm Gy , nm Pz , nm Hy , nm Hz , nm Dx , nm

Maxovo 2500 1.50 1.50 1.50 1.11 1.11 1.11
Nigozero 1500 2.39 2.39 2.39 2.11 2.11 2.11

Figure 2. The size distributions of packs were obtained for the Maxovo and
Nigozero samples.[25]

Figure 3. The specific conductivity rSx vs. the stacks size Gx.

Figure 4. The specific conductivity taking into account frequency of occurrence
rPSx as function the stacks size Gx.
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interval of 0.1 nm) using expression (18). The calculations
assume that the size of the gaps between the tubes Hy

changes in the same way as Dx: The values of the remaining
parameters were used according to Table 1.

The specific conductivity rSx decreases with an increase
in the gaps size Dx (Figure 5), which corresponds to the
classical concepts. The conductivity of the Maxovo sample
decreases faster with increasing Dx than the conductivity of
Nigozero sample. Dotted straight lines in Figure 5 corres-
pond to the integral conductivity of the sample. The inter-
section of the dashed straight line with the curve for the
Nigozero sample occurs at a point Dx ¼ 2:1nm, and for the
Maxovo sample at a point Dx ¼ 0:8nm: Here again, it is
interesting that for Nigozero the experimental[28] and calcu-
lated results coincide, while for Maxovo the calculated size
of the gaps (0.8 nm) is much smaller than the experimental
one (1.1 nm). To coincide with the experimental result, it is
necessary to reduce the value of the resistance between the
tubes for the Maxovo sample in the calculations.

3.7. Specific resistance of the gap between stacks in a
tube

One of the key tasks is to determine the specific and abso-
lute electrical resistance of the gap between the stacks in the
tube. To quantitative estimate the electrical resistance of the
gap RDx, we use equation (9), according to which:

RDx ¼ RTx � NTxRPx

NTx � 1
(20)

In relation (20), we do not know the electrical resistance
of the tube RTx, and the remaining parameters can be deter-
mined from equations (5) and (7). We express the unknown
resistance of the tube from relation (18), taking as rSx the
integral conductivity of the samples from Table 1:

RTx ¼
qHxSxNSyNSz

rSxqHxSySz � SySz þ NSyNSzGyPz
(21)

By calculating the tube resistance RTx and substituting its
value into equation (20), it is possible to determine the elec-
trical resistance of the gap between the stacks in the tube

RDx, and estimate the specific resistance of the gap qDx
from relation (8):

qDx ¼
RDxGyPz

Dx
(22)

According to (20) and (22), the electrical and specific
resistivity of the gap between the stacks in the tube depends
on the resistance of the stack RPx (equation 5), which is
determined by the resistance of the graphene layer RGx and
the resistance of the gap between the graphene layers RBx

(equations 1 and 2, respectively). The resistance RGx (hun-
dreds of ohms) is 3–4 orders of magnitude less than the
resistance RBx (units of MX), therefore RGx � RBx, and in
expression (5) the term including the resistance of the gra-
phene layer in the denominator can be neglected.

This will greatly simplify the calculation of the stack
resistance:

RPx ¼ RGx

NPz
(23)

This simplification makes it possible to completely
exclude from consideration the parameter RBx and, there-
fore qBx:

3.8. Dependence of absolute electric resistance of the
gap between stacks on stack size

Figure 6 shows the dependences of the absolute electrical
resistance of the gap between the stacks RDx, calculated by
formula (20), on the size of the stacks Gx for the Maxovo
(squares) and Nigozero (circles) samples. The absolute elec-
trical resistance RDx is primarily determined by the contact
area of the stacks of graphene layers. Figure 6 reveals that
the qualitative form of the dependences for the Maxovo and
Nigozero samples is practically the same. With a change in
the contact area of the stacks of graphene layers, the elec-
trical resistance of the graphene layer of the samples RGx

(equation 1) is retained (312.5 for the Maxovo and Nigozero
samples). Due to the fact that the number of graphene layers
in a stack increases due to an increase in the stack size

Figure 5. The specific conductivity rSx vs. the gaps size Dx. Figure 6. The absolute electrical resistance of the gap RDx vs. the stacks size Gx
for the Maxovo (squares) and Nigozero (circles) samples.
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(formula 4), the electrical resistance of the stacks RPx

decreases (formula 23), while the number of stacks in the
tube also decreases. Thus, the electrical resistance of the
stack RPx falls significantly less than the tube electrical resist-
ance RTx: Therefore, the electrical resistance of the gap
between the stacks also decreases as the stacks size increases.

3.9. Dependence of absolute electric resistance and
specific resistance of the gap between stacks on the
gap size

The dependences of the absolute electrical resistance RDx

and specific resistivity qDx of the gap between the stacks on
the size of this gap Dx for the Maxovo and Nigozero sam-
ples were calculated using equations (20) and (22), respect-
ively. The electrical resistance of the gap increases with an
increase in its size insignificantly (within the limits 0:042 �
105X for Maxovo and 0:053 � 105X for Nigozero) and nonli-
nearly. The size of the gap affects the tube electrical resist-
ance RTx and the number of stacks in the tube, and the
contribution to both of these parameters is almost the same,
which leads to an insignificant change in the electrical resist-
ance of the gap RDx (Figure 7a). Due to this, the specific
resistivity of the gap qDx at a weakly changing electrical

resistance of the gap and constant dimensions of the stacks
Gy and Pz depends on the size of the gap (equation 22) as
inverse proportionality (Figure 7b).

3.10. Quantitative estimation of the specific resistance
of gap between stacks and the size of the gap

Dependencies in Figures 7 and 8 show the ratios of conduct-
ivity, electrical and specific resistivity of gaps, and the sizes
of these gaps. So, if the integral conductivity rx is known
(Table 1), then by marking this point on the vertical axis
and drawing a horizontal line through it until it intersects
with the curve, you can get a one-to-one correspondence
between qDx, RDx, and Dx: A similar correspondence can be
obtained for the stacks.

Figure 8 shows that the dashed lines corresponding to
the experimental conductivity of 2500 S/m for the Maxovo
sample and 1500 S/m for the Nigozero sample intersect the
curves at the resistivity 3:55 � 10�4X �m and 5:00 � 10�4X �
m, respectively. Figure 7b shows that these resistivities cor-
respond to gap values of 1.1 nm for the Maxovo sample and
2.1 nm for the Nigozero sample. It is these values of the
gaps that were obtained experimentally.[28] However, if we
compare the values of the gaps with those obtained from
Figure 5, it can be seen that for the Maxovo samples, they
diverge (1.1 nm and 0.8 nm), while for the Nigozero samples,
they coincide (2.1 nm). We suggest the following reason for
this discrepancy. For Figures 7 and 8, we used the gaps
between the stacks in the range of 0.6–1.6 nm for the
Maxovo sample and 1.4–2.7 nm for the Nigozero sample.
For these values of the gaps, the resistivity was calculated
(Figure 6b), and, accordingly, the specific conductivity was
determined (Figure 8). In Figure 5, when calculating the
specific conductivity of the stacks, the resistivity of the gaps
was determined according to the relation (19), in which
qBx ¼ 0:5 � 10�3X �m (section “Values of the parameters

Figure 7. Dependences RDx (a) and qDx (b) on the gap size Dx for the Maxovo
(squares) and Nigozero (circles) samples.

Figure 8. The dependences of the conductivity rSx, calculated by equation
(18), on the resistivity of the gap between the stacks qDx for the Maxovo
(squares) and Nigozero (circles) samples. The dotted lines mark the integral con-
ductivity of the whole sample for the Maxovo and Nigozero samples, shown in
Table 1.
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used in the model of current tubes”), and the proportional-
ity coefficient was NDx ¼ 1: As a result, the resistivity of the
gaps for the Maxovo and Nigozero samples in the current
tube model is identical 5:00 � 10�4X �m: Since for the
Nigozero sample the resistivity in Figures 5, 7b, and 8 coin-
cide, then the intervals between stacks for both methods are
the same. For Maxovo samples, the resistivity of the gaps
between the stacks is different (3:55 � 10�4X �m according to
Figures 7b and 8 and 5:00 � 10�4X �m according to Figure
5), which leads to different sizes. To obtain the desired value
of the gap Dx ¼ 1:1nm for a given specific conductivity of
2500 S/m using the model of current tubes (in Figure 5), at
a fixed value qBx ¼ 0:5 � 10�3X �m in relation (19), it is
necessary to take the proportionality coefficient numerically
equal to the ratio 3:55 � 10�4=5:00 � 10�4, i.e. NDx ¼ 0:71:

4. Discussion

This work is devoted to a promising approach for quantify-
ing the effect of structural factors on electrical conductivity
in disordered nanostructured carbon materials within the
framework of the current tube model. It is very difficult to
identify structural regularities in disordered materials; there-
fore, at this stage, the model was simplified by describing
stacks of graphene layers that are complex in shape and cha-
otic in contacts in the form of regular and parallel tubes.
The actual distribution structure of graphene stacks is quite
complex, as shown by STEM images (Figure 9). The current
in such a structure does not flow along straight lines but
along winding trajectories determined by the local configur-
ation of the stacks. The calculation of current flow paths
here is extremely complicated. But, due to the absence of a
single selected direction, it can be assumed that the current
is distributed more or less evenly over the entire area. We
propose an approximate model of a uniform distribution in
the form of a set of parallel tubes, within which the current
flows in straight lines. This means that the tubes must be
considered isolated from each other. The reduction of calcu-
lations is achieved precisely by the transition from a uni-
form, but random distribution to the same uniform, but

geometrically ordered, allowing the calculation we proposed.
In addition, for graphite, the conductivity along the gra-
phene layer and across the layers differ by a factor of
10,000. Accordingly, it is always more advantageous for the
current to flow along the layers in the stack. Despite the
rather rough initial approximation, in mathematical terms,
such an approximation made it possible to obtain a com-
pletely correct quantitative assessment of the influence of
structural factors on the conductivity and to present quite
achievable prospects for assessing this influence with a closer
to the real structure.

Interestingly, when comparing the calculated results with
the experimentally measured structural and electrical param-
eters of the samples, we obtained different results. While for
the Nigozero sample, we showed the coincidence of the cal-
culated (Figures 4, 6, and 7) and experimentally meas-
ured[25] parameters, for the Maxovo sample we obtained
different results for the dependences of conductivity and
resistance on the size of the gaps between the stacks and the
stacks size. This discrepancy can be explained in two ways.
First, regions of contacts between stacks of graphene layers
for the Nigozero and Maxovo samples can have different
chemical and geometric structures. Therefore, the electrically
conductive properties of contacts between stacks, even with-
out taking into account their size, can differ sharply.
Therefore, it is necessary to use different proportionality
coefficients NDx in the equation (19). This can be confirmed
by the sharply different ratios of the intensities of the ID2/IG
bands of the Raman spectra of these samples,[31] since the D
band in glassy carbon is associated with structural defects at
the edges of graphene bands, such as breaks of graphene
networks or inclusions of heteroelements at the edges of
graphene layers.[19] The second explanation is related to the
possible different correspondence of the sample structure to
the tube model. In general, the used model of current tubes
is more comparable to the band or band-stack models of the
structure of glassy carbon and its natural analogs. If we ana-
lyze typical high-resolution STEM images of the structure of
the Maxovo and Nigozero samples (Figure 9), it can be seen
that the curved-band model of the structure is more

Figure 9. STEM images of samples Maxovo (a) and Nigozero (b). The dotted squares highlight the possible paths for the current to flow through the stacks of gra-
phene layers within the current tubes.
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characteristic of the Nigozero sample than of the Maxovo
sample. In the Maxovo sample, there are many regions of
an almost continuous close-packed stacks nanostructure.
Additionally, the packing density in Maxovo shungite is
higher than that from Nigozero, which is confirmed by the
results of the statistical analysis of STEM images (the gaps
size in Maxovo is two times smaller than in Nigozero). The
tube model assumes that current flows only within the tube
and does not transfer from one tube to another. Due to the
high bulk density of the arrangement of graphene stacks in
Maxovo, it is difficult to distinguish isolated “tubes” in its
structure. It is most likely that in the Maxovo sample the
current passes between the “tubes,” which is confirmed in
our model by the coincidence of the calculated parameters
with the experimental ones when the resistance between the
tubes decreases to the value of the resistance between the
stacks inside the tube. This, in turn, shows that the tube
model does not fully reflect the structure of Maxovo shun-
gite and makes it possible to find the limits of applicability
of the tube model for synthetic and natural disordered car-
bon materials. Such approach facilitates to better understand
the complex structure of disordered carbon materials.

The above calculations make it possible to determine
only the relationship between the resistances qBx and qDx,
given by the parameter NDx: However, if one of these
parameters can be found from independent experiment or
model calculation, then it will be possible to estimate the
absolute values of the electrical parameters of the stacks and
gaps.

In origin samples, the stacks are oriented in a rather arbi-
trary manner, which should lead to a completely isotropic
character of the conductivity of the sample as a whole. That
is, the parameters of the structure should be averaged taking
into account the arbitrary orientation of the stacks. For such
averaging, one can use the methodical approach described
in detail by Shavrov and Shcheglov,[32] designed to deter-
mine the frequency of ferromagnetic resonance in a medium
of anisotropic ferrite spheres. The authors leave this averag-
ing procedure as applied to the tube model as a task for the
following study.

5. Conclusion

In this work, a theoretical analysis of the effect of nanostruc-
ture parameters on the conductivity of disordered sp2 car-
bon was carried out using the structural approximation in
the form of a current tube model. The chaotic nature of the
structure of shungite carbon was reduced to a regular model
of parallel conductive tubes consisting of sequentially located
stacks of graphene layers, as a first approximation to the
representation of an electrically conductive model of shun-
gite. The comparison of the model with the real structure
was made using the example of two samples of natural dis-
ordered shungite carbon from different deposits (Maxovo
and Nigozero), the structure of which is similar to synthetic
glassy carbon, but has some differences relative to each
other.

The dependences of the specific conductivity on the
experimentally estimated sizes of stacks, taking into account
the frequency of occurrence, and on the size of the gaps
between the stacks, are investigated. The model was used to
determine the modal size of the stacks and the gaps between
the stacks, corresponding to the maximum specific conduct-
ivity of the samples for the combination of these parameters:
1.6 and 1.1 nm for Maxovo and 2.4 and 2.1 nm for
Nigozero, respectively. It is shown that if for both samples
the resistivity of the gaps between the stacks in the tube and
between the graphene layers inside the stack is taken to be
the same, then to obtain the above dimensions of the stacks
and gaps for the Maxovo samples, it is necessary to reduce
the resistivity between the tubes by almost three times from
2:5 � 10�3X �m to 0:8 � 10�3X �m: However, in this case, the
current can no longer flow along the tubes only, but also
between them, which contradicts the very concept of the
tube model. Therefore, for the same values of the resistivity
of the gaps between the stacks in the tube and between the
graphene layers inside the stack, the tube model does not
fully reflect the structure of Maxovo shungite and makes it
possible to determine the limits of applicability of this
model.

Additionally, the work investigated the dependence of the
absolute electrical resistance and specific resistivity of the
gap between the stacks on the size of the stacks and the gap
between the stacks. It was shown that the electrical resist-
ance of the gap between the stacks significantly decreases
with an increase in the size of the stacks (by 1.69 times for
the Maxovo samples and by 1.35 times for the Nigozero
samples), but at the same time, it weakly responds to an
increase in the size of the gap between the stacks (increases
within 3% for both samples), due to which the resistivity of
the gap between the stacks depends on the size of the gap as
inverse proportion. The relationship was established between
the resistivity of the gaps between the stacks in the tube and
between the graphene layers inside the stack. It is shown
that for the Nigozero samples, both of these quantities are
identical, and for the Maxovo samples, for a correct assess-
ment of the electrical parameters, the proportionality coeffi-
cient must be taken into account. Under such conditions,
the model of current tubes makes it possible to unambigu-
ously establish a correspondence between resistivity, elec-
trical resistance, and the size of gaps, as well as stacks. All
electrical and dimensional characteristics estimated using the
algorithm coincided with the experimental ones for the
Maxovo and Nigozero samples.
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