Yesenia Madrigal

Yesenia Madrigal
University of Antioquia | UdeA · Instituto de Biología

Graduate Student

About

17
Publications
1,393
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
71
Citations
Citations since 2017
15 Research Items
71 Citations
201720182019202020212022202305101520
201720182019202020212022202305101520
201720182019202020212022202305101520
201720182019202020212022202305101520
Additional affiliations
January 2019 - January 2023
University of Antioquia
Position
  • PhD Student
May 2015 - present
University of Antioquia
Position
  • Research Assistant
Description
  • I am broadly interested in the genetic and evolutionary bases of flowering, floral diversity in monocotyledons, fruit formation and morphological adaptations in early diverging neotropical plants.
Education
January 2019 - January 2023
University of Antioquia
Field of study
  • Evolutionary Development
August 2016 - March 2019
University of Antioquia
Field of study
  • Biology
May 2010 - June 2016
University of Antioquia
Field of study
  • Biology

Publications

Publications (17)
Poster
Dado que Colombia posee la segunda extensión de páramo en el concierto global, y que su biodiversidad constituye el pilar en el ámbito de la conservación, se han llevado a cabo estudios sobre la flora palinológica actual, la historia de la vegetación y las variaciones de los factores climáticos en el páramo de Frontino, ubicado en el municipio de U...
Poster
El orden Asparagales (14 familias y ca. 27.000 spp) de distribución cosmopolita es el grupo más especioso de monocotiledóneas. Dentro del orden las flores sinorganizadas de las Orchidaceae (ca. 25.000 spp.) representan una desviación al patrón típico de flores con simetría radial y partes libres. Sin embargo, aún se desconocen las bases genéticas r...
Article
Researchers working on evolutionary developmental plant biology are inclined to choose non-model taxa to address how specific features have been acquired during ontogeny and fixed during phylogeny. In this chapter we describe methods to extract RNA, to assemble de-novo transcriptomes, to isolate orthologous genes within gene families, and to evalua...
Article
In angiosperms the reproductive transition results in the transformation of a vegetative apical meristem (SAM) into an inflorescence meristem (IM), capable of forming floral meristems (FM). Two key players in the flowering transition are AGAMOUS-like 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP). They are eudicot MADS-box paralogs performing opposite...
Conference Paper
Full-text available
During the reproductive transition in flowering plants, a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In grasses such as rice, a genetic regulatory network (GRN) controlling reproductive transitions has been identified. It includes the integration of promoters and repressors from di...
Article
Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth‐bearing Piperales and their expression in Aristolochia , a rare occurrenc...
Article
Full-text available
Flowering is a rigorously timed and morphologically complex shift in plant development. This change depends on endogenous as well as environmental factors. FLOWERING LOCUS T (FT) integrates several cues from different pathways acting as a flowering promoter. Contrary to the role of FT, its paralog TERMINAL FLOWER 1 (TFL1) delays floral transition....
Poster
Durante la transición reproductiva de angiospermas, el meristema apical vegetativo (SAM) se convierte en un meristema de inflorescencia (IM) que produce brácteas y flores. Las vías genéticas responsables de la floración actúan sobre estímulos ambientales como el fotoperíodo y la temperatura, así como sobre estímulos endógenos. En las plantas modelo...
Article
Premise of the study: Bilateral symmetry in core eudicot flowers is established by the differential expression of CYCLOIDEA (CYC), DICHOTOMA (DICH), and RADIALIS (RAD), which are restricted to the dorsal portion of the flower, and DIVARICATA (DIV), restricted to the ventral and lateral petals. Little is known regarding the evolution of these gene...
Conference Paper
Bilateral symmetry in orchid flowers is explained by the extreme elaboration of the median petal (labellum), stamen abortion, and congenital stamen-stigma fusion. This contrasts with the typical floral groundplan in other Asparagales, in which trimerous, radially symmetrical flowers exhibit free floral organs. Advances in molecular phylogenetic res...
Article
Full-text available
CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that include...
Data
Expression patterns of TCP-like homologs in Arabidopsis thaliana (Brassicaceae), Solanum lycopersicum and Solanum tuberosum (Solanaceae). (A) Arabidopsis thaliana AthTCP24 (CIN-like). (B) Arabidopsis thaliana AthTCP20 (PCF-like). (C) Solanum lycopersicum SlyTCP24 (CIN-like). (D) Solanum lycopersicum SlyTCP11 (PCF-like). (E) Solanum tuberosum StuTCP...
Data
Primers used for TCP-like gene expression analyses.
Data
Conserved motifs in and Orchidaceae and non-Orchidaceae Asparagales TCP-like proteins. Model core eudicots and monocots used as reference include Arabidopsis thaliana, Antirrhinum majus, and Oryza sativa. Motifs 1, 2, and 3 correspond to the conserved TCP domain. Motif 11 indicates the characteristic R domain in Class II TCP-like genes. Motif 14 co...
Data
ML analysis of TCP-like genes with extended Solanaceae sampling. ML phylogenetic analysis of TCP-like genes with reduced sampling including only model organisms like Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Solanum tuberosum, two Orchidaceae species, Cattleya trianae, Orchis italica, one non-Orchidaceae Asparagales, Hypoxis decumbe...

Network

Cited By