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Abstract—As machine learning (ML) systems become de-
mocratized, it becomes increasingly important to help users
easily debug their models. However, current data tools are still
primitive when it comes to helping users trace model performance
problems all the way to the data. We focus on the particular
problem of slicing data to identify subsets of the validation data
where the model performs poorly. This is an important problem
in model validation because the overall model performance can
fail to reflect that of the smaller subsets, and slicing allows
users to analyze the model performance on a more granular-
level. Unlike general techniques (e.g., clustering) that can find
arbitrary slices, our goal is to find interpretable slices (which
are easier to take action compared to arbitrary subsets) that are
problematic and large. We propose Slice Finder, which is an
interactive framework for identifying such slices using statistical
techniques. Applications include diagnosing model fairness and
fraud detection, where identifying slices that are interpretable to
humans is crucial.

Index Terms—data slicing, model validation

I. INTRODUCTION

Machine learning (ML) systems [8] are becoming more
prevalent thanks to a vast number of success stories. However,
the data tools for interpreting and debugging models have not
caught up yet and many important challenges exist to improve
our model understanding after training [14]. One such key
problem is to understand if a model performs poorly on certain
parts of the data, hereafter also referred to as a slice.

Example 1. Consider a Random Forest classifier that predicts
whether a person’s income is above or below $50,000 (UCI
Census data [29]). Looking at Table I, the overall metrics may
be considered acceptable, since the overall log loss (a widely-
used loss metric for binary classification problem) is low for
all the data (see the “All” row). However, the individual
slices tell a different story. When slicing data by gender, the
model is more accurate for Female than Male (the effect
size defined in Section II captures this relation by measuring
the normalized loss metric difference between the Male slice
and its counterpart, the Female slice). The Local-gov White
slice is interesting because the average loss metric is on par
with Male, but the effect size is much smaller (by convention,
d ≤ 0.3 is small). A small effect size means that the loss metric
on Local-gov White is similar to the loss metric on other
demographics (defined as counterparts in Section II). Hence,

*Work done at Google Research.

Slice Log Loss Size Effect Size
All 0.35 30k n/a

Sex = Male 0.41 20k 0.47
Sex = Female 0.21 10k -0.47

Workclass = Local-gov 0.43 1.7k 0.19
Race = White

Education = HS-grad 0.32 9.8k -0.09
Education = Bachelors 0.44 0.5k 0.27
Education = Masters 0.49 1.6k 0.40

Education = Doctorate 0.47 5k 0.32

TABLE I: UCI Census data slices for Example 1

if the log loss of a slice and that of the counterpart are not
acceptable, then it is likely that the model is bad overall, not
just on a particular subset. Lastly, we see that people with
higher education degrees (Bachelors, Masters, Doctorate)
suffer from worse model performance and their losses are
higher than their counterparts and thus have higher error
concentration. Thus, slices with high effect size are important
for model validation, to make sure that the model do not under-
perform on certain parts of the data.

The problem is that the overall model performance can fail
to reflect that of smaller data slices. Thus, it is important that
the performance of a model is analyzed on a more granular
level. While a well-known problem [31], current techniques
to determine under-performing slices largely rely on domain
experts to define important sub-populations (or at least specify
a feature dimension to slice by) [4], [23]. Unfortunately,
ML practitioners do not necessary have the domain expertise
to know all important under-performing slices in advance,
even after spending a significant amount of time exploring
the data. In this problem context, enumerating all possible
data slices and validating model performance for each is not
practical due to the sheer number of possible slices. Worse
yet, simply searching for the most under-performing slices
can be misleading because the model performance on smaller
slices can be noisy, and without any safeguard, this leads to
slices that are too small for meaningful impact on the model
quality or that are false discoveries (i.e., non-problematic slices
appearing as problematic). Ideally, we want to identify the
largest and true problematic slices from the smaller slices that
are not fully reflected on by the overall model performance
metric.

There are more generic clustering-based algorithms in
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model understanding [27], [32], [33] that group similar exam-
ples together as clusters and analyze model behavior locally
within each cluster. Similarly, we can cluster similar examples
and treat each cluster as an arbitrary data slice; if a model
under-performs on any of the slices, then the user can analyze
the examples within. However, clusters of similar examples
can still have high variance and high cardinality of feature val-
ues, which are hard to summarize and interpret. In comparison,
a data slice with a few common feature values (e.g., Female
slice contains all examples with Sex = Female) is much
easier to interpret. In practice, validating and reporting model
performance on interpretable slices are much more useful than
validating on arbitrary (non-interpretable) slices (e.g., a cluster
of similar examples with mixed properties).

A good technique to detect problematic slices for model
validation thus needs to find easy-to-understand subsets of
data and ensure that the model performance on the subsets
is meaningful and not attributed to chance. Each problematic
slice should be immediately understandable to a human with-
out the guesswork. The problematic slices should also be large
enough so that their impact on the overall model quality is
non-negligible. Since the model may have a high variance in
its prediction quality, we also need to be careful not to choose
slices that are false discoveries. Finally, since the slices have
an exponentially large search space, it is infeasible to manually
go though each slice. Instead, we would like to guide the user
to a handful of slices that satisfy the conditions above. In this
paper we propose Slice Finder, which efficiently discovers
large possibly-overlapping slices that are both interpretable
and actually problematic.

A slice is defined as a conjunction of feature-value pairs
where having fewer features is considered more interpretable.
A problematic slice is identified based on testing of a sig-
nificant difference of model performance metrics (e.g., loss
function) of the slice and its counterpart. That is, we treat each
problematic slice as a hypothesis and perform a principled
hypothesis testing to check if it is a true problematic slice
and not a false discovery by chance. We discuss the details in
Section II. One problem with performing many statistical tests
(due to a large number of candidate slices) is an increased
number of false positives. This is what is also known as
Multiple Comparisons Problem (MCP) [9]: imagine a test of
Type-I error (false positive: recommending a non-problematic
slice as problematic) rate of 0.05 (a common α-level for
statistical significance testing); the probability of having any
false positives blows up exponentially with the number of
comparisons (e.g., 1−(1−0.05)8 = 0.34, even for just 8 tests,
but then, we may end up exploring hundreds and thousands
of slices even for a modest number of examples). We address
this issue in Section III-B.

In addition to testing, the slices found by Slice Finder can
be used to evaluate model fairness or in applications such as
fraud detection, business analytics, and anomaly detection, to
name a few. While there are many definitions for fairness, a
common one is that a model performs poorly (e.g., lower ac-
curacy) on certain sensitive features (which define the slices),

but not on others. Fraud detection also involves identifying
classes of activities where a model is not performing as well
as it previously did. For example, some fraudsters may have
gamed the system with unauthorized transactions. In business
analytics, finding the most promising marketing cohorts can
be viewed as a data slicing problem. Although Slice Finder
evaluates each slice based on its losses on a model, we can
also generalize the data slicing problem where we assume a
general scoring function to assess the significance of a slice.
For example, data validation is the process of identifying
training or validation examples that contain errors (e.g., values
are out of range, features are missing, and so on). By scoring
each slice based on the number or type of errors it contains,
it is possible to summarize the data errors through a few
interpretable slices rather than showing users an exhaustive
list of all erroneous examples.

In summary, we make the following contributions:
• We define the data slicing problem and the use of hypoth-

esis testing for problematic slice identification (Section II)
and false discovery control (Section III-B).

• We describe the Slice Finder system and propose three
automated data slicing approaches, including a naı̈ve
clustering-based approach as a baseline for automated
data slicing (Section III).

• We present model fairness as a representative use case
for Slice Finder (Section IV).

• We evaluate the three automated data slicing approaches
using real datasets (Section V).

II. DATA SLICING PROBLEM

A. Preliminaries

We assume a dataset D with n examples and a model h that
needs to be tested. Following common practice, we assume
that each example x(i)F contains features F = {F1, F2, ..., Fm}
where each feature Fj (e.g., country) has a list of val-
ues (e.g., {US, DE}) or discretized numeric value ranges
(e.g., {[0, 50), [50, 100)}). We also have a ground truth
label y(i) for each example, such that D = {(x(1)F , y(1)),
(x

(2)
F , y(2)), ..., (x

(n)
F , y(n))}. The test model h is an arbitrary

function that maps an input example to a prediction, and the
goal is to validate if h is working properly for different subsets
of the data. For ease of exposition, we focus on a binary
classification problem (e.g., UCI Census income classification)
with h that takes an example x

(i)
F and outputs a prediction

h(x
(i)
F ) of the true label y(i) ∈ {0, 1} (e.g., a person’s income

is above or below $50,000).
A slice S is a subset of examples in D with common

features and can be described as a conjunction of the common
feature-value pairs

∧
j Fj op vj where the Fj’s are distinct

(e.g., country = DE ∧ gender = Male), and op can be one
of =, <, ≤, ≥, or >. For numeric features, we can discretize
their values (e.g., quantiles or equi-height bins) and generate
ranges so that they are effectively categorical features (e.g.,
age = [20,30)). Numeric features with large domains tend
to have fewer examples per value, and hence do not appear



as significant. By discretizing numeric features into a set of
continuous ranges, we can effectively avoid searching through
tiny slices of minimal impact on model quality and group them
to more sizable and meaningful slices.

We also assume a classification loss function ψ(S, h) that
returns a performance score for a set of examples by compar-
ing h’s prediction h(x(i)F ) with the true label y(i). A common
classification loss function is logarithmic loss (log loss), which
in case of binary classification is defined as:

− 1

n

∑
(x

(i)
F ,y(i))∈S

[y(i) ln h(x
(i)
F ) + (1− y(i)) ln (1− h(x(i)F ))]

The log loss is non-negative and grows with the number of
classification errors. A perfect classifier h would have log
loss of zero, and a random-guesser (h(x) = 0.5) log loss
of −ln(0.5) = 0.693. Also note that our techniques and the
problem setup can easily generalize to other ML problem types
(e,g., multi-class classification, regression, etc.) with proper
loss functions/performance metrics.

B. Problematic Slice as Hypothesis
We define a slice to be problematic if the classification loss

function takes vastly different values between the slice and
its counterpart. The counterpart slice serves as a reference to
which we measure how problematic is S, and the definition
depends on the problem in hand. For instance, in the most
general case where user wants to validate if the model under-
performs on any data slices, we define the counterpart as the
complement of S (S′ = D − S) and consider the difference
ψ(S, h) − ψ(S′, h) assuming ψ is a loss function, such as a
log loss. (The definition of counterpart can change in other
scenarios as we explain later.) This effectively allows us to
identify S with a higher error concentration for h (i.e., most
erroneous examples are contained in S and not in S′), which
should deserve the user’s attention for deeper analysis.

Finding real problematic slices for model validation is non-
trivial, mainly because it requires to balance between the
magnitude of the difference in loss function values and the
size of the slice. That is, a problematic slice must contain more
erroneous examples (i.e., model performs worse) in relation to
the rest of data, and it should also be large enough to have a
meaningful impact on model quality. In some applications,
each example may also have a weight, which reflects its
importance. As a result, a slice with few examples can still
be considered important due to its large weight sum. In the
remainder of the paper, we will assume that weights are
always 1, but extending to varying weights is straightforward.
Interestingly, larger slices tend to have performance metric
(i.e., loss function value) similar to that of the overall dataset
with a smaller variance; thus, the difference tends to be
smaller. Notice that we are looking at a one-sided difference
ψ(S, h)−ψ(S′, h), so any large negative difference values with
extreme counterpart ψ(S′, h) are not of interest. On the other
hand, if a larger slice has high positive ψ(S, h) − ψ(S′, h),
then the signal is more likely to be real and deserves the user’s
attention.

Based on the previous points, one possible approach to
identifying problematic slices would be to rank each slice
based on some heuristic combination of its size and difference
in average losses. However, such a heuristic is hard to tune
and not even practical, assuming that we want a solution that
can work with any validation data, model and loss functions.

Our solution is to instead treat each problematic slice as
a hypothesis and perform a testing for the strength of the
signal (ψ(S, h) − ψ(S′, h)) and its statistical significance: is
the observed difference simply by chance or for real?. The
definition of problematic slices with respect to its counterparts
is general and thus applicable across domains. In addition, the
definition naturally translates into hypothesis testing with a
null and an alternative hypothesis:

Ho : ψ(S, h) <= ψ(S′, h)

Ha : ψ(S, h) > ψ(S′, h)

The test accepts S as problematic if it has a large difference
and large enough support (the number of examples). The
testing is performed based on a standardized score φ of the
difference by the pooled standard deviations of ψ(S, h) and
ψ(S′, h), σS and σS′ respectively (a.k.a., effect size [1]):

√
2× ψ(S, h)− ψ(S′, h)√

σ2
S + σ2

S′

(1)

The effect size directly measures the strength of the signal (i.e.,
how problematic the slice is) with respect to the distribution of
the loss differences, and the testing ensures that the observed
signal is not by chance. The effect size is also a standardized
score, for which we consider 0.2 to be small, 0.5 medium,
0.8 large, and 1.3 very large (Cohen’s convention [12]). Slice
Finder brings the user’s attention to a handful of the largest
problematic slices, by taking all problematic slices S with
effect size φ > T and ranking them by size (number of
examples). Slice Finder provides a slider for the effect size
threshold T for user to explore slices with different degrees of
problematic-ness (Section III-C). It is also important to note
that the power (i.e., probability of detecting false positives) of
testing depletes quickly as we perform numerous tests (a lot
of candidate slices); we address this issue in Section III-B.

Lastly, our definition of problematic slice is also appli-
cable to another common scenario, where a modeler wants
to check if any sub-populations would experience degraded
performance if she switches h to h′ (i.e., is a new model
h′ safe to push?). In this case, we simply evaluate S with
two different models and consider ψ(S, h′) − ψ(S, h), with
an alternative hypothesis, Ha : ψ(S, h′) > ψ(S, h). Here the
counterpart of S using model h is the same slice S using
model h′.

C. Data Slicing Problem

The goal of Slice Finder is to identify a handful (e.g.,
top-K) of the largest problematic slices. Larger problematic
slices are preferable because they carry more examples for
illustrating the model quality issue, and thus, have more



Fig. 1: The Slice Finder architecture: (a) Data is loaded into
a Pandas DataFrame, and (b) Slice Finder perform automated
data slicing to find top-k large problematic slices. (c) Slice
Finder uses a false discovery control procedure to include only
statistically significant problematic slices (d) for interactive
visualizations.

impact on the model quality. On the other hand, the model
performance on a tiny slice does not provide much information
since it may well be statistically insignificant (i.e., due to
noise) and debugging the model on such a tiny slice would
not change much the overall model quality. In addition, fewer
features are preferred to make the problematic slices more
interpretable. For example, country = DE is more interpretable
than country = DE ∧ age = 20-40 ∧ zip = 12345.

Problem 1. Given a positive integer K and threshold T , the
data slicing problem is defined as finding the top-K largest
slices such that:
• Each slice has an effect size at least T ,
• The effect size is statistically significant,
• No slice can be replaced with another with the same size,

but with fewer features.

Note that the top-K slices do not have to be distinct, e.g.,
country = DE and education = Bachelors overlap in the
demographic of Germany with a Bachelors degree.

III. SYSTEM ARCHITECTURE

Underlying the Slice Finder system is an extensible archi-
tecture that combines automated data slicing and interactive
visualization tools. The system is implemented in Python (for
a single node processing and the front-end) and C++ (to run
the Slice Finder lattice search on a distributed processing
framework such as Flume [10]).

Slice Finder loads the validation data set into a Pandas
DataFrame [30]. The DataFrame supports indexing individual
examples, and each data slice keeps a subset of indices instead
of a copy of the actual data examples. Slice Finder provides
basic slice operators (e.g., intersect and union) based on the
indices; only when evaluating the ML model on a given slice
Slice Finder accesses the actual data by the indices to test
the model. The Pandas library also provides a number of
options to deal with dirty data and missing values, and for
the work presented here, we dropped NaN (missing values) or
any values that deviate from the column types.

Once data is loaded into a DataFrame, Slice Finder pro-
cesses the data to identify the problematic slices and allow
the user to explore them. This process comprises three major
components, summarized below.

Slice Finder searches for problematic slices either by
training a CART decision tree around mis-classified examples
or by performing a more exhaustive search on a lattice of
slices. Both search strategies progress in a top-down manner
until they find top-k large problematic slices with φ ≥ T .
The decision tree approach materializes the tree model and
traverses to extract nodes for different request queries (with
different k and T ). In lattice searching, Slice Finder material-
izes all the candidate slices, even non-problematic slices. This
allows Slice Finder to quickly respond to a new request with
different T or continue searching with more filter clauses.

As Slice Finder searches through a large number of slices,
some slices might appear problematic by chance (i.e., multiple
comparisons problem [17]). Slice Finder controls such a
risk, by applying a marginal false discovery rate (mFDR)
controlling procedure [17]. Slice Finder compiles a final
top-k recommendation list with only statistically significant
problematic slices.

Lastly, even a handful of problematic slices can still be
overwhelmingly large, since the user needs to take an action
(e.g., deeper analyses or model debugging) on each slice.
Hence, it is important to enable the user to quickly browse
through the slices by their impacts (size) and scores (effect
size). To this end, Slice Finder allows the user to explore the
recommended slices with interactive visualization tools.

The following subsections describe each component in
detail.

A. Automated Data Slicing

As mentioned earlier, the goal of this component is to
automatically identify problematic slices for model validation.
To motivate the development of the two techniques that we
mentioned (decision trees and lattice search), let us first con-
sider a simple baseline approach that identifies the problematic
slices through clustering. And then, we discuss two automated
data slicing approaches used in Slice Finder that improve on
the clustering approach.

1) Clustering: The idea is to cluster similar examples
together and take each cluster as an arbitrary data slice. If a
test model fails on any of the slices, then the user can examine
the data examples within or run a more complex analysis to fix
the problem. This is an intuitive way to understand the model
and its behavior (e.g., predictions) [27], [32], [33]; we can take
a similar approach to the automated data slicing problem. The
hope is that similar examples would behave similarly even in
terms of data or model issues.

Clustering is a reasonable baseline due to its ease of use, but
it has major drawbacks: first, it is hard to cluster and explain
high dimensional data. We can reduce the dimensionality using
principled component analysis (PCA) before clustering, but
many features of clustered examples (in its original feature
vector) still have high variance or high cardinality of values.



Unlike an actual data slice filtered by certain features, this
is hard to interpret unless the user can manually go through
the examples and summarize the data in a meaningful way.
Second, the user has to specify the number of clusters, which
affects crucially the quality of clusters in both metrics and
size. As we want slices that are problematic and large (more
impact for model quality), this is a key parameter which is
hard to tune.

The two techniques that we present next overcome these
deficiencies of clustering. The first technique is based on
decision-trees that capture the distribution of classification
results. Here the effect sizes are large, but the slices may be
smaller as a result. In contrast, the second technique, called
lattice searching, focuses on slices that are neither too small
nor large, but have large-enough effect sizes.

2) Decision Tree Training: To identify more interpretable
problematic slices, we train a decision tree that can classify
which slices are problematic. The output is a partitioning of
the examples into the slices defined by the tree. For example,
a decision tree could produce the slices {A > v, A ≤ v &
B > w, A ≤ v & B ≤ w}. For numeric features, this kind
of partitioning is natural. For categorical features, a common
approach is to use one-hot encoding where all possible values
are mapped to columns, and the selected value results in the
corresponding column to have a value 1.

To use a decision tree, we first identify the bottom-most
problematic slices (leaves) with the highest effect size (i.e.,
highest error concentration). Then we can go up the decision
tree to find larger (and more interpretable) slices that gener-
alize the problematic slices, which still have effect size larger
than a user-specified effect size threshold, T .

The advantage of decision trees is that they have a natural
interpretation, since the leaves correspond directly to slices.
The downside of using a tree is that it only finds non-
overlapping slices that are problematic. In addition, if the
decision tree gets too deep with many levels, then it starts
to become uninterpretable as well [18].

The Decision Tree approach can be viewed as “greedy”
because it optimizes on the classification results and is thus not
designed to exhaustively find all problematic slices according
to Definition 1. For example, if some feature is split on
the root node, then it will be difficult to find single-feature
slices for other features. In addition, a decision tree always
partitions the data, so even if there are two problematic slices
that overlap, at most one of them will be found. Hence, a
more exhaustive approach is needed to ensure all possibly-
overlapping problematic slices are found.

3) Lattice Searching: The lattice searching approach con-
siders a larger search space where the slices form a lattice, and
problematic slices can overlap with one another. We assume
that slices only have equality predicates, e.g.,

∧
i Fi = vi.

In contrast with the decision tree training approach, lattice
searching can be more expensive because it searches overlap-
ping slices.

Figure 2 illustrates how the slices are organized as a lattice.
The key intuition is to perform a breadth-first search and

Sex=Male

All

Sex=Female Edu=Bachelors Edu=Doctorate ...

Sex=Female & 
Edu=Bachelors

...

Sex=Female & 
Edu=Doctorate

Sex=Male & 
Edu=Bachelors

Sex=Male & 
Edu=Doctorate

... ...

...
Fig. 2: A lattice hierarchy of slices. In contrast with a decision
tree, the search is more exhaustive and covers all possible
feature combinations.

efficiently identify problematic slices as shown in Algorithm 1.

ALGORITHM 1: Lattice Searching Algorithm
Input : Lattice L, maximum number of slices to return K, effect

size threshold T , the set of all possible features F
Output: Problematic slices S

1 S = []; /* problematic slices */
2 Q = PriorityQueue(); /* priority queue sorted by

descending size and ascending number of
features */

3 Q.push(L.root);

4 while |S| ≤ K and Q not empty do
5 s = Q.pop(); /* s =

∧
i∈I Fi = vi */

6 if Effect size(s) ≥ T then
7 S.append(s);
8 end
9 else

10 Q.push({
∧

i∈I Fi = vi ∧G = v|G ∈
F − {F1, . . . , F|I|}, v ∈ G′s values});

11 end
12 end
13 return S;

The input is the training data, a model, and an effect size
threshold T . As a pre-processing step, Slice Finder takes the
training data and discretizes numeric features. For categorical
features that contain too many values (e.g., IDs are unique
for each example), Slice Finder uses a heuristic where it
considers up to the N most frequent values and places the
rest into an “other values” bucket. The possible slices of these
features form a lattice where a slice S is a parent of every S
with exactly one more feature-value pair.

Slice Finder finds the top-K largest problematic slices by
traversing the slice lattice in a breadth-first manner using
a priority queue. The priority queue contains the current
slices being considered sorted by descending size and then
by ascending number of features. For each slice

∧
i∈I Fi = vi

that is popped, Slice Finder checks if it has an effect size at
least T . If so, the slice is added to the top-K list. Otherwise,
the slice is expanded where the slices {

∧
i∈I Fi = vi ∧ G =

v|G ∈ F − {F1, . . . , F|I|}, v ∈ G′s values} are added to the
queue. Slice Finder optimizes this traversal by avoiding slices
that are subsets of previously identified problematic slices.
The intuition is that any subsumed (expanded) slice contains a



subset of the same exact examples of its parent and is smaller
with more filter predicates (less interpretable); thus, we do
not expand larger and already problematic slices. By starting
from the base slices (with single filter predicate/clause) and
expanding only non-problematic slices with one additional
predicate at a time (i.e., top-down search from lower order
slices to higher order slices), we can generate a superset of all
candidate slices. This is similar to Apriori fast frequent itemset
mining algorithm [5], where only large (d − 1)-itemsets are
joined together to generate a superset of all large d-itemsets.
This process repeats until either the top-K slices have been
found or there are no more slices to explore.

Example 2. Suppose there are three features A, B, and C with
the possible values {a1} and {b1, b2}, and {c1}, respectively.
Also say K = 2, and the effect size threshold is T . Initially, the
priority queue Q contains the entire slice. This slice is popped
and expanded to the slices A = a1, B = b1, B = b2, and C
= c1, which are inserted back into the queue. Among them,
suppose A = a1 is the largest slice with an effect size at least
T . Then this slice is popped from Q and added to the top-K
result. Suppose that no other slice has an effect size at least
T , but B = b1 is the largest. This slice is then expanded to B
= b1 ∧ C = c1 (notice that B = b1 ∧ A = a1 is unnecessary
because it is a subset of A = a1). If this slice has an effect
size at least T , then the final result is [A = a1, B = b1 ∧ C =
c1].

The following theorem formalizes the correctness of this
algorithm for the slice-identification problem.

Theorem 1. The Slice Finder slices identified by Algorithm 1
satisfy Definition 1.

Proof. Since we only add slices with effect size at least T to
the priority queue, the first condition is satisfied trivially. The
second condition can be proven to hold using contradiction.
Suppose a slice S that is popped from the queue has a large
enough effect size, but there is another slice S′ that has not
yet been added to the result, but has the same size with
fewer features and should have been added to the result first.
However, the ancestors of this slice must have been all popped
and expanded before S was popped. In addition, since S′ has
fewer features than S, it should have been placed before S in
the queue (hence the contradiction).

4) Scalability: Slice Finder optimizes its search by ex-
panding the filter predicate by one additional feature/value at a
time (top-down strategy). Unfortunately, this does not solve the
scalability issue of the data slicing problem completely, and
Slice Finder could still search through an exponential number
of slices, especially for big high-dimensional data sets. To this
end, Slice Finder implements two approaches that can speed
up the search.
Parallelization: For lattice searching, evaluating a given
model on a large number of slices one-by-one (sequentially)
can be very expensive. So instead, Slice Finder distributes
the slice evaluation jobs (lines 5–10 in Algorithm 1) by

keeping separate priority queues Qd for the different number
of filter predicates d. The idea is that workers take slices
from the current Qd in a round-robin fashion and evaluate
them asynchronously; the workers push the next candidate
slices {

∧
i∈I Fi = vi ∧ G = v|G ∈ F − {F1, . . . , F|I|}, v ∈

G′s values} with one additional filter clause G to Qd+1 as
they finish evaluating the slices. Once done with Qd (i.e., Qd

is empty and |S| ≤ K), Slice Finder moves onto the next
queue Qd+1 and continue searching until |S| ≥ K. Keeping
slices of different d in separate queues allows multiple workers
to evaluate multiple slices in parallel, without having to worry
about redundant discoveries because only slices with d + 1
predicates can be subsumed by slices with d predicates. The
added memory and communication overheads are negligible,
especially, with respect to the slice evaluation time.

On the other hand, for DT, our current implementation does
not support parallel learning algorithms for constructing trees.
But, there exist a number of highly parallelizable learning
processes for decision trees [35], which Slice Finder could
implement to make DT more scalable.
Sampling: We take a smaller sample to run Slice Finder
if the original data set is too large. Note that the run time
is linearly proportional to the size of sample, assuming that
the run time for the test model is constant for each example.
Taking a sample, however, comes with a cost. Namely, we
run the risk of false positives (non-problematic slices that
appear problematic) and false negatives (problematic slices
that appear non-problematic or completely disappear from the
sample) due to a decreased number of examples. Since we are
interested in large slices that are more impactful to model
quality, we can disregard false negatives that disappeared
from the sample. Furthermore, we perform significance testing
to filter slices that falsely appear as problematic or non-
problematic (Section III-B).

B. False Discovery Control

As Slice Finder finds more slices for testing, there is also
the danger of finding more “false positives,” which are slices
that are not statistically significant. Slice Finder controls false
positives (Type-1 errors) in a principled fashion using α-
investing [17]. Given an alpha-wealth (overall Type I error
rate) α, α-investing spends this over multiple comparisons,
while increasing the budget α towards the subsequent tests
with each rejected hypothesis. This so called pay-out (increase
in α) helps the procedure become less conservative and puts
more weight on more likely to be faulty null hypotheses. More
specifically, an alpha-investing rule determines the wealth for
the next test in a sequence of tests. This effectively controls
marginal false discovery rate at level α:

E(V )

E(R)
≤ α (2)

Here, V is the number of false discoveries and R the number
of total discoveries returned by the procedure. Slice Finder
uses α-investing, mainly because it allows more interactive
multiple hypothesis error control, namely, with an unspecified



number of tests in any order. On the contrary, more restricted
multiple hypothesis error control techniques, such as Bon-
ferroni correction and Benjamini-Hochberg procedure [9] fall
short as they require the total number of tests m in advance
or become too conservative as m grows large.

There are different α-investing policies for testing a se-
quence of hypotheses. In particular, our exploration strategy
orders slices by their significance (t-score) and test hypotheses
believed most likely to be rejected. This is called Best-foot-
forward policy; we test the seemingly more significant slices
with more power, and continue testing the rest only if we
have left over α-wealth. The successful discovery of significant
slices earns extra testing power (alpha-wealth), helping us to
continue testing until there is no remaining wealth.

C. Interactive Visualization Tool

Slice Finder interacts with users through the GUI in Fig-
ure 3. A: On the left side is a scatter plot that shows the (size,
effect size) coordinates of all slices. This gives a nice overview
of top-k problematic slices, which allows the user to quickly
browse through large and also problematic slices and compare
slices to each other. B: Whenever the user hovers a mouse over
a dot, the slice description, size, effect size, and metric (e.g.,
log loss) are displayed next to it. If a set of slices are selected,
their details appear on the table on the right-hand side, C: On
the table view, the user can sort slices by any metrics on the
table.

On the bottom, D: Slice Finder provides configurable
sliders for adjusting k and T . Slice Finder materializes all
the problematic slices (φ ≥ T ) as well the non-problematic
slices (φ < T ) searched already. If T decreases, then we just
need to reiterate the slices explored until now to find the top-
K slices. If T increases, then the current slices may not be
sufficient, depending on k, so we continue searching the slice
lattice. This is possible because Slice Finder looks for top-k
problematic slices in a top-down manner.

IV. USING Slice Finder FOR MODEL FAIRNESS

In this section, we look at model fairness as a use case
of Slice Finder where identifying problematic slices can be
a preprocessing step before more sophisticated analysis on
fairness on the slices.

As machine learning models are increasingly used in sen-
sitive applications, such as predicting whether individuals
will default on loans [21], commit crime [2], or survive
intensive hospital care [19], it is essential to make sure the
model performs equally well for all demographics to avoid
discrimination. However, models may fail this property for
various reasons: bias in data collection, insufficient data for
certain slices, limitations in the model training, to name a few
cases.

Model fairness has various definitions depending on the
application and is thus non-trivial to formalize (see recent
tutorial [6]). While many metrics have been proposed [15],
[16], [21], [24], there is no widely-accepted standard, and
some definitions are even at odds. In this paper, we focus

on a relatively common definition, which is to find of data
where the model performs relatively worse using some of these
metrics, which fits nicely into the Slice Finder framework.

Using our definition of fairness, Slice Finder can be used to
quickly identify interpretable slices that have fairness issues
without having to specify the sensitive features in advance.
Here, we demonstrate how Slice Finder can be used to find
any unfairness of the model with equalized odds [21]. Namely,
we explain how our definition of problematic slice using effect
size also conforms to the definition of equalized odds. Slice
Finder is also generic and supports any fairness metric that can
be expressed as a scoring function. Any subsequent analysis
of fairness on these slices can be done afterwards.

Equalized odds requires a predictor Ŷ (e.g., a classification
model h in our case) to be independent of protected or
sensitive feature values A ∈ {0, 1} (e.g., gender = Male or
gender = Female) conditional on the true outcome Y [21].
In binary classification (y ∈ {0, 1}), this is equivalent to:

Pr{Ŷ = 1|A = 0, Y = y} = Pr{Ŷ = 1|A = 1, Y = y}
(3)

Notice that equalized odds is essentially matching true positive
rates (tpr) in case of y = 1 or false negative rates (fnr)
otherwise.

Slice Finder can be used to identify slices where the model
is potentially discriminatory; an ML practitioner can easily
identify feature dimensions of the data, without having to man-
ually consider all feature value pair combinations, on which a
deeper analysis and potential model fairness adjustments are
needed. The problematic slices with φ > T suffer from higher
loss (lower model accuracy in case of log loss) compared
to the counterparts. If one group is enjoying a better rate
of accuracy over the other, then it is a good indication that
the model is biased. Namely, accuracy is a weighted sum
of tpr and fnr by their proportions, and thus, a difference in
accuracy means there are differences in tpr and false positive
rate (fpr = 1−tpr), assuming there are any positive examples.
As equalized odds requires matching tpr and fpr between the
two demographics (a slice and its counterpart), Slice Finder
using log loss ψ can identify slices to show that the model
is potentially discriminatory. In case of the gender = Male
slice above, we flag this as a signal for discriminatory model
behavior because the slice is defined over a sensitive feature
and has a high effect size.

There are other standards, but equalized odds ensures that
the prediction is non-discriminatory with respect to a specified
protected attribute (e.g., gender), without sacrificing the target
utility (i.e., maximizing model performance) too much [21].

V. EXPERIMENTS

In this section, we compare the two Slice Finder ap-
proaches (decision tree and lattice search) with the baseline
(clustering-based approach). We address the following key
questions using both real-world and simulated ML problems:
• What are the trade-offs between the three automated

slicing approaches?



Fig. 3: Slice Finder visualization tools help the user quickly browse through problematic slices by effect size and by slice size
on a scatter plot (A) and see slice summary by hovering over any point (B); the user can sort slices by any metrics and select
on the scatter plot view or on the table view. The selections are highlighted on the linked views (C). The user can also explore
top-k large problematic slices by different effect size threshold using the slider (min eff size) on the bottom left corner (D).
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(c) Click-Through-Rate Prediction

Fig. 4: Effect size comparisons between different data slicing approaches (φ ≥ 0.4). The baseline (CL) fails to produce
meaningful slices for model validation/debugging; Slice Finder (LS, DT) identifies problematic slices with effect size above
T . The number of recommendations is the number of clusters for CL.

• What do we gain for being more exhaustive and searching
for overlapping slices (lattice search)?

• Are the slices interpretable and actionable?
• How efficient are the techniques?

A. Experimental Setup
We used the following three problems with different datasets

and models to compare how three different automated slicing
techniques perform in terms of recommended slice quality
as well as their interpretability. For all experiments, we run
the k-means, decision tree, and lattice search algorithms to
recommend top-k slices for model validation with the full data
set as described/processed below, except for the scalability
experiments (Section V-D, where we used samples):

Census Income Classification: We trained a random
forest classifier (Example 1) to predict whether the income
exceeds $50K/yr based on UCI census data [26]. There are 15
features and 30K examples.

Credit Card Fraud Detection: We trained a random
forest classifier to predict fraudulent transactions among credit
card transactions [13]. This dataset contains transactions that
occurred over two days, where we have 492 frauds out of
284k transactions (examples), each with 29 features. Because
the data set is heavily imbalanced, we first undersample non-
fraudulent transactions to balance the data. This leaves a total
of 984 transactions in the balanced dataset.



Slice Size Effect Size
Lattice search results

V10 = 0.22 – 0.81 99 0.44
V17 = 0.50 – 1.06 99 0.57
V18 = 0.50 – 1.00 99 0.48

Decision tree results
root → V4 ≥ 0.76 568 0.82

root → V10 ≥ 0.76→ V14 ≥ −0.80 181 0.96
root → V4 ≥ 0.76 21 1.04

→ Amount < 320.0→ V1 ≥ −0.08

TABLE II: Top-3 largest problematic slices by lattice search
and decision tree approaches for credit card fraud detection
problem. The anonymized features (V1, V2, ...) are all stan-
dardized to a range [-1, 1].

Click-Through-Rate Prediction: This dataset is propri-
etary and is used to train neural models for predicting user
clicks on an app store. There are several hundred features, but
we take a subset of 28 features and train on 50K examples.

B. Large Problematic Slices

Figure 4 and Figure 5 show how lattice search (LS) and
decision tree (DT) approaches outperform the baseline (CL)
in terms of slice size and effect size. The clustering baseline
approach produces large clusters that have very low effect size.
When comparing DT and LS, LS produces larger slices with
lower effect sizes (all above the minimum effect size threshold,
T = 0.4). This result indicates that LS is good at finding large
slices with enough effect sizes whereas DT finds smaller slices
with very high effect sizes. Notice that the average effect size
of CL recommended slices are around 0.0 (and sometimes
even negative, which means the slices are not problematic),
which illustrates that grouping similar examples does not guide
users to problematic data slices.

LS considers all the possible slices above a effect size
threshold T from top to bottom (i.e., searches slices with a
fewer filter clauses first); LS will continue searching until it
finds all k problematic slices (or it runs out of candidates). As
the search progresses, LS looks at smaller slices with more
filter clauses, and this is why LS tends to recommend larger
slices just above T . On the other hand, DT slices data in a
way that explains misclassified examples best. That is, decision
boundaries are formed just around any groups of misclassified
examples as long as their size is above the minimum leaf size;
this behavior allows for high effect size slices.

It is interesting to see in Figure 5(b) that DT yields much
larger slices than LS. This is because the dataset consists
of only numeric (continuous) features. Table II shows the
top-3 largest problematic slices among the 10 recommended
slices by LS and DT. LS discretize the numeric features into
continuous ranges (e.g., 10 quantiles), whereas DT simply
groups misclassified examples at discontinuous value ranges
(value ranges are more dynamic at a finer and varying granu-
larity). In general, LS recommends larger slices and DT more
problematic slices by overfitting the decision boundaries with
more complex filter predicates. Note that the Credit Card Fraud

Detection slices are not easily interpretable because all the
feature names are encrypted (e.g., V1, V2, ...).

C. Adjusting T

We show performance results for updating the top-K results
when the effect size threshold T is adjusted using the slider.
It is important to note that we do not need to retrain CL or
DT (assuming that we grew the tree to a great enough depth;
here, we grew DT with maximum depth of 20 and minimum
leaf size of 10). In case of LS, we first run an initial lattice
search (e.g., with T = 0.5 and k = 30) and materialize all
the rejected candidate slices. In this way, we can simply look
through the materialized slices for top-k largest slices with
effect size above any T < 0.5 (increasing T may require
additional lattice search). Figure 6 shows how average effect
size and average slice size of LS and DT change over different
T values. LS is much more sensitive to T because it tends
to identify larger slices just above the minimum effect size
threshold. On the other hand, DT generally recommends high
effect size slices, thus, the recommendations are the same for
the most part (0.1 ≤ T ≤ 0.6). We exclude CL because T is
not enforced on clusters.

D. Scalability

Slice Finder uses sampling (DT and LS) and paral-
lelization (LS) to be more scalable, especially with big,
high-dimensional data sets. Figure 7(a) illustrates how Slice
Finder scales with increasing sample sizes (using a single
node/worker). The original Census Income Classification data
set contains 30K examples with 15 features (both continuous
and categorical). The run time of LS increases almost linearly
with the increasing sample size. DT also runs faster with a
smaller sample, but runs slower than LS because DT always
grows a max-depth tree (a modified version of Classification
& Regression Tree algorithm) before traversing it for top-k
problematic slices. We also look at recall, which measures
how many of the top-10 large problematic slices based on
the full data set are missing from each top-10 slices from a
smaller sample. LS retains more than a half of the top-10
large problematic slices even with a 10% sample, and this is
acceptable as the goal of Slice Finder is to surface a handful
of large problematic slices to users for deeper analysis. As
DT’s decision boundaries are formed to best explain groups of
mis-classified examples, the boundaries (i.e., filter predicates
for slices) vary for different samples; the recall is 0 (no match)
for all samples and 1 (perfect match) for the full data set.

Figure 8(a) illustrates how Slice Finder can scale with
parallelization. LS can distribute the evaluation (e.g., effect
size computation) of the slices with the same number of
filter predicates to multiple workers, and for the same Cen-
sus Income Classification data set (sampling fraction= 1.0)
increasing the number of workers results in better run-time.
Notice that the marginal run-time improvement decreases as
we add more workers. The reported results are not DT is
not shown here because the current implementation does not
support parallel DT model training.
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Fig. 5: Slice size comparisons between different data slicing approaches (φ ≥ 0.4). In general, LS produces larger slices with
simpler slice filter predicates; however, in (b), LS fails to produce larger problematic slices due to poor discretization of numeric
features. Notice that CL starts with the entire dataset with the number of clusters is just 1 (the number of recommendations).
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Fig. 6: Minimum effect size threshold T and recommended
top-10 slice quality (effect size and slice size).
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recall with sampling.
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Fig. 8: (a) Slice Finder (LS) run-time with increasing number
of workers. (b) Size distribution of significant (accepted) and
non-significant (rejected) problematic slices (φ ≥ 0.4).

E. False Discovery Control

Even for a small data set (or sample), there can be an
overwhelming number of problematic slices. The goal of Slice
Finder is to bring the user’s attention to a handful of large
problematic slices; however, if the sample size is small, most
slices would contain a fewer examples, and thus, it is likely
that a lot of slices and their effect size measures are seen
by chance. In such a case, it is important to prevent false
discoveries (e.g., non-problematic slices appear as problematic
( φ ≥ T ) due to sampling bias). Figure 8(b) illustrates this in
credit card fraud detection problem where most problematic
slices are similar in sizes, and yet, many of them are false
discoveries (the rejected). The average size for accepted (sta-
tistically significant) problematic slices was 7.86 and 8.36 for
the rejected. Therefore, without a proper control over false
discoveries, Slice Finder can recommend falsely identified
problematic slices.

F. Interpretability

Users want to see data slices that are easy to understand
with a few common features. In other words, the performance
metrics or presenting a cluster of mis-classified examples are



Slice Size Effect Size
Census Income Classification

Sex = Male 20380 0.47
Marital Status = Married-civ-spouse 14065 0.92

Relationship = Husband 12463 0.84
Capital Gain = 0, Occupation = Exec-manag. 3453 0.46

Capital Gain = 0, Hours per week = 50 2333 0.47
Relationship = Wife 1406 0.63

Capital Gain = 0, Education = Masters 1368 0.47
Capital Gain = 0, Education-Num = 14 1368 0.47
Capital Gain = 0, Hours per week = 60 1225 0.48

Workclass = Self-emp-inc 1074 0.41

TABLE III: Top-10 largest problematic slices in Census In-
come Classification; the slices are easy to interpret with a
fewer number of common features. High-dimensional data ex-
amples, e.g., clustered by their similarities, are hard to interpret
and reason about the possible cause of model performance
degradation.

not sufficient to understand and describe the model behavior.
In practice, a user often goes through all the mis-classified ex-
amples (or clusters of them) manually to describe/understand
the problem. To this end, Slice Finder can be used as a pre-
processing step to quickly identify data slices where the model
might be biased or failing, and the slices are easy to describe
with a few number of common features. Table III shows top-10
largest problematic slices in the Census Income Classification;
the slices are easy to interpret with a few number of common
features. We see that Sex = Male slice has effect size above
T = 0.4 and contains a lot of examples indicating that the
model can use improvements for this slice. It is also interesting
to see that the model fails for some sub-demographics of
Capital Gain = 0, especially those who are likely to make
more money (e.g., work overtime, exec-managerial or self-
employed). We also see that slices associated with high educa-
tion degrees tend to be problematic down the list (not shown in
the top-10, except Captial Gain = 0, Education=Masters =
or Education-Num = 14). For Click-Through-Rate Prediction
also, Slice Finder shows human-readable feature descriptions
of problematic slices that partition the data in a way that the
slice contains more mis-classified examples than the rest of
the data (counterpart). We do not show the slice descriptions
because the information is proprietary.

VI. RELATED WORK

In practice, the overall performance metrics can mask the
issues on a more granular-level, and it is important to validate
the model accordingly on smaller subsets/sub-populations of
data (slices). While a well-known problem, the existing tools
are still primitive in that they rely on domain experts to
pre-define important slices. State-of-art tools for ML model
validation include Facets [3], which can be used to discover
bias in the data, TensorFlow Model Analysis (TFMA), which
slices data by an input feature dimension for a more granular
performance analysis [4], and MLCube [23], which provides
manual exploration of slices and can both evaluate a single
model or compare two models. While the above tools are

manual, Slice Finder complements them by automatically
finding slices useful for model validation.

There are also several other relevant lines of work related
to this problem, and here we list the most relevant work to
Slice Finder.
Data Exploration: Online Analytical Processing (OLAP) has
been tackling the problem of slicing data for analysis, and the
techniques deal with the problem of large search space (i.e.,
how to efficiently identify data slices with certain properties).
For example, Smart Drilldown [22] proposes an OLAP drill
down process that returns the top-K most “interesting” rules
such that the rules cover as many records as possible while
being as specific as possible. Intelligent rollups [34] goes the
other direction where the goal is to find the broadest cube
that share the same characteristics of a problematic record. In
comparison, Slice Finder finds slices, on which the model
under-performs, without having to evaluate the model on
all the possible slices. This is different from general OLAP
operations based on cubes with pre-summarized aggregates,
and the OLAP algorithms cannot be directly used.
Model Understanding: Understanding a model and its
behavior is a broad topic that is being studied extensively [7],
[18], [28], [32], [33], [36]. For example, LIME [32] trains
interpretable linear models on local data and random noise
to see which feature are prominent. Anchors [33] are high-
precision rules that provide local and sufficient conditions for
a black-box model to make predictions. In comparison, Slice
Finder is a complementary tool to provide part of the data
where the model is performing relatively worse than other
parts. As a result, there are certain applications (e.g., model
fairness) that benefit more from slices. PALM [27] isolates a
small set of training examples that have the greatest influence
on the prediction by approximating a complex model into an
interpretable meta-model that partitions the training data and
a set of sub-models that approximate the patterns within each
pattern. PALM expects as input the problematic example and a
set of features that are explainable to the user. In comparison,
Slice Finder finds slices with high effective sizes and does
not require any user input. Influence functions [25] have been
used to compute how each example affects model behavior. In
comparison, Slice Finder identifies interpretable slices instead
of individual examples. An interesting direction is to extend
influence functions to slices, to quantify the impact of each
slice on the overall model quality.
Feature Selection: Slice Finder is a model validation tool,
which comes after model training. It is important to note that
this is different from feature selection [11], [20] in model
training, where the goal is often to identify and (re-)train on
the most correlated features (dimensions) to the target label
(i.e., finding representative features that best explain model
predictions). Instead, Slice Finder identifies a few common
feature values that describe subsets of data with significantly
high error concentration for a given model; this, in turn, could
help the user to interpret hidden model performance issues
that are masked by good overall model performance metrics.



VII. CONCLUSION

We have proposed Slice Finder as a tool for efficiently find-
ing large, problematic, and interpretable slices. The techniques
are relevant to model validation in general, but also to model
fairness and fraud detection where human interpretability is
critical to understand model behavior. We have proposed two
methods for automated data slicing for model validation:
decision tree training, which is efficient and finds slices
defined as ranges of values, and slice lattice search, which can
find overlapping slices and are more effective for categorical
features. We also provide an interactive visualization front-end
to help user quickly browse through a handful of problematic
slices.

In the future, we would like to improve Slice Finder to
better discretize numeric features and support the merging of
slices. We would also like to deploy SliceFinder to products
and conduct a user study on how helpful the slices are for
explaining and debugging models.
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