
Yebin Liu- Tsinghua University
Yebin Liu
- Tsinghua University
About
239
Publications
49,944
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,983
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (239)
Whole-body motion generation from speech audio is crucial for computer graphics and immersive VR/AR. Prior methods struggle to produce natural and diverse whole-body motions from speech. In this paper, we introduce a novel method, named SpeechAct, based on a hybrid point representation and contrastive motion learning to boost realism and diversity...
Extracting physically plausible 3D human motion from videos is a critical task. Although existing simulation-based motion imitation methods can enhance the physical quality of daily motions estimated from monocular video capture, extending this capability to high-difficulty motions remains an open challenge. This can be attributed to some flawed mo...
Humans perform a variety of interactive motions, among which duet dance is one of the most challenging interactions. However, in terms of human motion generative models, existing works are still unable to generate high-quality interactive motions, especially in the field of duet dance. On the one hand, it is due to the lack of large-scale high-qual...
In this paper, we introduce ManiVideo, a novel method for generating consistent and temporally coherent bimanual hand-object manipulation videos from given motion sequences of hands and objects. The core idea of ManiVideo is the construction of a multi-layer occlusion (MLO) representation that learns 3D occlusion relationships from occlusion-free n...
We introduce FOF-X for real-time reconstruction of detailed human geometry from a single image. Balancing real-time speed against high-quality results is a persistent challenge, mainly due to the high computational demands of existing 3D representations. To address this, we propose Fourier Occupancy Field (FOF), an efficient 3D representation by le...
Modern 3D generation methods can rapidly create shapes from sparse or single views, but their outputs often lack geometric detail due to computational constraints. We present DetailGen3D, a generative approach specifically designed to enhance these generated 3D shapes. Our key insight is to model the coarse-to-fine transformation directly through d...
We present a novel approach for generating 360-degree high-quality, spatiotemporally coherent human videos from a single image. Our framework combines the strengths of diffusion transformers for capturing global correlations across viewpoints and time, and CNNs for accurate condition injection. The core is a hierarchical 4D transformer architecture...
Estimating consistently oriented normals for point clouds enables a number of important applications in computer graphics such as surface reconstruction. While local normal estimation is possible with simple techniques like principal component analysis (PCA), orienting these normals to be globally consistent has been a notoriously difficult problem...
Differentiable rendering techniques have recently shown promising results for free-viewpoint video synthesis of characters. However, such methods, either Gaussian Splatting or neural implicit rendering, typically necessitate per-subject optimization which does not meet the requirement of real-time rendering in an interactive application. We propose...
This paper introduces Stereo-Talker, a novel one-shot audio-driven human video synthesis system that generates 3D talking videos with precise lip synchronization, expressive body gestures, temporally consistent photo-realistic quality, and continuous viewpoint control. The process follows a two-stage approach. In the first stage, the system maps au...
We propose Lodge++, a choreography framework to generate high-quality, ultra-long, and vivid dances given the music and desired genre. To handle the challenges in computational efficiency, the learning of complex and vivid global choreography patterns, and the physical quality of local dance movements, Lodge++ adopts a two-stage strategy to produce...
We introduce DreamCraft3D++, an extension of DreamCraft3D that enables efficient high-quality generation of complex 3D assets. DreamCraft3D++ inherits the multi-stage generation process of DreamCraft3D, but replaces the time-consuming geometry sculpting optimization with a feed-forward multi-plane based reconstruction model, speeding up the process...
Dynamic and dexterous manipulation of objects presents a complex challenge, requiring the synchronization of hand motions with the trajectories of objects to achieve seamless and physically plausible interactions. In this work, we introduce ManiDext, a unified hierarchical diffusion-based framework for generating hand manipulation and grasp poses b...
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner. The proposed method enables 2K-resolution rendering under a sparse-view camera setting. Unlike the original Gaussian Splatting or neural implicit rendering methods that necessitate per-subject optimizations, we introduce Gaussian param...
Creating high-fidelity 3D human head avatars is crucial for applications in VR/AR, telepresence, digital human interfaces, and film production. Recent advances have leveraged morphable face models to generate animated head avatars from easily accessible data, representing varying identities and expressions within a low-dimensional parametric space....
We present a novel pipeline for learning high-quality triangular human avatars from multi-view videos. Recent methods for avatar learning are typically based on neural radiance fields (NeRF), which is not compatible with traditional graphics pipeline and poses great challenges for operations like editing or synthesizing under different environments...
In this study, we propose a modeling-based compression approach for dense/lenslet light field images captured by Plenoptic 2.0 with square microlenses. This method employs the 5-D Epanechnikov Kernel (5-D EK) and its associated theories. Owing to the limitations of modeling larger image block using the Epanechnikov Mixture Regression (EMR), a 5-D E...
Recent years have witnessed a trend of the deep integration of the generation and reconstruction paradigms. In this paper, we extend the ability of controllable generative models for a more comprehensive hand mesh recovery task: direct hand mesh generation, inpainting, reconstruction, and fitting in a single framework, which we name as Holistic Han...
In this paper, we introduce 4DHands, a robust approach to recovering interactive hand meshes and their relative movement from monocular inputs. Our approach addresses two major limitations of previous methods: lacking a unified solution for handling various hand image inputs and neglecting the positional relationship of two hands within images. To...
We present a novel approach for generating high-quality, spatio-temporally coherent human videos from a single image under arbitrary viewpoints. Our framework combines the strengths of U-Nets for accurate condition injection and diffusion transformers for capturing global correlations across viewpoints and time. The core is a cascaded 4D transforme...
Estimating a consistently oriented normal vector field for an unoriented point cloud enables a number of important downstream applications in computer graphics. While normal estimation for a small patch of points can be done with simple techniques like principal component analysis (PCA), orienting these normals to be globally consistent has been a...
In this paper, we present a low-budget and high-authenticity bidirectional telepresence system, Tele-Aloha, targeting peer-to-peer communication scenarios. Compared to previous systems, Tele-Aloha utilizes only four sparse RGB cameras, one consumer-grade GPU, and one autostereoscopic screen to achieve high-resolution (2048x2048), real-time (30 fps)...
Reconstructing hand-held objects from monocular RGB images is an appealing yet challenging task. In this task, contacts between hands and objects provide important cues for recovering the 3D geometry of the hand-held objects. Though recent works have employed implicit functions to achieve impressive progress, they ignore formulating contacts in the...
One crucial aspect of 3D head avatar reconstruction lies in the details of facial expressions. Although recent NeRF-based photo-realistic 3D head avatar methods achieve high-quality avatar rendering, they still encounter challenges retaining intricate facial expression details because they overlook the potential of specific expression variations at...
We present a general, fast, and practical solution for interpolating novel views of diverse real-world scenes given a sparse set of nearby views. Existing generic novel view synthesis methods rely on time-consuming scene geometry pre-computation or redundant sampling of the entire space for neural volumetric rendering, limiting the overall efficien...
In this paper, we explore the use of a single imaging device to acquire immersive 3D perception in endoscopic surgery. To solve the heavily ill-posed problem caused by the unknown depth and unseen occlusion, we introduce a Vision Transformer (ViT)-based Multiplane Images (MPI) representation, termed as ViT-MPI, for the continuous novel view synthes...
We propose a regression-based implicit surface representation using mixture-of-experts based on the Epanechnikov kernel (EK), a mathematical framework that does not depend on neural networks. The modeling method is implemented using signed distance fields (SDF), modeled using the expectation-maximization algorithm to iterate an optimal set of param...
Understandings of the three-dimensional social behaviors of freely moving large-size mammals are valuable for both agriculture and life science, yet challenging due to occlusions in close interactions. Although existing animal pose estimation methods captured keypoint trajectories, they ignored deformable surfaces which contained geometric informat...
The problem of modeling an animatable 3D human head avatar under light-weight setups is of significant importance but has not been well solved. Existing 3D representations either perform well in the realism of portrait images synthesis or the accuracy of expression control, but not both. To address the problem, we introduce a novel hybrid explicit-...
We address the problem of aligning real-world 3D data of garments, which benefits many applications such as texture learning, physical parameter estimation, generative modeling of garments, etc. Existing extrinsic methods typically perform non-rigid iterative closest point and struggle to align details due to incorrect closest matches and rigidity...
We present CaPhy, a novel method for reconstructing animatable human avatars with realistic dynamic properties for clothing. Specifically, we aim for capturing the geometric and physical properties of the clothing from real observations. This allows us to apply novel poses to the human avatar with physically correct deformations and wrinkles of the...
Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in...
We present AvatarReX, a new method for learning NeRF-based full-body avatars from video data. The learnt avatar not only provides expressive control of the body, hands and the face together, but also supports real-time animation and rendering. To this end, we propose a compositional avatar representation, where the body, hands and the face are sepa...
Recent neural rendering methods have made great progress in generating photorealistic human avatars. However, these methods are generally conditioned only on low-dimensional driving signals (e.g., body poses), which are insufficient to encode the complete appearance of a clothed human. Hence they fail to generate faithful details. To address this p...
Learning-based approaches to monocular motion capture have recently shown promising results by learning to regress in a data-driven manner. However, due to the challenges in data collection and network designs, it remains challenging for existing solutions to achieve real-time full-body capture while being accurate in world space. In this work, we...
Reconstructing hand-held objects from monocular RGB images is an appealing yet challenging task. In this task, contacts between hands and objects provide important cues for recovering the 3D geometry of the hand-held objects. Though recent works have employed implicit functions to achieve impressive progress, they ignore formulating contacts in the...
Recent years have witnessed considerable achievements in editing images with text instructions. When applying these editors to dynamic scene editing, the new-style scene tends to be temporally inconsistent due to the frame-by-frame nature of these 2D editors. To tackle this issue, we propose Control4D, a novel approach for high-fidelity and tempora...
Face reenactment methods attempt to restore and re-animate portrait videos as realistically as possible. Existing methods face a dilemma in quality versus controllability: 2D GAN-based methods achieve higher image quality but suffer in fine-grained control of facial attributes compared with 3D counterparts. In this work, we propose StyleAvatar, a r...
We present PyMAF-X, a regression-based approach to recovering a parametric full-body model from a single image. This task is very challenging since minor parametric deviation may lead to noticeable misalignment between the estimated mesh and the input image. Moreover, when integrating part-specific estimations into the full-body model, existing sol...
Existing approaches to animatable NeRF-based head avatars are either built upon face templates or use the expression coefficients of templates as the driving signal. Despite the promising progress, their performances are heavily bound by the expression power and the tracking accuracy of the templates. In this work, we present LatentAvatar, an expre...
Creating pose-driven human avatars is about modeling the mapping from the low-frequency driving pose to high-frequency dynamic human appearances, so an effective pose encoding method that can encode high-fidelity human details is essential to human avatar modeling.To this end, we present PoseVocab, a novel pose encoding method that encourages the n...
Domain adaptation of 3D portraits has gained more and more attention. However, the transfer mechanism of existing methods is mainly based on vision or language, which ignores the potential of vision-language combined guidance. In this paper, we propose a vision-language coupled 3D portraits domain adaptation framework, namely Image and Text portrai...
Creating animatable avatars from static scans requires the modeling of clothing deformations in different poses. Existing learning-based methods typically add pose-dependent deformations upon a minimally-clothed mesh template or a learned implicit template, which have limitations in capturing details or hinder end-to-end learning. In this paper, we...
Regression-based methods have shown high efficiency and effectiveness for multi-view human mesh recovery. The key components of a typical regressor lie in the feature extraction of input views and the fusion of multi-view features. In this paper, we present Pixel-aligned Feedback Fusion (PaFF) for accurate yet efficient human mesh recovery from mul...
Existing 3D-aware facial generation methods face a dilemma in quality versus editability: they either generate editable results in low resolution, or high-quality ones with no editing flexibility. In this work, we propose a new approach that brings the best of both worlds together. Our system consists of three major components: (1) a 3D-semantics-a...
With NeRF widely used for facial reenactment, recent methods can recover photo-realistic 3D head avatar from just a monocular video. Unfortunately, the training process of the NeRF-based methods is quite time-consuming, as MLP used in the NeRF-based methods is inefficient and requires too many iterations to converge. To overcome this problem, we pr...
We present Tensor4D, an efficient yet effective approach to dynamic scene modeling. The key of our solution is an efficient 4D tensor decomposition method so that the dynamic scene can be directly represented as a 4D spatio-temporal tensor. To tackle the accompanying memory issue, we decompose the 4D tensor hierarchically by projecting it first int...
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery. Towards fine-grained control over facial attributes, recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or i...
We present FITE, a First-Implicit-Then-Explicit framework for modeling human avatars in clothing. Our framework first learns implicit surface templates representing the coarse clothing topology, and then employs the templates to guide the generation of point sets which further capture pose-dependent clothing deformations such as wrinkles. Our pipel...
We propose DiffuStereo, a novel system using only sparse cameras (8 in this work) for high-quality 3D human reconstruction. At its core is a novel diffusion-based stereo module, which introduces diffusion models, a type of powerful generative models, into the iterative stereo matching network. To this end, we design a new diffusion kernel and addit...
To address the ill-posed problem caused by partial observations in monocular human volumetric capture, we present AvatarCap, a novel framework that introduces animatable avatars into the capture pipeline for high-fidelity reconstruction in both visible and invisible regions. Our method firstly creates an animatable avatar for the subject from a sma...
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting. Although plausible relighting results can be achieved, previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows, which significantly decrease th...
We propose DiffuStereo, a novel system using only sparse cameras (8 in this work) for high-quality 3D human reconstruction. At its core is a novel diffusion-based stereo module, which introduces diffusion models, a type of powerful generative models, into the iterative stereo matching network. To this end, we design a new diffusion kernel and addit...
We present FITE, a First-Implicit-Then-Explicit framework for modeling human avatars in clothing. Our framework first learns implicit surface templates representing the coarse clothing topology, and then employs the templates to guide the generation of point sets which further capture pose-dependent clothing deformations such as wrinkles. Our pipel...
We present PyMAF-X, a regression-based approach to recovering a full-body parametric model from a single image. This task is very challenging since minor parametric deviation may lead to noticeable misalignment between the estimated mesh and the input image. Moreover, when integrating part-specific estimations to the full-body model, existing solut...
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting. Although plausible relighting results can be achieved, previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows, which significantly decrease th...
To address the ill-posed problem caused by partial observations in monocular human volumetric capture, we present AvatarCap, a novel framework that introduces animatable avatars into the capture pipeline for high-fidelity reconstruction in both visible and invisible regions. Our method firstly creates an animatable avatar for the subject from a sma...
In this paper, we present a Geometry-aware Neural Interpolation (Geo-NI) framework for light field rendering. Previous learning-based approaches either rely on the capability of neural networks to perform direct interpolation, which we dubbed Neural Interpolation (NI), or explore scene geometry for novel view synthesis, also known as Depth Image-Ba...
The advent of deep learning has led to significant progress in monocular human reconstruction. However, existing representations, such as parametric models, voxel grids, meshes and implicit neural representations, have difficulties achieving high-quality results and real-time speed at the same time. In this paper, we propose Fourier Occupancy Field...
Garment representation, editing and animation are challenging topics in the area of computer vision and graphics. It remains difficult for existing garment representations to achieve smooth and plausible transitions between different shapes and topologies. In this work, we introduce, DeepCloth, a unified framework for garment representation, recons...
Existing state-of-the-art novel view synthesis methods rely on either fairly accurate 3D geometry estimation or sampling of the entire space for neural volumetric rendering, which limit the overall efficiency. In order to improve the rendering efficiency by reducing sampling points without sacrificing rendering quality, we propose to build a novel...
It is extremely challenging to create an animatable clothed human avatar from RGB videos, especially for loose clothes due to the difficulties in motion modeling. To address this problem, we introduce a novel representation on the basis of recent neural scene rendering techniques. The core of our representation is a set of structured local radiance...
Graph convolutional network (GCN) has achieved great success in single hand reconstruction task, while interacting two-hand reconstruction by GCN remains unexplored. In this paper, we present Interacting Attention Graph Hand (IntagHand), the first graph convolution based network that reconstructs two interacting hands from a single RGB image. To so...
To achieve a promising performance on relative pose estimation for RGB-D scans, a considerable overlap between two RGB-D inputs is often required for most existing methods. However, in many practical applications for human scans, we often have to estimate the relative poses under arbitrary overlaps, which is challenging for existing methods. To dea...
We propose a novel neural rendering pipeline, Hybrid Volumetric-Textural Rendering (HVTR), which synthesizes virtual human avatars from arbitrary poses efficiently and at high quality. First, we learn to encode articulated human motions on a dense UV manifold of the human body surface. To handle complicated motions (e.g., self-occlusions), we then...
Typical learning-based light field reconstruction methods demand in constructing a large receptive field by deepening their networks to capture correspondences between input views. In this paper, we propose a spatial-angular attention network to perceive non-local correspondences in the light field, and reconstruct high angular resolution light fie...
In this paper, we propose an efficient method for robust and accurate 3D self-portraits using a single RGBD camera. Our method can generate detailed and realistic 3D self-portraits in seconds and shows the ability to handle subjects wearing extremely loose clothes. To achieve highly efficient and robust reconstruction, we propose PIFusion, which co...