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Abstract—Evolutionary algorithms (EAs) have become one
of the most effective techniques for multi-objective opti-
mization, where a number of variation operators have been
developed to handle the problems with various difficulties.
While most EAs use a fixed operator all the time, it is a
labor-intensive process to determine the best EA for a new
problem. Hence, some recent studies have been dedicated
to the adaptive selection of the best operators during the
search process. To address the exploration versus exploitation
dilemma in operator selection, this paper proposes a novel
operator selection method based on reinforcement learning.
In the proposed method, the decision variables are regarded
as states and the candidate operators are regarded as actions.
By using deep neural networks to learn a policy that esti-
mates the Q value of each action given a state, the proposed
method can determine the best operator for each parent that
maximizes its cumulative improvement. An EA is developed
based on the proposed method, which is verified to be more
effective than the state-of-the-art ones on challenging multi-
objective optimization problems.
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algorithm, reinforcement learning, operator selection.
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I. INTRODUCTION

IN the last three decades, evolutionary computation
has been recognized to be effective for solving multi-

objective optimization problems (MOPs), which evolves
a set of solutions to approximate the Pareto fronts of
MOPs in a black-box manner [1]. Since no problem-
dependent information (e.g., gradient) is used, multi-
objective evolutionary algorithms (MOEAs) iteratively
generate new solutions via variation operators and elim-
inate bad solutions via environmental selection. Such a
search paradigm enables MOEAs to solve different types
of MOPs, and obtain a set of well-converged and diverse
solutions in a single run [2].

The variation operators in evolutionary algorithms
define the rules for generating new solutions (i.e., off-
spring) based on existing ones (i.e., parents), where ex-
isting operators exhibit quite different search dynamics
as well as performance [3]. For example, the genetic
algorithm generates offspring via crossover and muta-
tion operators, where the crossover operator provides
good exploration ability [4] and the mutation operator
can help solutions escape from local optimums [5]. Dif-
ferential evolution mutates each solution according to
the difference between other solutions, which is good at
handling complex variable linkages [6]. Particle swarm
optimization updates solutions by learning from local
and global best solutions, which provides the popula-
tion with a fast convergence speed in high-dimensional
search spaces [7]. Covariance matrix adaptation evo-
lution strategy samples new solutions by learning a
multivariate normal distribution model, showing high
effectiveness on many real-world scenarios [8].

According to the no free lunch theorem, there does
not exist an operator outperforming any others on all
optimization problems [9]. This means that an opera-
tor should be carefully selected when solving specific
MOPs. An operator can generally be selected from some
candidates via empirical comparisons [10]. However,
such a trial-and-error process is impractical for solving
many real-world problems with computationally expen-
sive objectives [11]. To address this issue, some methods
have been suggested to determine the best operator
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for a given problem before or during the optimization
process. The former methods are known as offline al-
gorithm recommendation, where a model is trained to
learn the relations between the features of problems
and the performance of multiple operators, and the
best operator for a new problem can be determined by
feeding the features of the new problem to the model
[12], [13]. While the features of a given problem are
difficult to be accurately extracted [3], the latter methods
aim to adaptively select operators according to their
performance at historical generations, which are known
as online operator selection or hyperheuristics. These
methods suggest various credit assignment strategies
to measure the fitness improvement from parent to
offspring solutions brought by each operator [14], [15],
and suggest various selection strategies to determine the
next operator for generating offspring [16], [17].

The superiority of adaptive operator selection is obvi-
ous on complex optimization problems [18], [19]. How-
ever, it suffers from the dilemma of exploration versus
exploitation, where the operators with better historical
performance are expected to be given higher priority
for generating promising offspring, while the operators
with poor historical performance are also expected to be
explored to make offspring solutions escape from local
optimums [17]. This becomes more serious when solving
MOPs, since each solution has multiple objective values
and both convergence and diversity should be consid-
ered. Therefore, this paper aims to address this dilemma
via reinforcement learning, where the contributions of
this work contain the following aspects:

1) A reinforcement learning based operator selec-
tion method is proposed. By regarding decision
variables as states, candidate operators as actions,
fitness improvement as the reward, and popula-
tion evolution as the environment, an agent uses
deep neural networks to learn a policy estimating
the Q value of each action given a state. The Q
value represents the cumulative fitness improve-
ment brought by an operator in the future rather
than in the past, hence better offspring solutions
are expected to be generated at future generations.

2) An MOEA is developed by embedding the pro-
posed operator selection method in a decomposi-
tion based MOEA with dynamical resource alloca-
tion. In the proposed MOEA, the agent iteratively
updates the deep neural networks to guide the
selection of operators. By adopting four different
types of variation operators as the candidates, the
proposed MOEA shows high versatility on MOPs
with multimodal landscapes and complex vari-
able linkages, and obtains better performance than
state-of-the-art MOEAs in the experiments.

The rest of this paper is organized as follows. In Sec-
tion II, existing operator selection methods are reviewed
and basic concepts of reinforcement learning are intro-
duced. In Section III, the proposed operator selection

method and MOEA are elaborated. In Section IV, the
experimental results are presented and analyzed. At last,
conclusions are given in Section V.

II. RELATED WORK

A. Multi-objective Optimization
In general, an unconstrained MOP is formulated as

Minimize: f(x) = (f1(x), . . . , fM (x))

Subject to: ld ≤ xd ≤ ud d = 1, . . . , D
, (1)

where x = (x1, . . . , xD) is a solution containing D deci-
sion variables, f(x) is its objective vector containing M
objectives, l1, . . . , lD are the lower bounds of variables,
and u1, . . . , uD are the upper bounds of variables. Due to
the conflicting nature between the objectives, there does
not exist a single solution minimizing all the objectives;
instead, an MOP contains a finite or infinite number of
Pareto optimal solutions trading off between the conflict-
ing objectives [20]. Thus, the goal of solving an MOP is
to find a set of solutions as a representative of all the
Pareto optimal solutions, where the closeness between
the found solutions and the Pareto front is known as
convergence, and the spread and evenness of the found
solutions are known as diversity.

Most MOEAs solve MOPs without using any problem-
dependent information, which means that they can only
select solutions by comparing their objective vectors and
generate offspring based on existing solutions. Thus, a
variety of variation operators have been suggested to
generate offspring with predefined rules and formulas,
where the operators of the genetic algorithm (GA) [21],
differential evolution (DE) [22], particle swarm optimiza-
tion (PSO) [23], and estimation of distribution algorithm
(EDA) [24] are the most popular ones with MOEAs. It
can be observed from many existing studies that, each
of these operators holds better performance than the
others on different types of MOPs, such as GA on DTLZ
problems with multimodal landscapes [25], DE on UF
problems with complex variable linkages [26], PSO on
LSMOP problems with a large number of variables [7],
and EDA on IMF problems with nonlinear variable link-
ages [27]. In short, no operator has the best performance
on all types of MOPs.

In order to obtain good performance on various types
of MOPs and solve unknown MOPs without trials, some
adaptive operator selection methods have been sug-
gested to achieve both the selection of the best operator
and the optimization of an MOP in a single optimization
process. In the next subsection, existing adaptive opera-
tor selection methods are reviewed.

B. Existing Adaptive Operator Selection Methods
The selection of operators during the optimization

process is essentially a multi-armed bandit problem,
where the goal is to maximize the total reward of a fixed
number of plays on multiple arms, without knowing
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Fig. 1: General procedure of evolutionary algorithms
with adaptive operator selection.

the probability distribution of the rewards got from
each arm [28]. In terms of operator selection, a credit
assignment strategy and an operator selection strategy
should be designed as shown in Fig. 1, where the former
rewards an operator (i.e., arm) according to the fitness
improvement brought by the offspring solutions recently
generated by the operator, and the latter decides the
next operator be selected according to the rewards of
all operators [17].

The idea of operator selection was originally sug-
gested for single-objective optimization [29]. One of the
most commonly used strategies of credit assignment is
to reward an operator according to the improvement of
objective value brought by the offspring solution [18],
[30], i.e., max{0, f(p)−f(o)

f(p) }, where f(p) and f(o) denotes
the objective values of the parent and offspring solutions,
respectively. Similarly, some work rewards an operator
by comparing the objective values of the offspring solu-
tion generated by all operators [19], [31], i.e., 1− f(o)∑

o′ f(o′) ,
where f(o) and f(o′) denotes the objective values of
the offspring solution generated by the operator and
others, respectively. To track the dynamics of search
process, a sliding window saving the objective improve-
ment brought by recently generated offspring solutions
is suggested in [14]. The reward of each operator is set
to its maximum but not average objective improvement
saved in the window, since rare but large improvements
are believed to be more valuable than frequent but small
improvements [32].

The credit assignment for single-objective optimiza-
tion is simple since the difference between the objective
values of solutions can be directly calculated. By con-
trast, it becomes more complex to measure the fitness
improvement brought by solutions with multiple objec-
tives, where both convergence and diversity should be
taken into consideration [33]. Earlier strategies tailored
for multi-objective optimization are based on Pareto
dominance relation, where an operator is rewarded if
the generated offspring solution dominates its parent
[34] or dominates many solutions from the previous
generation [15]. To explicitly consider both convergence
and diversity, a Pareto metric and a density metric are
integrated into the reward in [35]. With the assistance of
aggregation functions and weigh vectors, the multiple
objectives of an MOP can be converted into a single

one to facilitate the measurement of convergence and
diversity [36]. Hence, some credit assignment strategies
are proposed for decomposition based MOEAs, where
operators are rewarded according to the improvement of
aggregation function values brought by offspring solu-
tions [17], [37]. In another decomposition based MOEA,
the reward is defined based on Pareto dominance and
crowding status of an offspring solution in its neigh-
borhood [38]. In a recently proposed MOEA for solving
large-scale MOPs, the hypervolume improvement of the
whole population is regarded as the reward [39].

On the contrary, the selection of operators is more
tricky. If the operators are directly selected according to
their recent rewards, the operators with higher rewards
will be given higher priority than the others, and such
a positive feedback will further improve the rewards
of these operators. To reduce the greediness as well as
the probability of getting trapped into local optimums,
some operator selection strategies have been proposed to
strike a balance between exploration and exploitation. In
[19], [40], the number of times for selecting an operator
is determined by the ratio of its reward to the sum of
the rewards of all operators. In [41], [42], the operators
are selected by using roulette wheel selection according
to their rewards. In [17], the upper confidence bound
algorithm is employed to select operators, which is very
effective for handling the multi-armed bandit problem
[28]. In [37], a Beta distribution is established for each
operator and updated by Bernoulli Thompson sampling,
then the operators are selected according to the rewards
sampled from the distributions. In [43], the optimization
process is divided into several stages, where all the
operators are first selected to obtain their rewards and
only the best operator is then selected at each stage.
In addition, many other strategies have been adopted
to select operators according to their rewards, such as
the dynamic multi-armed bandit algorithm [16], fuzzy
inference system [44], AdaBoost [45], and adaptive pur-
suit [39].

The exploration versus exploitation dilemma lies in
both the credit assignment and operator selection. Firstly,
due to the limited number of trials and the randomness
in operators, the operators may be inaccurately rewarded
by credit assignment strategies. Secondly, the operator
selection strategies select operators according to their
historical rewards, but an operator that performs well
at previous generations may be ineffective at future
generations. To alleviate the dilemma, this work aims to
use deep reinforcement learning to assist both the credit
assignment and operator selection, where some basic
concepts of reinforcement learning are first introduced
in the next subsection.

C. Reinforcement Learning
In comparison to evolutionary computation finding

the optimal solutions for static problems, reinforcement
learning aims to find the optimal solutions for a fi-
nite or infinite number of states of dynamic problems,
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concerned with how intelligence agents ought to take
actions in a dynamic environment [46]. Reinforcement
learning has been employed by MOEAs for environmen-
tal selection [47], offspring generation [48], and change
tracking [49], but has not been applied to the operator
selection of MOEAs. In [50], a simple reinforcement
learning method is applied to the operator selection for
single-objective optimization, while it is totally different
from the deep reinforcement learning method used in
this work.

The goal of reinforcement learning is to learn a policy
π taking an action at each state, where the action max-
imizes the expected cumulative reward in terms of the
current state [51]. At each iteration t, the agent takes an
action at at the current state st according to the policy,
then the environment receives the action, produces a re-
ward rt, and transfers to the next state st+1. The process
repeats until a terminal condition is fulfilled, and the
tuple (st, at, rt, st+1) is recorded as a sample to train the
agent. Deep reinforcement learning currently includes
policy-based methods and value-based methods. The
policy-based methods handle continuous action spaces
by directly learning a stochastic policy via an indepen-
dent function approximator [52]. In this case, a policy
is a conditional probability distribution π = p(at|st; θ)
indicating the probability of taking action at at state st
with policy parameters θ. Using policy gradient to learn
the optimal policy parameters, the agent can take an ac-
tion at a given state by sampling from π [53]. The value-
based methods handle discrete action spaces by approx-
imating the action-value function, which calculates the
expected cumulative reward (i.e., Q value) of taking
action at at state st [54]. More specifically, the action-
value function is defined as Q(st, at) = E[Rt|st, at],
where Rt =

∑∞
i=t γ

i−tri is the discount sum of future
rewards and γ ∈ [0, 1] is the discount factor. Once the
action-value function is approximated, the agent can take
the action with the largest Q value at a given state s, i.e.,
π(s) = argmaxa∈AQ(s, a).

The classical Q-learning approximates the action-value
function via a Q-table [55], where each grid stores the Q
value of an action given a state. While the Q-table can
only handle discrete state spaces, the deep Q-network
(DQN) employs a deep neural network to approximate
the action-value function with continuous state spaces
[56], where the input and output of the neural network
are a state and the Q values of all actions, respectively.
The DQN stores the obtained tuples in an experience
replay pool to form a training set, and interleaves taking
actions with neural network training. The neural net-
work is trained using gradient descent on the loss

L =
1

|T |
∑
t∈T

(Q (st, at)− qt)
2
, (2)

where T is the training set, Q(st, at) is the at-th output
neuron of the neural network with input vector st, and

qt is the Q value of action at at state st:

qt = rt + γmax
a′∈A

Q(st+1, a
′). (3)

It is worth to note that the expected output qt contains
not only the current reward rt but also the maximum
reward maxa′∈A Q(st+1, a

′) of taking the next action. Due
to the recursive nature of the formula, qt can represent
the maximum cumulative reward in the future.

In the proposed operator selection method, the deci-
sion variables of solutions are regarded as states and the
indexes of operators are regarded as actions. Since the
states are continuous and the actions are discrete, it is
desirable to use DQN in the proposed method. In the
next section, the proposed method as well as MOEA is
elaborated.

III. THE PROPOSED METHOD

A. The Proposed Reinforcement Learning Based Operator
Selection Method

The core issue in using reinforcement learning is to
determine the rewards and states for a given task, so
that the agent can use a deep neural network to learn the
relations between states and rewards. To consider both
convergence and diversity in the fitness improvement
brought by offspring solutions, the proposed method
employs the framework of decomposition based MOEAs
[36] and consequently calculates the improvement of
aggregation function values. Here the Tchebycheff ap-
proach is adopted as the aggregation function:

Minimize gtch(x,w, z∗) = max
1≤i≤M

wi(fi(x)− z∗i ), (4)

where w = (w1, . . . , wM ) is the weight vector corre-
sponding to solution x and z∗ = (z∗1 , . . . , z

∗
M ) is the

ideal point consisting of the minimum objective values
in the population. An offspring solution x is compared
to all the solutions in its parent’s neighborhood once it
is generated, and its fitness improvement on a neighbor
y is calculated by

FI(x,y) = max

{
1− gtch(x,w, z∗)

gtch(y,w, z∗)
, 0

}
, (5)

where w denotes the weight vector of y. Note that
an offspring solution can replace at most nr solutions
in the neighborhood, hence its neighborhood fitness
improvement NFIx is further calculated as the sum of
fitness improvement on at most nr solutions replaced by
the offspring solution. Moreover, the proposed method
considers the NFI in a historical period by saving the
recent tuple (op,NFIx) in a first-in first-out queue R,
where NFIx is the neighborhood fitness improvement
of offspring solution x generated by operator op. Thus,
the reward of operator op can be calculated based on its
tuples saved in R:

rewardop = max
(op,NFIx)∈R

NFIx. (6)
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Algorithm 1: CreditAssignment(x, op, Y,R)
Input: x (offspring), op (the operator generating x),

Y (solutions replaced by x), R (queue of
rewards)

Output: R (updated queue), rewardop (reward of
the operator)

1 NFIx ← 0;
2 foreach y ∈ Y do
3 FI(x,y)← Calculate the fitness improvement

by (5);
4 NFIx ← NFIx + FI(x,y);

5 Add (op,NFIx) to R;
6 if R exceeds its maximum size then
7 Delete the oldest tuple from R;

8 rewardop ← Calculate the reward of op by (6);
9 return R, rewardop;

That is, the reward of an operator is set to its largest NFI
value in the queue. The underlying idea is that rare, but
large improvements are believed to be more important
than frequent and small improvements [57]. Hence, the
largest rather than average NFI value is considered as
the reward, and the reward of each operator can be
stable in a period. The pseudocode of the proposed credit
assignment strategy is summarized in Algorithm 1.

After calculating the reward once an offspring solution
is generated, the tuple ({p,w}, op, rewardop, {x,w}) is
saved in another queue T for experience replay, where
p is the main parent generating x and w is the corre-
sponding weight vector. That is, the state consists of the
decision variables of a solution and its weight vector (i.e.,
s = (p1, . . . , pD, w1, . . . , wM )) and the action is the oper-
ator (i.e., a = op). Then, T is used to train a deep neural
network Q(s, a) by (2)–(3), and the neural network can
be used for selecting operators in the future. Before
generating an offspring solution based on a parent p,
the Q value of each operator is calculated by the neural
network with input {p,w}, and an operator is selected
according to their Q values via roulette-wheel selection.
It is worth to note that an operator can no longer be
selected once it does not exist in the experience replay
pool T ; in this case, the operator will be forcibly selected
instead of roulette-wheel selection. The pseudocode of
the proposed operator selection strategy is presented in
Algorithm 2.

According to the description of the proposed method,
its credit assignment strategy and operator selection
strategy have the following advantages in comparison
to the strategies in existing methods:

1) Roughly, existing credit assignment strategies set
the reward qt to rt + γqt−1 that considers the
historical rewards, whereas the proposed strategy
sets qt to rt + γqt+1 that considers the future re-
wards. Since the selected operators are expected
to be effective in the future rather than in the
past, the proposed strategy is more promising. Of

Algorithm 2: OperatorSelection(p,w, OP, T , Q)

Input: p (solution), w (corresponding weight
vector), OP (candidate operator set), T
(experience replay pool), Q (trained neural
network)

Output: op (selected operator)
1 state← {p,w};
2 Qvalue← A 1× |OP | vector of zeros;
3 foreach op ∈ OP do
4 if @(·, op, ·, ·) ∈ T then
5 return op;

6 else
7 Qvalueop ← Q(state, op);

8 op← Select an operator according to Qvalue via
roulette-wheel selection;

9 return op;

States

(decision 

variables)

Q values

of actions

(operators)

Population evolution

Reinforcement 

learning agent

Reward

Actions

Fig. 2: Illustration of the proposed MOEA with reinforce-
ment learning based adaptive operator selection.

course, the future rewards are unknown during the
optimization process, hence they are deduced by
training a deep neural network Q(s, a).

2) Existing operator selection strategies reward opera-
tors on all the solutions equally, while the proposed
strategy calculates the Q values of operators by
feeding a solution and its weight vector to the
neural network. That is, the proposed strategy
considers the characteristic of each solution and
can suggest different operators for different par-
ents, which provides a more delicate strategy for
operator selection.

B. Procedure of the Proposed MOEA/D-DQN
An MOEA is then established based on the proposed

operator selection method. The proposed MOEA, termed
MOEA/D-DQN, adopts the framework of the decompo-
sition based MOEA with dynamical resource allocation,
which has been verified high performance on challeng-
ing MOPs [26]. As illustrated in Fig. 2, the MOEA
interacts with the reinforcement learning agent twice a
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generation: Before an offspring solution is generated, the
agent selects an operator (i.e., action) for the MOEA ac-
cording to the neural network; after an offspring solution
is generated, the MOEA sends the solutions (i.e., state)
and fitness improvement (i.e., reward) to the agent for
training the neural network.

Algorithm 3 details the procedure of the proposed
MOEA. Following the general procedure of decompo-
sition based MOEAs, a population is first randomly
initialized (Line 1) and the same number of uniformly
distributed weight vectors are generated (Line 2). The
weight vectors are generated by the Das and Dennis’s
method [58], and the mixture uniform design [58] can
also be adopted if the population size is set to an
arbitrary number. Then, the neighbors of each weight
vector are determined (Line 3) and their utilities are
set to 1 (Line 4), which is followed by the initializa-
tion of the variables z∗, Q,R, T (Lines 5–8). At each
generation, the mating pool is first constituted by the
M extreme solutions (i.e., whose weight vectors are
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)) and |P |

5 −M so-
lutions selected by 10-tournament selection according to
their utilities (Lines 10-11). Then, each solution p in the
mating pool is regarded as a main parent and solutions
randomly selected from the neighbors of p or the whole
population are regarded as other parents (Lines 12–16).
Afterwards, the parents are used to generate an offspring
solution by an operator selected by the neural network
Q (Lines 17–18). The offspring solution is used to update
the ideal point (Line 19) and at most nr solutions in the
neighbors of p (Lines 20–29). According to the fitness im-
provement brought by the offspring solution, the reward
is calculated (Line 30) and the neural network is trained
(Lines 31–34). After every 50 generations, the utility πp

of each solution p is updated by

πp =

{
1, if ∆p > 0.001(
0.95 + 0.05× ∆p

0.001

)
× πp, otherwise , (7)

where ∆p denotes the total improvement of the aggre-
gation function values in the last 50 generations:

∆p = 1− gtch(p,w, z∗)

gtch(p′,w, z∗)
, (8)

where w is the weight vector of p and p′ is the ancestor
of p fifty generations ago.

In the proposed MOEA/D-DQN, four effective vari-
ation operators are adopted as candidate operators, in-
cluding simulated binary crossover [59], the crossover
operator in [60], and two differential evolution operators
[22]. To be specific, the simulated binary crossover is the
most popular crossover operator in genetic algorithm
for continuous optimization, which is good at handling
multimodal landscapes:

xd = 0.5
[
(1 + β)y1d + (1− β)y2d

]
, (9)

where d = 1, . . . , D, x = (x1, . . . , xd, . . . , xD) is the

Algorithm 3: Procedure of MOEA/D-DQN
Input: OP (candidate operator set)
Output: P (final population)

1 P ← Randomly initialize a population;
2 W ← Generate the uniformly distributed weight

vectors;
3 B ← Determine the indexes of neighbors of each

weight vector;
4 π ← A 1× |P | vector of ones; //utilities of

solutions
5 z∗ ← Minimum objective values in P ;
6 Q← Randomly initialize a deep neural network;
7 R← ∅; //Queue of rewards
8 T ← ∅; //Experience replay pool
9 while termination criterion is not met do

10 MatingPool1← M solutions with extreme
weight vectors;

11 MatingPool2← Select |P |
5 −M solutions

according to π via 10-tournament selection;
12 foreach p ∈MatingPool1 ∪MatingPool2 do
13 if rand < 0.9 then
14 Parent← Randomly select solutions

from Bp;

15 else
16 Parent← Randomly select solutions

from P ;

17 op← OperatorSelection(p,Wp, OP, T , Q);
18 x← Generate an offspring solution based on

{p} ∪ Parent by op;
19 z∗ ← Update the ideal point by x;
20 count← nr; //Maximum number of

replaced solutions
21 Neighbor ← Bp;
22 Y ← ∅;
23 while count > 0 && Neighbor ̸= ∅ do
24 y← Randomly select a solution from

Neighbor;
25 Neighbor ← Neighbor \ {y};
26 if gtch(x,Wy, z

∗) < gtch(y,Wy, z
∗) then

27 Replace y in P with x;
28 count← count− 1;
29 Y ← Y ∪ {y};

30 [R, rewardop]← CreditAssignment(x, op, Y,R);
31 Add ({p,Wp}, op, rewardop, {x,Wp}) to T ;
32 if T exceeds its maximum size then
33 Delete the oldest tuple from T ;

34 Randomly select a batch of tuples from T
and train Q by (2)–(3);

35 if the generation no. is a multiplication of 50 then
36 π ← Update the utilities by (7);

37 return P ;

offspring solution, y1,y2 are two parents, and

β =

{
(2µ)

1
η+1 , µ ≤ 0.5

[2(1− µ)]−
1

η+1 , µ > 0.5
, (10)
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where µ is a uniformly distributed random value sam-
pled in [0, 1] and η is a predefined parameter. The
crossover operator in [60] is good at handling nonlinear
variable linkages:

xd = y1d + r1 ×
[
1− r

−(1− gen
maxgen )0.7

2

]
× (y1d − y2d), (11)

where r1, r2 are uniformly distributed random values
sampled in [0, 1], gen is the current generation number,
and maxgen is the maximum number of generations.
Besides, the operators of differential evolution are also
effective for handling complex variable linkages, where
DE/rand/1 is defined as

xd =

{
y1d + F × (y2d − y3d), r ≤ CR

y1d, otherwise
(12)

and DE/rand/2 is defined as

xd =

{
y1d + F × (y2d − y3d + y4d − y5d), r ≤ CR

y1d, otherwise
, (13)

where F,CR are predefined parameters and r is a uni-
formly distributed random values sampled in [0, 1]. Note
that two parents should be selected for the two crossover
operators, while DE/rand/1 and DE/rand/2 require
three and five parents for generating an offspring solu-
tion, respectively. In addition, the polynomial mutation
is performed once an offspring solution is generated [61],
which can further enhance the performance in multi-
objective optimization [6], [7]:

xd = xd + (ud − ld)δ, (14)

where

δ =



[
2µ + (1 − 2µ)

(
1 −

xd − ld

ud − ld

)η+1] 1
η+1

− 1, µ ≤ 0.5

1 −
[
2 (1 − µ) + 2 (µ − 0.5)

(
1 −

ud − xd

ud − ld

)η+1] 1
η+1

, µ > 0.5

,

(15)

where ld is the lower bound of the d-th decision variable,
ud is the upper bound of the d-th decision variable, µ is
a uniformly distributed random value sampled in [0, 1],
and η is a predefined parameter.

Lastly, since the neural network Q is trained after
the generation of each offspring solution, the strong
correlation between the loss in (2) and the estimated
output in (3) makes it difficult to converge [56]. Hence,
two neural networks Q and Q̂ rather than a single one
are in fact used in the proposed method. The primary
network Q is trained as usual, while the target network
Q̂ is used to estimate the output in (3). The target
network is not trained, but directly copies the weights
from the primary network after every ten training steps.
The use of two neural networks has been verified to be
effective in reinforcement learning [56], [62].

C. Computational Complexity of MOEA/D-DQN
According to Algorithm 3, the time complexity of the

proposed MOEA/D-DQN is mainly determined by five

steps in generating each offspring solution, i.e., opera-
tor selection, offspring generation, population update,
credit assignment, and neural network training. The
time complexity of operator selection is O(D2) for a
deduction procedure of the neural network, where D
is the number of decision variables indicating the size
of layers. The time complexity of offspring generation is
O(D) for all the variation operators. The time complexity
of population update is O(M) for calculating the aggre-
gation function. The time complexity of credit assign-
ment is O(N) for calculating the neighborhood fitness
improvement. The time complexity of neural network
training is O(D2) for a backpropagation procedure. As
a consequence, the total time complexity of MOEA/D-
DQN in one generation is O(ND2).

IV. EXPERIMENTAL STUDIES

In order to verify the performance of the proposed
MOEA/D-DQN, it is compared to several classical or
state-of-the-art MOEAs in the experiments, including
MOEA/D [36], MOEA/D-DRA [26], IM-MOEA [63],
SMEA [64], MOEA/D-FRRMAB [17], and MOEA/D-
DYTS [37]. MOEA/D is a classical decomposition based
MOEA, while MOEA/D-DRA is a variant of MOEA/D
based on dynamical resource allocation. IM-MOEA gen-
erates offspring by Gaussian process based inverse mod-
els, and SMEA generates offspring by differential evo-
lution with self-organizing map based mating selec-
tion. MOEA/D-FRRMAB and MOEA/D-DYTS are two
MOEAs with adaptive operator selection, which select
operators via a fitness-rate-rank-based multiarmed ban-
dit method and dynamic Thompson sampling, respec-
tively. In short, the framework of the proposed method
is the same as the compared MOEAs, while the main
contribution of MOEA/D-DQN lies in the reinforcement
learning based operator selection method.

A. Experimental Settings

All the parameters of the compared MOEAs are set as
suggested in their original papers, and the experimental
results are collected from PlatEMO [65]. The detailed
parameter settings of the compared MOEAs are listed
in Table I. For the neural network in MOEA/D-DQN,
a fully connected neural network with seven layers is
adopted, where the input layer size is D +M (i.e., sum
of the number of decision variables and the number
of objectives), the output layer size is the same as the
number of candidate operators, and the sizes of the
five hidden layers are 128, 256, 128, 64, and 32. The
neural network is trained by Adam [66] with a learning
rate of 0.01 for one epoch each time, where the size
of R is the same as the population size and the size
of T is 512. The batch size is set to 16, which means
that each time 16 tuples ({p,w}, op, rewardop, {x,w})
are randomly selected from T and used as the training
samples, where p is the main parent generating offspring
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TABLE I: Detailed Settings of the Compared MOEAs.

General Settings
100 for ZDT problems,

Population size
105 for DTLZ and WFG problems,
600 for UF1–7, 1000 for UF8–10,
50 for neural network training.
10000 for ZDT problems,

Maximum number of 30000 for DTLZ and WFG problems,
function evaluations 300000 for UF problems,

10000 for neural network training.

Variation Operators

Simulated binary
Used in MOEA/D and MOEA/D-DQN,

crossover
crossover probability: 1,
distribution index: 20.
Used in MOEA/D-DRA, SMEA,

Differential evolution
MOEA/D-FRRMAB, MOEA/D-DYTS,
and MOEA/D-DQN,
F = 0.5, CR = 1.

Gaussian process based
Used in IM-MOEA.

inverse models
Used in all MOEAs,

Polynomial mutation mutation probability: 1
#variables

,
distribution index: 20.

Aggregation Function
Used in MOEA/D, MOEA/D-DRA,
MOEA/D-FRRMAB, MOEA/D-DYTS,

Tchebycheff approach and MOEA/D-DQN,
neighborhood size: 20,
maximum number of replaced parents: 2.

Other Settings
IM-MOEA Number of divisions: 10.

SMEA
Initial learning rate: 0.7,
size of neighborhood mating pools: 5.
Scaling factor: 5,

MOEA/D-FRRMAB Sliding window size: 1
2
× population size,

Decaying factor: 1.
MOEA/D-DYTS Update threshold of sampling: 100.

x, w is the corresponding weight vector, op is the selected
operator, and rewardop is the reward calculated by (6).

Four test suites are involved in the experiments, in-
cluding ZDT [67], DTLZ [68], WFG [69], and UF [70]
having 31 benchmark MOPs in total. For the ZDT and UF
problems, the number of decision variables is set to 30
and the number of objectives is set to 2, except for ZDT4
and ZDT6 having 10 decision variables and UF8–UF10
having 3 objectives. For the DTLZ and WFG problems,
the number of objectives is set to 3, the number of
decision variables is set to 12 for DTLZ2–DTLZ6 and
WFG1–WFG9, 7 for DTLZ1, and 22 for DTLZ7. Besides,
the neural network training problem is also involved
in the experiments, whose definition can be found in
[7]. Three datasets taken from the UCI machine learning
repository [71] are adopted for training, resulting in three
MOPs (denoted as NN1–NN3) with 321, 401, and 1241
decision variables.

The inverted generational distance (IGD) [72] is
adopted to evaluate the obtained solutions for bench-
mark MOPs, which is calculated according to approxi-

mately 10000 reference points sampled by the methods
suggested in [58]. The hypervolume (HV) [73] is adopted
to evaluate the obtained solutions for neural network
training, where the reference point is set to (1, 1). The
mean and standard deviation of the indicator values ob-
tained by each MOEA on each MOP for 30 independent
runs are recorded. Furthermore, the Wilcoxon rank sum
test with a significance level of 0.05 is used to perform
statistical analysis [74].

B. Comparison Between MOEA/D-DQN and Other MOEAs

The statistical results of the seven compared MOEAs
on four test suites are listed in Table II. In gen-
eral, the proposed MOEA/D-DQN shows the best
performance on 18 out of 34 MOPs, which is fol-
lowed by MOEA/D, SMEA, IM-MOEA, MOEA/D-DRA,
MOEA/D-FRRMAB, and MOEA/D-DYTS gaining 6, 4,
3, 1, 1, and 1 best result, respectively. For MOEA/D,
MOEA/D-DRA, IM-MOEA, and SMEA using a single
variation operator, it can be found that they exhibit quite
different performance on different test suites; for ex-
ample, the simulated binary crossover based MOEA/D
performs well on WFG problems while the Gaussian
process based IM-MOEA performs well on UF problems.
By contrast, MOEA/D-DQN strikes a balance between
the performance on different test suites, which is sig-
nificantly better than the four MOEAs on most MOPs.
As for MOEA/D-FRRMAB and MOEA/D-DYTS based
on adaptive operator selection, they are also underper-
formed by the proposed MOEA/D-DQN, which veri-
fies the superiority of the proposed operator selection
method.

For further analysis, Figs. 3 and 4 plot the populations
with the median IGD values obtained by the seven
compared MOEAs on ZDT1 and UF1. It can be found
that MOEA/D and IM-MOEA have better convergence
performance on ZDT1 than on UF1, which means that
their variation operators are good at handling the uni-
modal landscapes of ZDT1 but less effective for handling
the complex variable linkages of UF1. On the contrary,
MOEA/D-DRA, MOEA/D-FRRMAB, and MOEA/D-
DYTS have better convergence performance on UF1 than
on ZDT1, since the differential evolution operators are
good at handling complex variable linkages but con-
verge slowly on simple landscapes. In contrast to the
above MOEAs, the proposed MOEA/D-DQN has good
convergence performance on both ZDT1 and UF1, due to
its effectiveness in selecting suitable operators to handle
different MOPs. Although MOEA/D-DQN is as good as
MOEA/D on ZDT1 and as good as MOEA/D-DRA and
MOEA/D-FRRMAB on UF1, it can be observed from
Fig. 5 that MOEA/D-DQN holds a faster convergence
speed than all the other MOEAs, which implies that
the ensemble of multiple operators and the reinforce-
ment learning based operator selection can improve the
performance of MOEAs. In addition, Fig. 6 shows the
mean IGD values obtained by the compared MOEAs on
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TABLE II: IGD/HV Values Obtained by Seven MOEAs on Benchmark Suites/Neural Network Training, Where
the Best Result in Each Row is Highlighted and “+”, “−”, and “=” Indicate that the Result is Significantly Better,
Significantly Worse, and Statistically Similar to the Proposed MOEA/D-DQN.

Problem MOEA/D MOEA/D-DRA IM-MOEA SMEA MOEA/D-FRRMAB MOEA/D-DYTS MOEA/D-DQN

ZDT1 2.6800e-2 (1.58e-2) - 4.6123e-2 (1.82e-2) - 6.2559e-2 (7.72e-3) - 7.2358e-1 (1.01e-1) - 3.8123e-2 (2.14e-2) - 3.8144e-2 (2.08e-2) - 6.9980e-3 (1.76e-3)
ZDT2 5.9006e-2 (7.55e-2) - 1.1258e-1 (4.76e-2) - 6.2866e-2 (1.08e-2) - 1.4689e+0 (1.80e-1) - 1.2262e-1 (5.89e-2) - 1.1662e-1 (4.88e-2) - 2.4188e-2 (2.15e-2)
ZDT3 3.1487e-2 (2.29e-2) - 3.1938e-1 (5.43e-2) - 7.6586e-2 (1.45e-2) - 7.8261e-1 (9.28e-2) - 1.9540e-1 (4.85e-2) - 2.0511e-1 (4.72e-2) - 1.7122e-2 (5.58e-3)
ZDT4 1.7288e-1 (1.12e-1) + 1.1806e+1 (6.89e+0) - 1.0835e-2 (1.47e-3) + 2.8495e+1 (4.86e+0) - 7.8472e+0 (4.44e+0) - 3.9875e+0 (3.34e+0) - 2.5453e-1 (9.70e-2)
ZDT6 1.1214e-2 (2.47e-3) - 5.3427e-2 (1.06e-1) - 1.5028e+0 (9.01e-2) - 9.8493e-2 (1.98e-1) - 4.2009e-3 (3.96e-3) = 3.5353e-3 (9.44e-4) = 3.8825e-3 (2.74e-3)

DTLZ1 2.0982e-2 (3.27e-4) - 1.2916e+0 (1.53e+0) - 3.4132e+0 (7.67e-1) - 2.0141e+0 (1.26e+0) - 3.4192e-1 (6.12e-1) - 6.3591e-1 (9.08e-1) - 1.8507e-2 (8.58e-4)
DTLZ2 5.4467e-2 (1.28e-6) - 7.5716e-2 (6.94e-4) - 9.4179e-2 (5.15e-3) - 8.0869e-2 (3.18e-3) - 7.5370e-2 (6.65e-4) - 7.5319e-2 (5.90e-4) - 4.7007e-2 (1.53e-4)
DTLZ3 9.7856e-1 (1.26e+0) = 2.5743e+1 (2.40e+1) - 6.0011e+1 (1.01e+1) - 1.4375e+1 (1.81e+1) - 1.8153e+1 (1.89e+1) - 1.7439e+1 (2.28e+1) - 1.2903e+0 (3.04e+0)
DTLZ4 3.8444e-1 (3.21e-1) - 2.2549e-1 (1.76e-1) - 7.9127e-2 (3.12e-3) - 1.1164e-1 (6.26e-3) - 1.2233e-1 (7.09e-2) - 1.6551e-1 (9.04e-2) - 4.7086e-2 (2.36e-4)
DTLZ5 3.3764e-2 (6.54e-5) - 1.4166e-2 (1.45e-4) + 2.4473e-2 (4.64e-3) + 2.2885e-2 (2.25e-3) + 1.4252e-2 (1.58e-4) + 1.4401e-2 (1.19e-4) + 2.6538e-2 (5.78e-4)
DTLZ6 3.3881e-2 (2.56e-5) - 1.4338e-2 (6.68e-5) + 4.7806e+0 (1.13e-1) - 8.4479e-3 (1.45e-3) + 1.4528e-2 (5.14e-5) + 1.4537e-2 (3.79e-5) + 2.9008e-2 (4.72e-5)
DTLZ7 1.9743e-1 (1.64e-1) - 2.2761e-1 (6.01e-2) - 3.4424e-1 (4.58e-2) - 4.7891e-1 (1.78e-1) - 1.9837e-1 (3.99e-2) - 2.1575e-1 (7.33e-2) - 1.1006e-1 (3.56e-4)
WFG1 3.4553e-1 (3.64e-2) + 1.3536e+0 (8.07e-2) - 1.3058e+0 (6.48e-2) - 1.6100e+0 (5.58e-2) - 1.5443e+0 (7.38e-2) - 1.4408e+0 (1.09e-1) - 7.1675e-1 (8.33e-2)
WFG2 2.6195e-1 (1.71e-2) - 3.4125e-1 (2.29e-2) - 2.6466e-1 (1.52e-2) - 2.7646e-1 (1.44e-2) - 3.6394e-1 (3.00e-2) - 3.5163e-1 (2.96e-2) - 2.0742e-1 (1.96e-2)
WFG3 2.0213e-1 (5.61e-2) - 1.8917e-1 (3.15e-2) - 2.1991e-1 (1.76e-2) - 2.6856e-1 (3.86e-2) - 2.1493e-1 (3.59e-2) - 1.9109e-1 (4.03e-2) - 1.2825e-1 (4.77e-3)
WFG4 2.6556e-1 (7.53e-3) - 3.8005e-1 (1.12e-2) - 3.3302e-1 (7.61e-3) - 3.7257e-1 (2.00e-2) - 3.9968e-1 (1.25e-2) - 3.9868e-1 (1.57e-2) - 2.3703e-1 (5.38e-3)
WFG5 2.5422e-1 (3.39e-3) - 3.3639e-1 (4.02e-3) - 3.4015e-1 (1.63e-2) - 2.7850e-1 (8.20e-3) - 3.3880e-1 (4.34e-3) - 3.3789e-1 (5.03e-3) - 2.2353e-1 (3.01e-3)
WFG6 2.9751e-1 (1.92e-2) + 4.3393e-1 (2.83e-2) = 3.5758e-1 (1.53e-2) + 3.5166e-1 (3.43e-2) + 4.3816e-1 (3.03e-2) - 4.3740e-1 (4.00e-2) = 4.2542e-1 (4.02e-2)
WFG7 3.5619e-1 (5.14e-2) + 3.6897e-1 (1.03e-2) = 3.5277e-1 (1.18e-2) + 3.2754e-1 (1.56e-2) + 3.6693e-1 (9.62e-3) = 3.6391e-1 (7.96e-3) = 3.6882e-1 (1.13e-2)
WFG8 3.3073e-1 (1.16e-2) + 4.7517e-1 (4.77e-2) = 4.2368e-1 (1.53e-2) + 4.0988e-1 (1.51e-2) + 4.4389e-1 (2.41e-2) + 4.5188e-1 (4.59e-2) + 4.8352e-1 (5.64e-2)
WFG9 3.2760e-1 (6.22e-2) + 3.4008e-1 (1.98e-2) = 3.3717e-1 (1.39e-2) = 3.2822e-1 (5.93e-2) = 3.8344e-1 (4.80e-2) = 3.4880e-1 (3.77e-2) + 3.5458e-1 (3.56e-2)
UF1 1.4922e-1 (5.41e-2) - 1.9429e-3 (7.06e-4) - 5.4924e-2 (1.06e-2) - 3.1349e-2 (3.10e-3) - 2.3837e-3 (1.94e-3) = 2.7501e-2 (7.77e-2) = 1.3666e-3 (1.05e-4)
UF2 4.5377e-2 (3.63e-2) - 3.8904e-3 (1.98e-3) - 2.0652e-2 (4.63e-3) - 3.0338e-2 (2.61e-3) - 3.0706e-3 (9.33e-4) - 2.0981e-3 (7.41e-4) = 2.0228e-3 (4.02e-4)
UF3 3.0328e-1 (3.32e-2) - 2.7810e-2 (4.57e-2) = 7.0425e-2 (7.56e-3) - 1.2291e-1 (3.10e-2) - 1.8076e-2 (1.59e-2) = 2.5324e-2 (2.19e-2) = 2.1607e-2 (1.97e-2)
UF4 5.6160e-2 (5.72e-3) - 6.1483e-2 (4.47e-3) - 5.9624e-2 (2.70e-3) - 5.1042e-2 (2.55e-3) - 5.1265e-2 (2.86e-3) - 4.9417e-2 (2.48e-3) - 3.3923e-2 (1.36e-3)
UF5 4.8038e-1 (1.27e-1) = 5.3079e-1 (1.07e-1) = 5.7316e-1 (1.02e-1) = 1.0703e+0 (9.55e-2) - 5.2543e-1 (1.38e-1) = 6.3341e-1 (1.26e-1) - 5.2563e-1 (1.62e-1)
UF6 3.9102e-1 (1.26e-1) = 3.9160e-1 (7.58e-2) = 1.4211e-1 (2.47e-2) + 3.7554e-1 (2.18e-2) = 4.4067e-1 (6.41e-2) - 4.5274e-1 (4.32e-2) - 3.7661e-1 (7.47e-2)
UF7 4.7546e-1 (1.77e-1) - 2.3092e-1 (2.48e-1) - 3.3065e-2 (4.82e-2) - 1.3341e-2 (9.09e-4) + 2.2646e-1 (2.61e-1) - 3.1521e-1 (2.59e-1) - 3.1031e-2 (1.06e-1)
UF8 2.8741e-1 (2.30e-1) - 1.1058e-1 (5.11e-2) = 1.5769e-1 (5.96e-2) - 1.2721e-1 (9.70e-3) - 9.6619e-2 (2.88e-2) = 1.0052e-1 (1.29e-2) - 9.3945e-2 (7.22e-2)
UF9 2.6355e-1 (3.35e-2) - 1.7194e-1 (3.57e-2) - 1.5937e-1 (6.44e-2) - 1.1807e-1 (1.11e-2) - 1.6370e-1 (5.13e-2) - 1.8932e-1 (6.28e-3) - 7.7286e-2 (6.56e-2)
UF10 7.3227e-1 (1.69e-1) - 4.7879e-1 (7.97e-2) + 2.3738e-1 (5.84e-4) + 2.5258e+0 (1.61e-1) - 8.5939e-1 (1.29e-1) - 6.6767e-1 (8.06e-2) - 5.3962e-1 (1.80e-1)
NN1 6.2055e-1 (1.20e-2) - 7.6301e-1 (1.86e-2) - 6.9280e-1 (2.36e-2) - 7.9543e-1 (1.37e-2) = 7.2571e-1 (2.56e-2) - 7.3659e-1 (2.52e-2) - 8.1633e-1 (1.16e-2)(Statlog Australian)
NN2 6.3505e-1 (1.59e-2) - 8.0321e-1 (2.71e-2) - 7.0199e-1 (2.56e-2) - 8.2303e-1 (1.61e-2) - 7.6123e-1 (2.47e-2) - 7.7099e-1 (2.83e-2) - 8.4754e-1 (7.12e-3)(Climate)
NN3 5.0728e-1 (1.79e-2) - 6.7753e-1 (2.30e-2) - 5.4119e-1 (2.67e-2) - 7.6268e-1 (1.50e-2) + 6.7969e-1 (2.37e-2) - 6.7220e-1 (2.44e-2) - 7.2155e-1 (1.52e-2)(Bench Sonar)

+/-/= 6/25/3 3/23/8 7/25/2 7/24/3 3/24/7 4/24/6 —

Fig. 3: Populations with the median IGD values obtained by seven MOEAs on ZDT1.

ZDT1 and UF1 with more decision variables, where the
number of function evaluations is also set proportionally
to the number of decision variables. It can be found that
the performance of MOEA/D-DQN fluctuates slightly
with the increase of number of decision variables, and is
better than the compared MOEAs on all the test instances
besides UF1 with 50 and 150 decision variables. As a
consequence, the effectiveness of the proposed MOEA
on different types of MOPs is demonstrated.

To investigate the efficiency of the compared MOEAs,
Table III presents the runtimes obtained by the com-

pared MOEAs. It can be found that the single-operator
based MOEA/D, MOEA/D-DRA, and IM-MOEA are
more efficient than the multi-operator based MOEA/D-
FRRMAB, MOEA/D-DYTS, and MOEA/D-DQN. Be-
sides, SMEA is inefficient due to its HV based environ-
mental selection. In short, the efficiency of the proposed
MOEA/D-DQN is similar to existing MOEAs with adap-
tive operator selection.
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Fig. 4: Populations with the median IGD values obtained by seven MOEAs on UF1.

TABLE III: Average Runtimes (in Second) Obtained by Seven MOEAs on Benchmark Suites, Where the Best Result
in Each Row is Highlighted.

Problem MOEA/D MOEA/D-DRA IM-MOEA SMEA MOEA/D-FRRMAB MOEA/D-DYTS MOEA/D-DQN

ZDT problems 2.4919 3.4711 2.8350 7.6200 3.4580 5.5583 9.0468

DTLZ problems 7.2857 5.5611 9.1036 130.7161 8.7838 18.8286 27.4248

WFG problems 8.0473 5.1461 8.2802 248.3478 7.8594 15.2994 29.3160

UF problems 91.5787 87.8362 21.3048 4428.4500 127.5550 241.0180 295.9573

Neural network training 6.9808 5.2872 11.3552 11.7115 7.2369 10.7930 11.6806

Fig. 5: Convergence profiles of mean IGD values ob-
tained by seven MOEAs on ZDT1 (up) and UF1 (down).

Fig. 6: Mean IGD values obtained by seven MOEAs on
ZDT1 (up) and UF1 (down) with different numbers of
decision variables.
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TABLE IV: IGD/HV Values Obtained by MOEA/D-DQN with Multiple and a Single Operator on Benchmark
Suites/Neural Network Training, Where the Best Result in Each Row is Highlighted and “+”, “−”, and “=” Indicate
that the Result is Significantly Better, Significantly Worse, and Statistically Similar to the Original MOEA/D-DQN.

Problem MOEA/D-OP1 MOEA/D-OP2 MOEA/D-OP3 MOEA/D-OP4 MOEA/D-DQN

ZDT1 1.1554e-2 (4.48e-3) - 3.6240e-2 (1.75e-2) - 4.4362e-2 (2.00e-2) - 5.2718e-2 (1.96e-2) - 6.9980e-3 (1.76e-3)
ZDT2 2.0159e-2 (1.23e-2) = 6.0830e-2 (5.62e-2) - 1.0700e-1 (5.54e-2) - 1.4857e-1 (5.73e-2) - 2.4188e-2 (2.15e-2)
ZDT3 4.3307e-2 (2.58e-2) - 2.2010e-1 (6.31e-2) - 2.2983e-1 (5.18e-2) - 2.0123e-1 (4.23e-2) - 1.7122e-2 (5.58e-3)
ZDT4 1.2382e-1 (6.48e-2) + 6.2584e-1 (3.03e-1) - 1.2818e+0 (1.04e+0) - 1.7178e+1 (6.35e+0) - 2.5453e-1 (9.70e-2)
ZDT6 4.5689e-2 (7.93e-2) - 3.1665e-3 (8.09e-5) = 1.0660e-2 (2.45e-2) - 9.2326e-3 (8.38e-3) - 3.8825e-3 (2.74e-3)

DTLZ1 2.0782e-2 (1.89e-4) - 1.0673e+0 (1.60e+0) - 2.9318e-1 (6.21e-1) - 1.3359e+0 (2.13e+0) - 1.8507e-2 (8.58e-4)
DTLZ2 5.4495e-2 (9.26e-5) - 7.5482e-2 (3.47e-3) - 6.8332e-2 (3.38e-3) - 8.1626e-2 (4.28e-3) - 4.7007e-2 (1.53e-4)
DTLZ3 6.7471e-1 (1.28e+0) = 3.4119e+1 (3.35e+1) - 3.6550e+1 (4.51e+1) - 2.2049e+1 (3.30e+1) - 1.2903e+0 (3.04e+0)
DTLZ4 3.0991e-1 (2.92e-1) - 7.2420e-2 (4.91e-3) - 1.5007e-1 (1.38e-1) - 1.0033e-1 (3.19e-2) - 4.7086e-2 (2.36e-4)
DTLZ5 3.3019e-2 (4.74e-4) - 3.0277e-2 (1.11e-3) - 2.9569e-2 (1.16e-3) - 2.7432e-2 (1.66e-3) - 2.6538e-2 (5.78e-4)
DTLZ6 3.3856e-2 (4.15e-5) - 3.3576e-2 (1.34e-4) - 3.3299e-2 (2.57e-4) - 3.3060e-2 (2.80e-4) - 2.9008e-2 (4.72e-5)
DTLZ7 1.5409e-1 (1.57e-3) - 1.5373e-1 (2.81e-3) - 5.2182e-1 (3.28e-1) - 5.0073e-1 (3.31e-1) - 1.1006e-1 (3.56e-4)
WFG1 2.5873e-1 (2.10e-2) + 6.8505e-1 (1.46e-1) = 1.1416e+0 (1.50e-1) - 1.4677e+0 (3.40e-2) - 7.1675e-1 (8.33e-2)
WFG2 2.3869e-1 (2.12e-2) - 2.9602e-1 (2.49e-2) - 2.8355e-1 (2.16e-2) - 2.8629e-1 (2.15e-2) - 2.0742e-1 (1.96e-2)
WFG3 1.5931e-1 (4.76e-3) - 1.6717e-1 (1.43e-2) - 1.8733e-1 (2.05e-2) - 2.2936e-1 (2.09e-2) - 1.2825e-1 (4.77e-3)
WFG4 2.6389e-1 (6.64e-3) - 3.4070e-1 (1.65e-2) - 3.2749e-1 (1.48e-2) - 3.6940e-1 (1.69e-2) - 2.3703e-1 (5.38e-3)
WFG5 2.5097e-1 (3.38e-3) - 2.7192e-1 (7.79e-3) - 2.5955e-1 (6.21e-3) - 2.6298e-1 (6.24e-3) - 2.2353e-1 (3.01e-3)
WFG6 2.9117e-1 (1.93e-2) + 3.9338e-1 (1.15e-2) + 3.7678e-1 (2.51e-2) + 3.6522e-1 (2.01e-2) + 4.2542e-1 (4.02e-2)
WFG7 2.8538e-1 (1.65e-2) + 3.7268e-1 (2.80e-2) = 3.3623e-1 (1.86e-2) + 3.7822e-1 (2.27e-2) = 3.6882e-1 (1.13e-2)
WFG8 3.3973e-1 (8.30e-3) + 5.0260e-1 (3.83e-2) - 4.5396e-1 (3.01e-2) + 4.8381e-1 (2.27e-2) = 4.8352e-1 (5.64e-2)
WFG9 3.0634e-1 (4.95e-2) + 3.5093e-1 (2.58e-2) = 3.2316e-1 (4.28e-2) = 3.4944e-1 (3.40e-2) = 3.5458e-1 (3.56e-2)
UF1 1.3930e-1 (1.06e-1) - 1.4971e-2 (9.89e-3) - 2.9363e-2 (5.85e-2) = 1.7860e-3 (2.32e-3) = 1.3666e-3 (1.05e-4)
UF2 1.7842e-2 (1.13e-2) - 2.5884e-3 (8.69e-4) - 2.6555e-3 (2.01e-3) = 2.8186e-3 (9.14e-4) - 2.0228e-3 (4.02e-4)
UF3 3.4550e-1 (4.64e-2) - 1.5582e-1 (1.01e-1) - 8.3464e-2 (4.50e-2) - 1.6469e-2 (1.74e-2) = 2.1607e-2 (1.97e-2)
UF4 4.8002e-2 (6.43e-3) - 5.4258e-2 (2.88e-3) - 5.3660e-2 (3.31e-3) - 5.2840e-2 (3.21e-3) - 3.3923e-2 (1.36e-3)
UF5 5.1969e-1 (1.35e-1) = 5.0021e-1 (1.33e-1) = 5.3475e-1 (1.38e-1) = 4.7151e-1 (1.45e-1) = 5.2563e-1 (1.62e-1)
UF6 4.3553e-1 (6.92e-2) - 4.1098e-1 (1.14e-1) = 4.0028e-1 (8.26e-2) = 4.3869e-1 (1.12e-1) - 3.7661e-1 (7.47e-2)
UF7 5.3382e-1 (1.62e-1) - 2.3914e-1 (2.68e-1) - 3.8103e-1 (2.14e-1) - 1.7435e-1 (2.63e-1) - 3.1031e-2 (1.06e-1)
UF8 2.5450e-1 (1.92e-1) - 2.3313e-1 (6.28e-2) - 2.2645e-1 (6.56e-2) - 2.9513e-1 (1.32e-1) - 9.3945e-2 (7.22e-2)
UF9 2.2444e-1 (7.01e-2) - 1.9439e-1 (1.07e-2) - 1.6755e-1 (5.29e-2) - 1.8379e-1 (4.63e-2) - 7.7286e-2 (6.56e-2)

UF10 7.6045e-1 (2.01e-1) - 6.5741e-1 (8.38e-2) - 7.0186e-1 (9.09e-2) - 6.9640e-1 (9.21e-2) - 5.3962e-1 (1.80e-1)
NN1 6.4620e-1 (1.55e-2) - 7.9567e-1 (2.29e-2) - 8.0524e-1 (2.06e-2) - 8.0065e-1 (1.88e-2) - 8.1633e-1 (1.16e-2)(Statlog Australian)
NN2 5.9942e-1 (1.88e-2) - 8.2200e-1 (2.22e-2) - 8.3815e-1 (2.11e-2) - 8.4409e-1 (3.55e-2) = 8.4754e-1 (7.12e-3)(Climate)
NN3 4.6028e-1 (2.19e-3) - 7.1667e-1 (2.65e-2) - 7.4554e-1 (2.14e-2) + 7.5682e-1 (2.32e-2) + 7.2155e-1 (1.52e-2)(Bench Sonar)

+/-/= 6/25/3 1/27/6 4/25/5 2/25/7 —

C. Further Investigations of MOEA/D-DQN

To further verify the effectiveness of the proposed
operator selection method, MOEA/D-DQN is compared
to its variants with a single operator, so that the influence
brought by the difference between other strategies can
be totally eliminated. Table IV presents the statistical
results of MOEA/D-DQN and its four variants, where
OP1 denotes simulated binary crossover, OP2 denotes
the crossover operator in MOEA/D-M2M, OP3 denotes
DE/rand/1, and OP4 denotes DE/rand/2. It is obvi-
ous that the proposed MOEA/D-DQN still exhibits the
best overall performance, and is competitive to different
variants on different test suites. For example, MOEA/D-
DQN is competitive to MOEA/D-OP1 on ZDT and
WFG problems and competitive to MOEA/D-OP3 and
MOEA/D-OP4 on UF problems. These observations are
consistent with existing studies, where simulated binary
crossover is more suitable for ZDT and WFG problems
without variable linkages while differential evolution is
more suitable for UF problems with complex variable

linkages [25], [75].
Moreover, Fig. 7 depicts the ratio of operators selected

by MOEA/D-DQN during the optimization process on
ZDT1 and UF1. It can be found that MOEA/D-DQN
prefers OP1 on ZDT1 while preferring OP1, OP2, and
OP3 on UF1, and the other operators are also selected
with a small probability. That is, MOEA/D-DQN does
not select a single operator but assembles multiple op-
erators for solving each problem. Although a single
operator can lead to satisfactory performance on specific
problems (e.g., differential evolution on UF problems), as
evidenced by Table IV (e.g., the results on UF problems),
using reinforcement learning to assemble multiple oper-
ators can further improve the performance. In short, the
effectiveness of the proposed operator selection method
is confirmed.

Lastly, the influence of the neighborhood size used
in MOEA/D on the performance of MOEA/D-DQN
is investigated. For this aim, Fig. 8 presents the mean
IGD values obtained by MOEA/D-DQN with different
neighborhood sizes on ZDT1 and UF1. It can be observed



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. , NO. , MONTH YEAR 12

Fig. 7: Ratio of operators selected by MOEA/D-DQN
during the optimization process of solving ZDT1 (up)
and UF1 (down).

that the obtained IGD values are very similar when the
neighborhood size is larger than 15, which means that
the performance of MOEA/D-DQN is not sensitive to
relatively large neighborhood sizes, and it is reasonable
to set the neighborhood size to 20.

V. CONCLUSIONS

In this paper, a reinforcement learning based adap-
tive operator selection method has been proposed for
evolutionary multi-objective optimization. By using deep
neural networks to learn the relations between decision
variables and Q values (i.e., cumulative fitness improve-
ments) of candidate operators during the optimization
process, the proposed method can suggest promising
operators to evolve the population for different MOPs.
The proposed method has been embedded in a decom-
position based MOEA, which has shown competitive
performance to state-of-the-art MOEAs and operator
selection methods on a variety of benchmark problems.
Besides, the experimental results have also verified that
different operators are suitable for different types of
problems, and the proposed method can generally select
the most suitable one for each problem.

This work has shown the bright prospect of rein-
forcement learning in assisting evolutionary algorithms
for solving static optimization problems. While the pro-
posed method uses a discrete action space aiming to
select suitable operators with predefined parameters, it is

Fig. 8: Mean IGD values obtained by MOEA/D-DQN
with different neighborhood sizes on ZDT1 (up) and UF1
(down).

reasonable to additionally consider a continuous action
space to adaptively tune the parameters of operators in
the future. Moreover, since the proposed method only
considers the decision variables of a single solution as
a state, the involvement of more information about the
whole population is highly desirable, where the suitable
operators for different types of problems can be selected
more accurately.
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