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issue in the IoT field due to the nature of its architecture and the types of devices, as
well as different methods of communication (mainly wireless) and the volume of data
being transmitted in the network. Security becomes more important as the number of
devices connected to the IoT increases. To overcome the challenges of securing IoT
devices, we propose a new Deep Learning-based Intrusion Detection System (DL-
IDS) to detect security threats in IoT environments. Many IDSs can be found in the
literature, but they lack optimal feature learning and dataset management, significant
issues that affect the accuracy of attack detection. Our proposed module combines the
Spider Monkey Optimization algorithm (SMO) and the Stacked-Deep Polynomial
Network (SDPN) to achieve higher detection accuracy; SMO selects the optimal fea-
tures in the datasets, and SDPN classifies the data as normal or anomaly data. Types
of anomalies detected by DL-IDS include Denial of Service (DoS), User to Root
(U2R) attack, probe attack and Remote to Local (R2L) attack. Extensive analysis
shows that the proposed DL-IDS achieves better performance in terms of accuracy,

precision, recall and F-score.
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1 | INTRODUCTION

Recently, the number of IoT applications has increased dramatically. IoT is made up of a large number of different physical
endpoints or sensors. These are connected to one another and the Internet, and they can collect data from the surrounding
environments and share it with each other. Small devices with low power and limited resources can also send data to the IoT
gateways, where it is aggregated and connected to the endpoint networks on the Internet. Security in IoT field is becoming a
more and more challenging issue along with the IoT industry growing. It is mainly due to the heterogeneity of IoT architecture,
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the different types of accessed devices and multiple approaches of communication®#, as well as the huge volume of data being

transmitted through the network. As shown in Fig. 1 IoT attacks have increased during the last year 2018 by 217.5%, from 10.3
million in 2017 to 32.7 million, according to 2019 Cyber Threat Report logged by SonicWall> .
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FIGURE 1 IoT attacks volume year-over-year comparison>

Security issue usually involves authentication, data privacy, availability, confidentiality, integrity, energy efficiency, single-
point failures to be verified, and so on® -/, Most security threats can be categorized as:

e High-level threats: insecure interfaces, insecure software/firmware, and middle-ware security;

o Intermediate level threats: routing disruptions, replay attacks, insecure neighbour discovery, buffer reservation, sinkholes,
authentication, session establishment, and privacy violations; and,

e Low-level threats: jamming, Sybil, spoofing, insecure initialization, and sleep deprivation attacks.

In dealing with the security problem in IoT, many Intrusion Detection Systems (IDSs) can be found in the literature. In
traditional IDS, data are collected by sensors and sent to the analysis engine, which is responsible for examining the collected
data and detecting intrusions. If an intrusion is detected, the reporting system generates an alert to the network administrator.
IDS approaches can be further classified into signature-based and anomaly-based methods, according to whether the system or
network behaviours match with an attack signature or the deviation from the normal ones exceeds the threshold. However, since
traditional methods are usually lack of optimal feature learning and dataset management, the accuracy of attack detection can
not be guaranteed since dealing with irrelevant features in the high dimensional data generated from thousands of IoT sensors
and devices can be increase the risk of over-fitting through the opportunity to make decisions based on the noise. and extends the
training time. In this proposed model we have shown in section 5 that how SMO has provide these benefits to our proposed system
by choosing the optimal features. Machine Learning (ML) and Deep Learning (DL) approaches are recently proposed® -2 10
for detecting and mitigating security threats. For attack detection, ML algorithms such as Support Vector Machines (SVM), K-
Nearest Neighbour’s algorithm (KNN), Decision Trees (DT), Bayesian algorithms, Random Forest and K-means algorithm are
typically applied in IDS. Similarly, DL approaches such as Deep Belief Network (DBN), Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), Restricted Boltzmann Machine (RBM) and deep AutoEncoder (AE) are also employed in
IDSs. However, the DL approach has achieved better performance results over ML, especially in large datasets. Several IoT
systems produce a substantial volume of data, while DL methods are suitable for such a system. It provides the support of
high-dimensional features. It also enables the deep linking which permits IoT-based devices and their applications to interact
with one another automatically without human intervention. Though security and privacy are the primary goals of DL IoT data
processing, it has also been widely used for image processing, Big Data analytics, video processing, and speech processing in
IoT and smart city applications’,
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Therefore, to overcome the challenges of protecting IoT, we propose a novel deep learning-based framework for IoT
environments. The main contributions of this paper are as follow:

e A novel Deep Learning-based IDS (DL-IDS) design to secure IoT environments with improved efficiency of attack
detection;

e A model that can handle datasets with uncertain or missing data, and redundant values;

o An SMO algorithm that is improved upon other optimization algorithms in terms of convergence time is proposed for
feature learning. The optimal packet features are identified by the SMO algorithm and extracted from the cleaned dataset;

e Based on the learned optimal features, SDPN classifies the data as normal or anomalous (DoS, U2R, probe and R2L).
Dataset cleaning and optimal feature learning help SDPN achieve higher accuracy and shorter training time, compared
with other methods.

The rest of this paper is organized as follows: Section 2 provides a background of I0T security and deep learning, while the
state-of-the-art research done in the IoT security using Deep learning are discussed in Section 3. Section 4 explains the proposed
DL-IDS with the algorithms, and Section 5 evaluates the performance of DL-IDS in terms of performance metrics. In the last
section, we conclude our contributions and highlight potential future research in DL-IDS IoT security.

2 | BACKGROUND

2.1 | IoT Security

IoT architecture consists of three layers (Fig. 2), known as the application, network and perception layer''2. The application layer
is the top level in the IoT architecture and provides services to users such as smart cities and smart grids. The network layer is
the most crucial in IoT architecture, as it integrates the connecting devices used in the IoT infrastructure, including gateways and
switches, with different communication technologies and protocols such as Wi-Fi, ZigBee and Bluetooth. The perception layer,
also known as the sensor layer, collects and processes the data from sensors, or controls physical objects in the near environment
such as actuators . The perception layer has two sections: sensor nodes like RFID tags, and wireless sensor networks, which are
self-organizing and contain many sensor nodes deployed in large areas.

The IoT Gateway plays a crucial role in IoT systems since it is responsible for data forwarding, controlling nodes and
communication protocol compatibility. It has a wide range of access capabilities, including seamless manageability and pro-
tocol interworking between traditional network and WSN. Manageability Protocol interworking support protocol interworking
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between the traditional network and WSN seamlessly. Each layer in an IoT system is susceptible to threats and should be secured
through one or more techniques of effective anomaly detection, such as authentication and encryption'ld. Table 1 indicates the
IoT security threats at each layer.

TABLE 1 Attack Classifications

Layer Security threats Threats description
Perception Node capture attacks, Malicious code injec- | The security threats in the perception layer is
Layer tion attacks, false data injection attacks, Replay | focusing on forging the aggregated data from the
attacks, Cryptanalysis attacks and side channel | IoT devices and destroy the perception devices.l>
attacks, eavesdropping and interference, Sleep
deprivation attacks.
Networks DoS attacks, Spoofing attacks, Sinkhole attacks, | The security threats in this layer is focusing on
Layer Wormhole attacks, Man in the middle attack, | effecting the availability of the network resources
Routing information attacks, Sybil attacks, Unau- | since the main purpose of the network layer in the
thorized access. IoT environments is to transmit the aggregated
data.However, most of the devices in the IoT
environment are connecting via wireless commu-
nications.!2
Application Phishing attack, Malicious virus/worm, Mali- | The security threats in the application layer is
Layer cious scripts. focusing on the software attacks since the main
purpose of this layer is to support the services
requested by the users.!2

We describe some of the network layer threats and attacks on the IoT systems. DoS attack is the most common attack in the
IoT networks. It makes the network services unavailable to its authorized users by utilizing all of its resources through hits the
network with a massive amount of traffic#. In a man in the middle attack, a malicious device controlled by the attacker can
intercept the communications between two authorized devices and play as a store and forward device in aims to modifying,
eavesdropping, and controlling the communication between them. In a spoofing attack, the attackers can spoof the address of
the IoT valid device in aim to make communication with the other network devices and send a malicious data as a valid device.

2.2 | Deep learning for IoT

Deep learning (DL) is a state-of-the-art machine learning (ML) field with powerful analytics capabilities, used for applica-
tions such as computer vision, bioinformatics and natural language processing. It is seen to demonstrate significant performance
improvement over some ML algorithms and has recently been used in some IoT applications in edge/fog computing. These appli-
cations require substantial volumes of data to be transferred over the network, and DL gives better performance with extensive

data than ML. Besides, DL can work with new features that can be used to solve the problems without human interactions 13

3 | LITERATURE SURVEY ON DL APPROACHES

DL has been used for many IoT applications for the reasons discussed above. Lane et al.1% used two of the most common deep
learning algorithms (i.e. Convolutional Neural Networks (CNN) and Deep Neural Networks (DNN) to build a model that pro-
cesses sensor data using three different types of IoT hardware employed in wearables and smartphones. DL approach-based
authentication using Long Short Term Memory (LSTM) that learns the hardware imperfections of low-power ratios has also
been proposed for IoT environments-Z. LSTM was designed to be sensitive to signal imperfections in device identification. How-
ever, the method is only helpful for device identification as it cannot detect other significant attacks. LSTM has also been applied
for botnet detection in IoT¥, In addition, an LSTM-based IoT threat hunting approach involving OpCode extraction, feature
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extraction and deep threat classification was proposed. Though optimal feature selection based on term frequency and inverse
document frequency was also tested (TF-IDF), it is only usable with small datasets and is unsuitable for real-time applications.
In!2, a Deep Neural Network (DNN) was used for attack classifications in IoT environments, and its performance was evalu-
ated by cross-validation and sub-sampling. A grid search method was used to initialize the parameters of DNN; the parameter
learning using grid search takes a long time to initialize optimal parameters. The learning-based deep-Q-network was proposed
to maintain security and privacy in IoT healthcare environments?’ by managing authentication, access control and intermediate
attacks in IoT. However, attack detection based on non-optimal features leads to degradation of classification accuracy. Botnet
detection on the internet of battlefield things (IoBT) was performed using the deep Eigenspace learning approach”?!. The oper-
ation code (OpCode) sequence of devices was used for malware detection before classification, and a feature-based graph was
constructed for each sample. As the involvement of large computations results in high computational complexity, this is inef-
fective for IDS. For botnet detection, a bidirectional LSTM-RNN method was used in I6T2, and word embedding was applied
for text recognition and to convert the attack packet into integer format. However, this method only performs well with a limited
number of attack vectors; when the number increases, it becomes ineffective. Stacked AutoEncoder (AE) is an unsupervised
DL method proposed to detect intrusion in fog enabled IoT environments23, and its attack detection latency and scalability were
improved by using fog computing in IoT. However, the running time of AE is relatively long, and the detection accuracy is low
due to non-optimal features.
This literature survey reveals the following research challenges:

e Dealing with uncertain data limits the accuracy of DL modules. However, there are huge volumes of uncertain data in
real-time environments.

e Processing irrelevant features (non-optimal) degrades the accuracy of IDS and extends training time.
o A deep learning approach that can overcome all the above issues in LSTM and DBN is required.

All these problems are resolved by our proposed DL-IDS, which combines optimization algorithms and DL approaches.

4 | PROPOSED DL-IDS

This section provides detailed explanations about using DL-IDS to secure IoT environments. The overall process of DL-IDS
depicted in Fig. 3, shows that it starts with preprocessing to remove uncertainties in which the dataset is normalized. Prepro-
cessing applies two effective processes: redundancy elimination and missing value replacement. The cleaned dataset is then
processed with an optimal feature selection algorithm to extract relevant features. Based on the optimal features, the data is
classified into normal and anomalous data.

Here, we consider four categories of anomalies (DoS, Probing, U2R and R2L) which can be defined as follows:

1. DoS: An attacker tries to make a service unavailable to legitimate users by uploading enormous unwanted packets. DoS
attacks include Apache2, Back, Land, Udpstorm and Smurf.

2. Probing: In this type of attack, an attacker monitors the remote victim and tries to collect some information by doing the
port scanning. Attacks such as duration of the connection and source bytes are some types of Probing attack.

3. R2L: In this type of attack, an unauthorized attacker attempts to access the system without a system account. R2L attacks
include Ftpwrite, Guesspasswd and SNMP.

4. U2R: In this scenario, the attacker has local access to a victim’s machine and tries to obtain legitimate user privileges.
Buffer overflow, HTTP tunnel and rootkit attacks are types of U2R attacks.

4.1 | Preprocessing Phase

This process is initialized with similarity measurements of the data in the dataset, using the Minkowski distance to compute
the distance between each pair of data. Duplicate and redundant data are then removed from the dataset and fed into the next
stage, where the missing values are replaced by nearest neighbour computation to avoid the classifier to biased towards more
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FIGURE 3 The Proposed DL-IDS Framework

frequent records. Missing value replacement, or imputation, is the process of predicting the relevant value of missed attributes in
the data. This missing value replacement method identifies the nearest neighbours of missing values, and the mean value of the
missing attributes is replaced in the missing values. Consider a dataset with m records in which each record has » attributes, and
x attributes are missing in the data record R,. Then, the K nearest neighbours of R, are determined according to the Euclidean
distance (E D) as follows:

m

ED =} |R =R’ (1)

i=2
Based on the distance value, the K nearest neighbour records are identified for R, and the attribute x value of R, is computed
from the attribute value of its K neighbours. The mean value of x is computed for the x values presented in neighbour records,
and the missing value is replaced by this mean value. This step eliminates all redundant data, and the missing values are replaced
to remove all uncertainties from the dataset.

4.2 | Optimal Feature Selection Phase

In the preprocessing step, all uncertainties were removed from the dataset, and in this step, we select the optimal features from
the dataset. Optimal feature selection minimizes the feature learning time in our SDPN classifier. Here, we adapt the SMO
algorithm for optimal feature selection®®. SMO is a food foraging-based optimization algorithm inspired by fission-fusion social
systems. It has been used in many engineering domains due to the few required number of control parameters which makes it
easy to apply in solving complex optimization problems.following are the main control parameters with it’s values:

e LocallLeader Limit = [S X D]
e GloballLeader Limit = [S/2,SX2]

e Maximum no. of groups MG = S/10
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e Perturbation rate PR = [0.1,0.9]

Where, S is the population size, and D is the dimension. Algorithm 1 explains the process of optimal feature selection in the
SMO algorithm.

Algorithm 1 SMO based feature selection
Begin

Set value of control parameters

Initialize swarm with initial population of SMOs
Compute fitness for all SMO in the swarm
Select global leader and local leader

Set iteration = 0

while (Iteration < Maximum iterations) do
//Local Leader Phase
Compute the probability of a particular solution
Update the position of each SMO in the group
//Global Leader Phase
Update the position of each SMO in the swarm
//Global Leader Learning phase
Update the position of the global leader
Select global leader with highest fitness
/Local Leader Learning phase
Update position of the local leader
Select local leader based on fitness
Iteration = Iteration+1;

End

Following are the details of SMO steps; Initialization: In this step, all solutions are initialized as spider monkeys. In our work,
the 41 features are initialized as a population of N spider monkeys where each monkey S M;(i = 1,2, ..., N) is a D-dimensional
vector, and S’ M, indicates the i Spider Monkey (.S M) in this population. Each dimension j of S M, is initialized as follows:

SM, = SM,,, + Rand [0,11(SM .0, — SM ;) 2)

minj maxj
where, SM,,;,,; and SM,,,,..;
Local Leader Phase (LLP): In this stage, each SM modernizes its present location, based on the experience of each local leader
and local group members. The fitness value of so acquired new position is defined. In case the fitness value of the new position

is better than the current (higher is better), then the spider monkey updates its position with the new one, as follows:

SM :SMij+rand[O,1](Lij—SM,-J-)+rand[—1,1](SMrj—SMij) 3)

minj are limits of SM;; in j™ direction, and rand[0, 1] is a random value in the range [0-1].

newij
where the j" dimension of the i"* SM is indicated by S M ;, the j"* dimension of the k" local group leader position is denoted
by LL,;. SM,; indicates the j™ dimension of the r# SM which is selected randomly from the K local group where r # i.
Global Leader Phase (GLP): After finishing the local leader phase, this phase can start where all spider monkeys update their
positions based on the experience of the global leader and local group members as follows:

SM s = SM,; +rand [0,1] (GL; = SM,;) + rand[~1,11(SM,; — SM ) )

newij

where, GL; is the j™ dimension of the GLP and j € {1,2, ..., D} is arandomly selected index. The positions of spider monkeys
(S'M ) are updated based on the probability Prob; which are defined utilizing their fitness. In this way, the best candidate will
have higher possibility to be the leader in the next phase. The probability Prob; is calculated as follows (or by any other function
of fitness):

Fitness;

Prob, = ————1_ )
i Fitness,
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TABLE 2 Selected Features by SMO

No. Selected | Type Feature No. Selected | Type Feature
By By
SMO SMO
1 Continuous | duration 23 \/ Continuous | count
2 \/ Symbolic | protocol_type 24 Continuous | srv_count
3 \/ Symbolic | service 25 \/ Continuous | serror_rate
4 \/ Symbolic flag 26 Continuous | srv_serror_rate
5 \/ Continuous | src_bytes 27 Continuous | rerror_rate
6 \/ Continuous | dst_bytes 28 Continuous | srv_rerror_rate
7 \/ Symbolic land 29 \/ Continuous | same_srv_rate
8 \/ Continuous | wrong_fragment 30 \/ Continuous | diff_srv_rate
9 Continuous | urgent 31 Continuous | srv_diff_host_rate
10 \/ Continuous | hot 32 Continuous | dst_host_count
11 Continuous | num_failed_logins 33 Continuous | dst_host_srv_count
12 \/ Symbolic logged_in 34 Continuous | dst_host_same_srv_rate
13 Continuous | num_compromised 35 \/ Continuous | dst_host_diff_srv_rate
14 Continuous | root_shell 36 \/ Continuous | dst_host_same_src_port_rate
15 Continuous | su_attempted 37 \/ Continuous | dst_host_srv_diff host_rate
16 Continuous | num_root 38 \/ Continuous | dst_host_serror_rate
17 Continuous | num_file_creations 39 \/ Continuous | dst_host_srv_serror_rate
18 Continuous | num_shells 40 \/ Continuous | dst_host_rerror_rate
19 Continuous | num_access_files 41 Continuous | dst_host_srv_rerror_rate
20 Continuous | num_outbound_cmds
21 Symbolic is_host_login
22 Symbolic | is_guest_login

where Fitness, refers to the fitness value of the i SM. In this way, the fitness of the last position is defined and compared with
the old one, and then the best is selected. In this work, the evaluation of each feature (spider monkey) is executed by SDPN
classifier to calculate the efficiency of signified feature subset (which is here the accuracy).

Global Leader Learning phase (GLL): In this phase, the global leader modifies its location by applying a greedy global selection
to all the population set. Then the SM with the highest fitness value becomes the global leader. A counter called GlobalLimit-
Count is incremented by 1 in case of the global leader position does not update.

Local Leader Learning phase (LLL): In this phase, the local leader in each group updates its position by applying the greedy
selection in the same group, and the SM with the highest fitness value in each group becomes the local leader. A counter called
LocalLimitCount is incremented by 1 in case of the local leader position does not update.

Local Leader Decision (LLD): In this phase, if the Local Limit Count reaches its threshold value, then the group members
changes their positions by using gathered information from Global and Local Leaders as the equation:

SM

newij

= SM; +U(0,1) % (GL, — SM;)) + U(0,1) * (SM;; — LL,)) 6)

Global Leader Decision (GLD): In this phase, if the global leader does not reach the maximum number of iterations (Global
Leader Limit), Then the global leader divides the population into smaller local groups until reach the maximum number of
groups (MG). In this case, if the position of global leader is not updated, then it combines all the groups in one group.
Moreover, the final best subset of features with high classification accuracy is defined as the better optimal result. Therefore,
this algorithm simulates the fusion-fission social system of SMs. Thus, in this process, the optimal feature set is selected by the
SMO algorithm. Table 2 shows the selected NSL-KDD features by SMO that gives higher accuracy.
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4.3 | Classification Phase

In the classification phase, we adopted SDPN which has been used with numerous small and large datasets and has shown high-
performance results in2 -2%, In SDPN, multiple basic DPNs are stacked up to form a deep hierarchy. DPN a new supervised
deep neural network algorithm with efficient layer-by-layer learning in which the output of each node is a quadratic function
of its inputs. The highest level output representation is then fed to an SDPN classifier. The elimination of irrelevant features
by selecting optimal features minimizes the SDPN training time. Moreover, the optimal means of building deep networks in
SDPN allows data representation learning on small finite samples. The algorithm starts with a simple network that could have
significant bias but will not tend to over-fit (i.e. low variance), and as the network becomes deeper, we can gradually decrease
the bias while increasing the variance. Thus, this algorithm could be applied to train the natural curve of the solutions used to
control the bias-variance trade-off.

The construction of the layers in DPN begins by assigning the degree-1 polynomial function (linear) over the training dataset,
where the bias is built using Singular Vector Decomposition (SVD) to generate an independent set of vectors. The outputs of the
first layer extend all values obtained by the linear functions on the training instances. Then, by using the same concept, the basis
for degree-2 and three polynomials can be derived. This means that the vector of values achieved by any degree-2 polynomial
extends the vector of values obtained by nodes in the first layer and products of the outputs of every two nodes in the first layer.

Letting R= {r,,r,, ... ,F,,} ER™ gives a set of m training samples, where r, is a d-dimensional sample. Then, the construction
of the first layer in DPN begins by assigning the degree-1 polynomial function (linear) over the training data as follows:

{((w, [1 r1]>,...,<w, [1 rm]>): weRd+l} (7)
which is the (d+1)-dimensional linear subspace of R,,. Therefore, to build the basis we need to find d+1 vectors wl, ... , wy,.
So, { ( (wj , [1 r1]> ey (wj , [1 rm]> ) };1:11 are linearly independent vectors ,this can be generated by using Singular

Vector Decomposition (SVD) to end up with linear transformation that specified by a matrix W, which maps [1 X] into the
generated basis, in which the columns of W specify the d+1 linear function to form the first layer of the network. The j** node
of the first layer functions as:

n () = (W, [1R]) ®)

where { ( njl. (r) s s nJ1 ) };1:1] is the basis for all values obtained by degree-1 polynomials over the training dataset. If F!
refers to m X (d+1) matrix which columns are the vectors of this matrix, then FIIJ = n}'. (7).
In this way, the network of the first layer is constructed, whose outputs extend all the values obtained by linear functions on the

training dataset. In the same way, basis of degree-2 and 3 can be found. Then any degree s polynomial can be expressed as:

Z () hy(0)+k(r) ©)

where, g,;(r) are degree-1 polynomials, A;(r) are (s-1)-degree polynomials, and k (r) is polynomial of degree at most s-1. The
nodes in layer-1 extend all degree-1 polynomials then it extends the polynomials g; , #; ,and k , So we can express any degree-2
polynomial as:

Jx J

. 3 oy
Z <Z aj(g')njl.(r)> <Z ax(h')ni(r)> + <Z aj(k)njl.(r)> = <Z n}(r)ni(r)) <Z ocj(g')ot,(C ’)> + Z n;(r)(a;k)) (10)
i j x j i
where a’s are scalar factors. This means that the vector of values achieved by any degree-2 polynomial extend the vector of
values obtained by nodes in the first layer, and products of the outputs of every two nodes in the first layer. For the algebraic
representation, when the first layer was constructed a matrix F! was formed, which columns extend all values obtained by

degree-1 polynomials. Then the matrix [F ’Fz] can be expressed as:

) lo ol lo 1l 1 o pl 1 o gl
F2=[(F/° F}...(F ﬂﬂpuxﬂplﬂywﬂplﬂmm (11)

where, ° refers to the direct matrix product. We can define F 2 as the method as F!, then the new matrix[ F Fz] extends all
possible values of degree-2 polynomials, then [F F?]’s columns are linearly independent basis for [F F 2]’s columns.
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Now, to construct layer 3, we need only to repeat the previous process, at each iteration s, matrix F is maintained, whose
columns form a basis for the values obtained by all polynomials of degree < s — 1 . then we can write the new matrix as:

s _ s—1lo 1 s—1o 1 s—1 o 1 s—1 o 1
F* = [ FD (R Ff (B o FD L 2 ) (12)

After some A — 1 iterations a matrix F will be constructed, whose columns form a basis for all values obtained by polynomials
of degree < A — 1 over the training dataset. Algorithm 2 summarizes the steps for building DPN.

Algorithm 2 Main algorithm flowchart to build the networks in DPN
Begin
Initialize an empty matrix (F) , and Fl:= [1 X]
Find W by computing SVD of F !
Build basis for layer 1: (F !, W 1) := (F 1)
// Columns of F! are linearly independent, and F! := F | W!
Building first-layer: Vi € {1, ..., |F'|},n! () := (W, [1 R])
F:=F!
El}ild higher layers s = 2 and 3:
Fs=[(F™'° F)...(F~'° F).. (FIS;*II ° F|1F1|)]
Build basis for layer s: (F* , W ¥) := (FS )
// Columns of [F F!] are linearly independent
F:=[FF]
End
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FIGURE 4 Accuracy relating to SDPN layers

To verify that the model doesn’t only performed exceptionally well on training data, and it is able to do so on the testing
data (avoid over-fitting), we adopt to use L2 regularization technique, In which the loss function is extended by adding the
regularization term that contain regularization parameter called lambda value (1) which controls how to penalize the features. It
is a hyperparameter with no fixed value. As its value increases as there will be high penalization for the features. As a result, the
model becomes simpler. When its values decrease there will be a low penalization of the features and thus the model complexity
increases. Fig. 4 shows the accuracy-related to the SDPN layers using different values of lambda (4). from the figure we can see
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that each layer archive’s different accuracy. By experiments we found that the higher accuracy is achieved on the layer 3 with
the lambda value equals to (0.001). However, note that in SDPN algorithm we do not need to specify the number of iterations.
Instead, we can simply create the layers one-by-one, and then we can check the performance of the resulting network on a
validation set, and stop once we reach a satisfactory performance.

With this methodology, all optimal features selected by SMO algorithms are learned in each layer of SDPN, and high-level and
optimal features are classified. Building on these significant features, SDPN classifies the data into normal and anomalous, based
on the kernel function. Our proposed DL-IDS system performs preprocessing, feature selection and classification for intrusion
detection, and the elimination of uncertainties in the dataset improves attack detection performance. Optimal feature selection
improves the accuracy of the classifier, and the involvement of SDPN maps optimal low-level features to high-level features.

Fig. 5 shows the comparison of time cost in seconds to build SDPN layers with different values of lambda (1) before and after
using SMO. from this figure we can note the saved time achieved by using the SMO features selection.The SMO reduced the
training time on average of 66.59% because the dimension of the dataset is reduced to a low level which boost the classification
speed, and the decreased calculations which can decrease the algorithm running time which give us the indication that this model
can be used with the real time environments.

Comparison of time cost to build SDPN layers
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FIGURE 5 Comparison of time cost to build SDPN layers

S | PERFORMANCE EVALUATION

In this section, we analyze the performance of the proposed DL-IDS system, based on significant performance metrics, such as
accuracy, precision, recall and F-score.

5.1 | Dataset Description

To evaluate the performance of DL-IDS we used the NSL-KDD benchmark dataset, which is the most recent version of the
KDD’99 dataset?”. This dataset contains DoS, R2L, probe and U2R Cyber-attacks, and consists of 125,973 records for training
and 22,554 records for testing. It involves 41 features, including duration, protocol, service, flag, source bytes and destination
bytes.

A brief analysis of the NSL-KDD dataset is provided in Table 3. In DL-IDS, the dataset first undergoes the preprocessing phase in
which redundant data are eliminated and missing values are replaced. Then optimal features are selected by the SMO algorithm,
and further feature learning and classification with optimal features is performed by SDPN. We used Python-Tensorflow on CPU
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TABLE 3 Dataset analysis

Traffic Training Testing
Normal 67343 9711
Attacks | DoS 45927 7458
Probe 11656 2754
R2L 995 2421
U2R 52 200
Total 125973 22544

core 17 based machine to simulate our proposed framework, and for optimal feature selection 41 populations were initialized in
the SMO algorithm, and 100 iterations were performed.

5.2 | Performance metrics

In this work, we considered for comparison performance metrics such as accuracy, precision, recall and F score, which are
defined as follows:

Accuracy: This is defined as the percentage of correct predictions; that is, the percentage of anomalous traffic that is classified
correctly. It is the ratio of correct detections to the total number of records in the dataset, and can be computed as follows,

Accuracy=(TP+TN)/(TP+TN + FP+ FN) (13)

Accuracy is computed based on false positive (FP) and true positive (TP) values.
Precision: This metric describes the classifier’s ability to predict normal data without conditions. It is defined as the number of
true positives divided by the number of true positives, plus the number of false positives as follows:

Precision=TP/((TP + FP)) (14)

Recall: Recall is the ratio of the number of records correctly classified to the number of all corrected events, and can be computed
as follows:
Recall =TP/((TP+ FN)) 15)

Here, FN represents the false negative.
F1-Score: This is defined as the harmonic mean of recall and precision, which can be computed as follows:

F1-Score =2TP/(2TP + FP+ FN)) (16)

All these metrics are significant for evaluation of the classifiers.

5.3 | Comparative analysis

In Fig. 6, we show comparative analysis with a deep learning-based attack detection mechanism (D-DL)? In D-DL a deep
learning-based Cyber-attack detection mechanism for IoT was distributed over fog nodes using the NSL-KDD dataset. The
authors concluded that, though the DL approach outperforms shallow learning methods, the detection efficiency is limited as
it requires further analysis on payload-based detection. Based on the average values of each performance metrics of the deep
model with the 5-classes (Normal,DoS, Probe, R2L, and U2R) it can be seen that DL-IDS achieves better accuracy, precision
recall and F1-Score performance.

Fig. 7 shows comparisons with different Deep Feature Embedding Learning (DFEL) classifiers: Gradient Boosing Tree (GBT),
K-Nearest Neighbours (KNN), Decision Tree (DT) and Support Vector Machine (SVM). DFEL architecture was proposed for
Intrusion Detection in I6T4. it was intended to reduce the data dimensions by using edge-of-deep and transfer learning, and
though it minimizes training time, it cannot improve detection accuracy. As DFEL is analyzed with different classifiers, it
does not provide better accuracy than any of these classifiers. Involving effectual preprocessing, optimal feature selection and
classification improves the accuracy of DL-IDS.
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Performance comparison with D-DL model on NSL-KDD
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FIGURE 7 Comparison of our model with DFEL

In Table 4, we compare the performance metrics values of our proposed DL-IDS with existing works (DFEL) and distributed
DL (D-DL).

Accuracy is an important measure that evaluates the ability of classifiers in intrusion detection. DL-IDS clearly achieves
better accuracy than previous approaches, such as DFEL and D-DL. The precision of our proposed work is compared to previous
work, and also confirms that DL-IDS outperforms previous work. This is because previous work was unable to predict the class
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TABLE 4 Performance comparison on NSL-KDD dataset

Model Accuracy | Precision | Recall | F1-Score
(%) (%) (%) (%)

DL-IDS 99.02 99.38 98.29 98.83

D-DL 98.27 88.85 96.50 92.52

DFEL GBT | 98.54 98.54 98.53 98.53
DFEL KNN | 98.82 98.82 98.82 98.82
DFEL DT 98.77 98.77 98.77 98.77
DFEL SVM | 98.86 98.86 98.87 98.86

of data since it was processed with non-optimal features and uncertain datasets. We were able to overcome these issues, and
thereby achieved high precision.

The recall capability of proposed and previous works is the other performance measure we compared. We found that DL-IDS
is also effective in recall metrics, which is significant in intrusion detection. Thus, the proposed DL-IDS can detect all anomalies
with no significant errors.

For any classifier, the F1 score is critical to measuring its performance. We compared the DL-IDS F1 score with other models
and achieved better F1 scores. Therefore, our proposed DL-IDS with nearest neighbour-based preprocessing, SMO-based feature
selection and SDPN-based classification provides better security for IoT environments than previous models.

6 | CONCLUSION

This paper proposes a novel deep learning based intrusion detection system (IDS) for ever-growing IoT based networks to detect
severe anomalies. With DL-IDS, A spider monkey optimization (SMO) algorithm is used to extract most relevant features from
the dataset. and the stacked deep polynomial network (SDPN) is then used to learn the optimal features and to classify the data
as normal or anomalous in different attack categories, e.g., DoS, U2R, R2L and probe attack. We evaluated our DL-IDS system
using the NSL-KDD dataset, and our proposed work achieves better performance in accuracy (99.02%), precision (99.38%),
recall (98.29%) and F1-score (98.83%). For future research, we plan to evaluate DL-IDS with different classifiers, such as Na
ve Bayes, decision tree and random forest, using various datasets, including KDD-99 and UNSW-NB 15.
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