Yasushi TamuraYamagata University | YU · Department of Material and Biological Chemistry
Yasushi Tamura
Ph. D
About
74
Publications
13,369
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,546
Citations
Introduction
Additional affiliations
April 2012 - March 2015
April 2012 - March 2013
April 2007 - March 2012
Publications
Publications (74)
CDP-diacylglycerol (CDP-DAG) is central to the phospholipid biosynthesis pathways in cells. A prevailing view is that only one CDP-DAG synthase named Cds1 is present in both the endoplasmic reticulum (ER) and mitochondrial inner membrane (IM) and mediates generation of CDP-DAG from phosphatidic acid (PA) and CTP. However, we demonstrate here by usi...
Numerous studies have revealed that organelle membrane contact sites (MCSs) play important roles in diverse cellular events, including the transport of lipids and ions between connected organelles. To understand MCS functions, it is essential to uncover proteins that accumulate at MCSs. Here, we develop a complementation assay system termed CsFiND...
In yeast, ERMES, which mediates phospholipid transport between the ER and mitochondria, forms a limited number of oligomeric clusters at ER-mitochondria contact sites in a cell. Although the number of the ERMES clusters appears to be regulated to maintain proper inter-organelle phospholipid trafficking, its underlying mechanism and physiological re...
Inter-organelle contact sites have attracted a lot of attention as functionally specialized regions that mediate the exchange of metabolites, including lipids and ions, between distinct organelles. However, studies on inter-organelle contact sites are at an early stage and it remains enigmatic what directly mediates the organelle-organelle interact...
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their...
Phospholipids are major components of biological membranes and play structural and regulatory roles in various biological processes. To determine the biological significance of phospholipids, the use of chemical inhibitors of phospholipid metabolism offers an effective approach; however, the availability of such compounds is limited. In this study,...
Translocator assembly and maintenance 41 (Tam41) catalyzes the synthesis of cytidine diphosphate diacylglycerol (CDP-DAG), which is a high-energy intermediate phospholipid critical for generating cardiolipin in mitochondria. Although Tam41 is present almost exclusively in eukaryotic cells, a Firmicutes bacterium contains the gene encoding Tam41-typ...
Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phosphol...
Lipids play crucial roles as structural elements, signaling molecules and material transporters in cells. However, the functions and dynamics of lipids within cells remain unclear because of a lack of methods to selectively label lipids in specific organelles and trace their movement by live-cell imaging. We describe here a technology for the selec...
Endosome maturation depends on membrane contact sites (MCSs) formed between endoplasmic reticulum (ER) and endolysosomes (LyLEs). The mechanism underlying lipid supply for this process and its pathophysiological relevance remains unclear, however. Here, we identify PDZD8-the mammalian ortholog of a yeast ERMES subunit-as a protein that interacts wi...
LETM1 is a mitochondrial inner membrane protein that is required for maintaining the mitochondrial morphology and cristae structures, and regulates mitochondrial ion homeostasis. Here we report a role of LETM1 in the organization of cristae structures. We identified four amino acid residues of human LETM1 that are crucial for complementation of the...
Most phospholipids are synthesized via modification reactions of a simple phospholipid phosphatidic acid (PA). PA and its modified phospholipids travel between organelle membranes, for example, the endoplasmic reticulum (ER) and mitochondrial inner membrane, to be converted to the other phospholipids. To gain insight into mechanisms of the phosphol...
Eukaryotic cells are compartmentalized to form organelles, whose functions rely on proper phospholipid and protein transport. Here we determined the crystal structure of human VAT-1, a cytosolic soluble protein that was suggested to transfer phosphatidylserine, at 2.2 Å resolution. We found that VAT-1 transferred not only phosphatidylserine but als...
Normal mitochondrial functions rely on optimized composition of their resident proteins, and proteins mistargeted to mitochondria need to be efficiently removed. Msp1, an AAA-ATPase in the mitochondrial outer membrane (OM), facilitates degradation of tail-anchored (TA) proteins mistargeted to the OM, yet how Msp1 cooperates with other factors to co...
Significance
Stimulated emission depletion (STED) microscopy is one of the most appealing tools to visualize nanoscale cellular structures and dynamics in living cells. However, its practical utility is significantly limited by the rapid photobleaching of fluorescent dyes under the ultrastrong depletion laser. In this context, superphotostable fluo...
Mitochondria maintain their morphology and functions through the optimized balance between the mitochondrial fusion and division. Here we report a novel role of mitochondrial dynamics in controlling the number of ER-mitochondria encounter structure (ERMES) clusters in a yeast cell. Loss of mitochondrial fusion or division caused the increased or de...
A number of previous studies have shown that phospholipid molecules come and go between the endoplasmic reticulum (ER) and mitochondrial membranes while the molecular basis of non-vesicular phospholipid transport is still not understood well. In this chapter, we describe an optimized method that uses membrane fractions isolated from yeast cells to...
The MICOS complex mediates formation of the crista junctions in mitochondria. Here we analyzed the mitochondrial import pathways for the six yeast MICOS subunits as a step toward understanding of the assembly mechanisms of the MICOS complex. Mic10, Mic12, Mic26, Mic27, and Mic60 used the presequence pathway to reach the intermembrane space (IMS). I...
MPIase is a glycolipid that is involved in membrane protein integration. Despite evaluation of its functions in vitro, the lack of information on MPIase biosynthesis hampered verification of its involvement in vivo. In this study, we found that depletion of CdsA, a CDP-diacylglycerol synthase, caused not only a defect in phospholipid biosynthesis b...
Mitochondria import nearly all of their resident proteins from the cytosol, and the TOM complex functions as their entry gate. The TOM complex undergoes a dynamic conversion between the majority population of a three-channel gateway (“trimer”) and the minor population that lacks Tom22 and has only two Tom40 channels (“dimer”). Here, we found that t...
Mitochondria are dynamic organelles that constantly fuse and divide to maintain their proper morphology, which is essential for their normal functions. Energy production, a central role of mitochondria, demands highly folded structures of the mitochondrial inner membrane (MIM) called cristae and a dimeric phospholipid (PL) cardiolipin (CL). Previou...
Since the 1950's, electron microscopic observations have suggested the existence of special regions where the distinct organelle membranes are closely apposed to each other, yet their molecular basis and functions have not been examined for a long time. Recent studies using yeast as a model organism identified multiple organelle membranes tethering...
DJ-1 is a Parkinson’s disease associated protein endowed with enzymatic, redox sensing, regulatory, chaperoning, and neuroprotective activities. Although DJ-1 has been vigorously studied for the last decade and a half, its exact role in the progression of the disease remains uncertain. In addition, little is known about the spatiotemporal regulatio...
Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo an...
Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo an...
Lipid trafficking is essential for biogenesis and maintenance of eukaryotic organelles. In this issue of The EMBO Journal, Saita et al () revealed that proteolytic processing by the rhomboid protease PARL in the mitochondrial inner membrane facilitates partitioning of START domain-containing protein STARD7 to the cytosol and mitochondrial intermemb...
The endoplasmic reticulum (ER)–mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ra...
Eukaryotic cells exhibit intracellular compartments called organelles wherein various specialized enzymatic reactions occur. Despite the specificity of the characteristic functions of organelles, recent studies have shown that distinct organelles physically connect and communicate with each other to maintain the integrity of their functions. In yea...
In eukaryotes, RNA polymerase II requires general transcription factors to initiate mRNA transcription. TFIIE subunits α and β form a heterodimer and recruit TFIIH to complete the assembly of the pre-initiation complex (PIC). Here, we have determined the crystal structure of human TFIIE at atomic resolution. The N-terminal half of TFIIEα forms an e...
In yeast, the ER-mitochondria encounter structure (ERMES) tethers the ER to mitochondria, but its primary function remains unclear. To gain insight into ERMES functions, we screened multi-copy suppressors of the growth-defective phenotype of mmm1∆ cells, which lack a core component of ERMES, and identified MCP1, MGA2, SPT23 and YGR250C (termed RIE1...
Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop...
As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to...
Phosphatidylethanolamine (PE) is an essential phospholipid for mitochondrial functions and is synthesized mainly by phosphatidylserine (PS) decarboxylase at the mitochondrial inner membrane. In
Saccharomyces cerevisiae
, PS is synthesized in the endoplasmic reticulum (ER), such that mitochondrial PE synthesis requires PS transport from the ER to th...
Eukaryotic cells are compartmentalized into membrane-bounded organelles whose functions rely on lipid trafficking to achieve membrane-specific compositions of lipids. Here we focused on the Ups1-Mdm35 system, which mediates phosphatidic acid (PA) transfer between the outer and inner mitochondrial membranes, and determined the X-ray structures of Md...
In eukaryotic cells, complex membrane structures called organelles are highly developed to exert specialized functions. Mitochondria are one of such organelles consisting of the outer and inner membranes with characteristic protein and phospholipid compositions. Maintaining proper phospholipid compositions of the membranes is crucial for mitochondr...
The membrane topology of Om45 in the yeast mitochondrial outer membrane (OM) is under debate. Here, we confirm that Om45 is anchored to the OM from the intermembrane space (IMS) by its N-terminal hydrophobic segment. We show that import of Om45 requires the presequence receptors, Tom20 and Tom22, and the import channel of Tom40. Unlike any of the k...
Mitochondria move, fuse and divide in cells. The dynamic behavior of mitochondria is central to the control of their structure and function. Three conserved mitochondrial dynamin-related GTPases (i.e., mitofusin, Opa1 and Drp1 in mammals and Fzo1, Mgm1 and Dnm1 in yeast) mediate mitochondrial fusion and division. In addition to dynamins, recent stu...
PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically localizes on depolarized mitochondria, whereas parkin is a ubiquitin ligase (E3) that catalyses ubiquitin transfer to mitochondria...
Mitochondrial proteins require protein machineries called translocators in the outer and inner membranes for import into and sorting to their destination sub-mitochondrial compartments. Among them, the TIM22 complex mediates insertion of polytopic membrane proteins into the inner membrane and Tim22 constitutes its central insertion channel. Here we...
Mitochondrial DNA is packaged into DNA-protein complexes called nucleoids, which are distributed as many small foci in mitochondria. Nucleoids are crucial for the biogenesis and function of mtDNA. Here, using a yeast genetic screen for components that control nucleoid distribution and size, we identified Fcj1 and Mos1, two evolutionarily conserved...
Phosphatidylethanolamine (PE) plays important roles for the structure and function of mitochondria and other intracellular
organelles. In yeast, the majority of PE is produced from phosphatidylserine (PS) by a mitochondrion-located PS decarboxylase,
Psd1p. Because PS is synthesized in the endoplasmic reticulum (ER), PS is transported from the ER to...
The TOM40 complex is a protein translocator in the mitochondrial outer membrane and consists of several different subunits. Among them, Tom40 is a central subunit that constitutes a protein-conducting channel by forming a β-barrel structure. To probe the nature of the assembly process of Tom40 in the outer membrane, we attached various mitochondria...
Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on...
The identification of early mechanisms underlying Alzheimer's Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of diff...
Axonal trafficking of mitochondria in primary neuron from NTG mouse. Visualization of mitochondria in E17 Hip neuron was done using TMRM. 600 frames were acquired by imaging the axon every second using LSM 510 confocal microscope. Imaging was done focusing on the axon with the cell body located at the top of the image. Resulting movie was analyzed...
Animated 3D reconstruction of mitochondrial structure in Hip tissue of APP/PS1 mouse 24 weeks of age. For 3D reconstruction of the mitochondrial structure, the grayscale of the individual EM section images was first inverted so that the organelle became bright objects. The inverted images were then sequentially co registered using the Normalized Mu...
Previous studies using in vitro cell culture systems have shown the role of the dynamin-related GTPase Opa1 in apoptosis prevention and mitochondrial DNA (mtDNA) maintenance. However, it remains to be tested whether these functions of Opa1 are physiologically important in vivo in mammals. Here, using the Cre-loxP system, we deleted mouse Opa1 in pa...
Mitochondria are highly dynamic organelles that continuously fuse and divide in highly regulated manners. These activities control number, distribution, and morphology of mitochondria in the cell, and therefore play important roles for diverse mitochondrial functions such as energy production, metabolism, intracellular signaling, and apoptosis. Sev...
Ups1p, Ups2p, and Ups3p are three homologous proteins that control phospholipid metabolism in the mitochondrial intermembrane space (IMS). The Ups proteins are atypical IMS proteins in that they lack the two major IMS-targeting signals, bipartite presequences and cysteine motifs. Here, we show that Ups protein import is mediated by another IMS prot...
Normal mitochondrial protein import requires multiple translocator complexes in the outer and inner mitochondrial membrane. Tam41 is a peripheral inner membrane protein that is involved in the structural maintenance of the inner membrane translocator the TIM23 complex. Here we identified an arrestin-related protein Art5 as a multicopy suppressor fo...
The dynamin-related guanosine triphosphatase Drp1 mediates the division of mitochondria and peroxisomes. To understand the in vivo function of Drp1, complete and tissue-specific mouse knockouts of Drp1 were generated. Drp1-null mice die by embryonic day 11.5. This embryonic lethality is not likely caused by gross energy deprivation, as Drp1-null ce...
Cardiolipin, a unique phospholipid composed of four fatty acid chains, is located mainly in the mitochondrial inner membrane (IM). Cardiolipin is required for the integrity of several protein complexes in the IM, including the TIM23 translocase, a dynamic complex which mediates protein import into the mitochondria through interactions with the impo...
Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these...
By screening yeast knockouts for their dependence upon the mitochondrial genome, we identified Mgr3p, a protein that associates with the i-AAA protease complex in the mitochondrial inner membrane. Mgr3p and Mgr1p, another i-AAA-interacting protein, form a subcomplex that bind to the i-AAA subunit Yme1p. We find that loss of Mgr3p, like the lack of...
In many organisms, ranging from yeast to humans, mitochondria fuse and divide to change their morphology in response to a multitude of signals. During the past decade, work using yeast and mammalian cells has identified much of the machinery required for fusion and division, including the dynamin-related GTPases--mitofusins (Fzo1p in yeast) and OPA...
Newly synthesized mitochondrial proteins are imported into mitochondria with the aid of protein translocator complexes in the outer and inner mitochondrial membranes. We report the identification of yeast Tam41, a new member of mitochondrial protein translocator systems. Tam41 is a peripheral inner mitochondrial membrane protein facing the matrix....
Here, we report the identification of yeast 15-kD Tim15/Zim17, a new member of mitochondrial Hsp70 (mtHsp70)-associated motor and chaperone (MMC) proteins. The 15-kD MMC protein is a peripheral inner membrane protein with a zinc-finger motif. Depletion of the 15-kD protein led to impaired import of presequence-containing proteins into the matrix in...